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Abstract: The structured singular value, u, can be used to analyse the robust perfor-
mance characteristics of control systems with respect to the potential perturbations in
plant dynamics. p can also be used in control system design. Whilst it is not currently
possible to synthesise a truly p-optimal controller, a process known as DK-iteration
is available employing Ho, design techniques. A preliminary study is described that
uses a multiobjective genetic algorithm to tune the weighting functions of a controller

derived using DK-iteration.
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1. INTRODUCTION

The problem of ensuring that a linear controller
exhibits appropriate characteristcs across the op-
erating range of a non-linear plant is a well-
studied problem within the field of Control En-
gineering. Standard approaches to the problem
include gain-scheduling of linear control algorithm
parameters and the use of non-linear control algo-
rithms. Whilst these two approaches have been
successfully applied in a wide range of applica-
tion areas, they are not without difficulties. Non-
linear control approaches are often the subject of
low levels of confidence within certain industries.
Gain-scheduling is a widely-accepted technique
but does require a suitable, measurable parameter
against which the controller gains can be sched-
uled, which may not be available.

The feasibility of designing a single, linear control
algorithm for a non-linear system can be found
in the literature. Previous work by the authors
has involved the design of Hoo Loop Shaping
Design Procedure (LSDP) control algorithms to
address the control requirements of a non-linear
system represented by multiple, linear models.

The weighting functions for the Hoo LDSP con-
troller were tuned using a genetic optimiser in
order to meet the performance requirements.

This paper describes a preliminary investigation
into the potential for extending this design ap-
proach by using a multiobjective genetic algo-
rithm (MOGA) to tune the weighting functions
for a u-based controller via DK-iteration. A basic
introduction to both p-synthesis and MOGA are
provided before two case studies are described.

2. ROBUSTNESS ANALYSIS

The raison d’étre for p-design is to provide a
technique for analysing and achieving robustness
for controlled systems. In order to cater for the dif-
ferences between a real-world plant and its model,
or the differences in model parameters that may
occur across a non-linear operating envelope, a
method for representing and quantifying the po-
tential parametric discrepancies is required. This
involves defining a region of uncertainty within
which all possible plant descriptions or parameter
values are known to lie. This can be done us-



ing norm-bounded, frequency dependent transfer
functions as shown in equation (1). This results
in a continuous set of possible system represen-
tations containing an infinite number of transfer
functions that may represent the actual system.
This is a suitable format for representing lumped
uncertainty (a combination of parametric and
unmodelled /neglected dynamics uncertainty) as
shown in equation 1.

Gp(s) = G(s)(1 +wrAp)

Given this representation of uncertainty the re-
quirements for achieving robustness can now be
defined. The loop transfer function of the system,
L,, containing this perturbed plant is as shown in
equation (2),

Lp = GpK = GK(]. +w1AI) =L +w1LAI,(2)

Ar(jw)] <1 Vw

where L is the nominal loop transfer function.

Based on the Nyquist stability criterion the con-
dition for robust stability can then be defined as
in equations (3), (4),

wi Ll < L+ L[, Vw (3)

which simplifies to

wIL
1+L

‘ <lLVw & |wT|<1,Vw (4)
& JwrT o<1

Performance for both SISO and MIMO plant is of-
ten defined for the closed-loop system in terms of
the sensitivity function. The sensitivity function is
defined as being the closed-loop transfer function
from a disturbance input to the controlled output
of a system. Here we consider disturbances at the
output of the plant The sensitivity function is
defined in equation (5). Note that 1 is replaced
by the identity matrix, I, for MIMO systems.

S=(1+L)" (5)

Given the sensitivity function’s influence over dis-
turbance signal transmission to the controlled out-
puts, it is desirable that it be kept small at fre-
quency ranges over which disturbances are likely
to be experienced. Performance can therefore be
defined using an upper bound on the sensitivity
function over the frequency range. This upper
bound is the reciprocal of a weighting function,
wp, chosen by the designer as shown in equation
(6) and can be manipulated as shown in equation

(7)
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lwpS| < 1,Vw lwpSlle<1 (7)

Note: subscript P stands for performance

From equation (5) it can be seen that the sensitiv-
ity function is the reciprocal of the distance from
the open-loop locus to the critical point in the
Nyquist plane for any given frequency. Equation
(7) can therefore be manipulated as shown in
equation (8)

lwpS| < 1,Vw & lwp| < |1+ L|,Yw(8)
This infers that in order to achieve the level of
performance required by the designer, the open-
loop locus must lie at least a distance of |wp(jw)|
from the critical point, -1.

The above condition gives nominal performance.
The performance requirements specified by the
designer in the form of the performance weight,
wp(jw), are satisfied for the case where there is
no uncertainty in the plant description. In order
to extend the principle to robust performance,
the conditions for robust stability and nominal
performance are combined as shown in equations
(9), (10) and (11):

lwp| + |wrL] <1+ L|,  Vw, 9)
lwp(1+ L) + jw/L(L+ L)™' <1,  Vw,(10)
maz, (jwpS| + |wrT]) <1 (11)

Equation (11) gives the condition for robust per-
formance. It can therefore be stated that the
structured singular value, p, for robust perfor-
mance is as given in equation (12)

(Nrp) = |wpS| + |wiT]|. (12)

This condition defines the structured singular
value for robust performance in terms of N where
N can be found by applying linear fractional trans-
formations to the block diagrma of the closed-loop
system shown in Figure 1.

Fig. 1. One-degree-of-freedom feedback control
system.

Software algorithms for the synthesis of Hy,-based
controllers rely on the plant being described in the



general formulation given by Doyle (Doyle, 1982).
This formulation is produced for the case with no
plant uncertainty by defining four vectors w, z, u,
and v where

w1 d
w=|wy | =|7r]|; z=e=y—r; (13)
ws n

V=" —Ynp=T—Y—n

The vectors w and u represent the inputs to the
generalized plant, P, from external inputs and the
controller respectively. Vectors z and v are the
outputs from the generalized plant where z gives
the values to be minimized and v is the output
from the plant to the controller.This structure is
shown in the block diagram in Figure 2

EX0JBNoUS EX0GenoUs
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—= —-
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Fig. 2. Generalized control structure with no
model uncertainty.

Based on the vector structures given in equation
(13), the vector structures for the generalized
plant, P, can now be derived for the closed-loop
strucure given in Figure 1 as:-

z=y—r=Gu+Gqd—r (14)
= Gqwi — Tws + 0wz + Gu

v=r—ynp=r—Gu—Gqd—n (15)
= —Gygd + Twy — Tws — Gu

The generalized plant, P, is therefore the transfer
function matrix from [w u]” to [z v]T shown as:-

15755l o

[ Gi -1 0 G
P= {—Gd I -1 —G} (17)

The use of the generalized control structure for
the synthesis problem is the process of produc-
ing a controller that minimizes a chosen norm
of the plant from w to z, e.g. the H,, norm.
The structure shown in Figure 2, where P is an
open-loop representation, is ideal for use in the
synthesis problem. However, for analysis of the re-
sulting closed-loop system it is preferable to form

a closed-loop representation, N, that incorporates
both the plant and the controller. The amalgama-
tion process involves partitioning the generalized
plant, P, into sub-matrices whose sizes are com-
patible with the input and output vectors and
then using a lower linear fractional transforma-
tion. The partitioned plant is shown in equation
(18) and the closed-loop interconnection structure
is derived thus:-

p=[ 5] ()
where
P, =[Gq —1I 0], P12 =[G,
Py =[-Gq I —1I], P =[-G]
and

N =P, + PuK(I - PypK)™'Py  (19)
= Fl(Pv K)

Thus, the closed-loop interconnection structure,
N, has been derived for the closed-loop system
shown in Figure 1. Given the definitions estab-
lished here, the process of DK-iteration for syn-
thesising a p-based controller can be introduced.

3. DK-ITERATION

This Section addresses the design of a controller,
K, for the situation shown in Figure 3. Uncer-
tainty at the plant input and performance re-
quirements at the system output are described by
Wr and Wp respectively. The generalized open-
and closed-loop interconnection structures for this
configuration are shown and the technique known
as DK-iteration for producing an H, controller
through minimizing the p condition is then de-
scribed (Doyle, 1982).

Fig. 3. Closed-loop system with uncertainty and
performance weighting

For the configuration shown in Figure 3 the gen-
eralized open-loop representation can be derived



using the approach shown in equations (13) to
(19) and is given by equation (20):

YA UA
z | =P| w
v u

and

0 0 Wr -|
WpG WpGy WpG ,(20)
-G -G4 -G J

where P =

[ o 0 | W
Pll - |:WPG WPGd:|, P12 - |:WPG:|7

Py = [—G _Gd] , Py =[-G]

Note that the input and output vectors for this
configuration contain the inputs and outputs re-
lating to the input uncertainty perturbation, ua
and ya. By applying the relationship for a lower
linear fractional transformation shown in equation
(19), the closed-loop interconnection structure, N,
which incorporates P and K is given by equation
(21).

N [“WIKGU +GEK) !
| WpGUI +KG)™!

—WiKG4(I + GK)_l
WpGy(I + GK)il

(21)

In order to assess robust performance, the condi-
tion initially defined in equation (12) is evaluated.
The condition for the configuration shown in Fig-
ure 3 is:-

p(N) = ({_WIKG(I+ GK)™!

WeG(I+ KG) L (22

~WiKG4(I +GK)™*
WpGy(I + GK)_l

= |W1T[| + |WPGdS|

where the disturbance model, Gg4, is included.

DK-iteration is a controller design technique that
combines H,-synthesis with p-analysis in an ef-
fort to produce a controller that results in a mini-
mal peak value of y across the frequency range. An
upper bound on g is therefore defined. A scaling
matrix, D, is chosen such that it commutes with
A, the plant perturbation, i.e. DA = AD. An
upper bound on g for robust performance can
then be defined as:-

w(N) < minpepa(DND ™) (23)
The synthesis problem is then to find the con-

troller, K, that minimizes this upper bound over
the frequency range i.e.

ming (minpep || DN(K)D™" [lo)  (24)

This is done by minimizing the condition shown
in equation 24 with respect to either K and D
alternately.

DK-iteration then proceeds according to the fol-
lowing steps as shown in (Skogestad & Postleth-
waite, 1996):

(1) K-step: Synthesize an Hy, controller for the
scaled problem, ming || DN(K)D™! |«
with fixed D(s).

(2) D-step: Find D(jw) to minimize at each fre-
quency (DND~!(jw)) with respect to N.

(3) Fit the magnitude of each element of D(jw)
to a stable and minimum phase transfer
function D(s) and go to Step 1.

Designer interaction with the u-synthesis proce-
dure involves adjusting parameters in the uncer-
tainty and/or performance weights with the aim
of achieving a peak p value close to 1. This would
imply that robust performance across the operat-
ing envelope in question had been achieved for the
performance requirements specified.

4. MULTIOBJECTIVE OPTIMIZATION
USING GENETIC ALGORITHMS

The genetic algorithm (GA) is a stochastic global
search method which employs a Darwinian, ’sur-
vival of the fittest’ principle. At each generation
a population of potential solutions is assessed in
terms of their performance in the problem do-
main. These individuals are then ranked according
to their performance, the fittest having the highest
probability of breeding. Pairs of individuals are
then chosen according to these probabilities and
bred together. Their offspring form the subsequent
generation of potential solutions. A mutation op-
erator is also implemented randomly in order to
ensure that the probability of searching any given
section of the search space is never zero. As this
cycle repeats over a number of generations, the
population becomes more refined as the least fit
individuals are rejected and an optimal solution is
approached. The steps involved in the execution of
a genetic algorithm can be summarised as follows:

e The genotypic representation, often encoded
in binary as for all studies carried out in this
thesis, of an initial population is randomly
generated.

e These genotypic representations are con-
verted to the corresponding phenotypes or
decision variables.

e The performance of each member of the pop-
ulation is assessed in turn using a prescribed
objective function.

e Fach individual is assigned a fitness value
according to its objective function value.



e Individuals are selected for reproduction ac-
cording to a stochastic selection procedure
with probabilities derived from their fitness
function values.

e Individuals genotypic representations are bred
using specified mechanisms such as cross-
over.

e A mutation operator is then applied stochas-
tically to the genotypic representations of the
offspring in order to ensure that the proba-
bility of investigating any given area of the
search space is never zero.

e The newly generated population is then as-
sessed according to its objective function per-
formance, the GA operations are repeated
and new generations evolved until a termi-
nation criterion is satisfied.

The multiobjective genetic algorithm (MOGA) is
implemented using a standard GA (Fonseca &
Fleming, 1995) with extensions for multiobjective
ranking, fitness sharing and mating restrictions. A
multiobjective optimiser is employed for the case
studies considered later in order to address the
multiple, conflicting requirements of the problems
in question. The salient features of MOGA are
shown in Fig. 4 and described below.

Create Initial
Random Population|

Fig. 4. The MOGA

Multiobjective ranking is based on the concept
of the dominance of an individual and Paret-
optimality. This system of ranking is non-unique;
for example a number of individuals are ranked
zero and these are said to be non-dominated.
Ranking may also be combined with goal and/or
priority information to discriminate between non-
dominated solutions. For example, a solution in
which all the goals are satisfied may be considered
superior, or preferable, to a non-dominated one in
which the goal points of some objectives are not
met (Fonseca & Fleming, 1995). All the preferred
individuals thus achieve the same fitness, however
the number of actual offspring may differ due to
the stochastic nature of the selection mechanism.
Thus an accumulation of the imbalances in repro-
duction can cluster the search into an arbitrary
area of the trade-off surface. This phenomenon is
known as genetic drift and can drastically reduce
the quality and efficiency of the search. Proposed
as a solution to genetic drift, fitness sharing pe-
nalizes the fitness of individuals in popular neigh-

bourhoods in favour of more remote individuals of
similar fitness.

Recombining arbitrary pairs of non-dominated in-
dividuals can result in the production of an unac-
ceptably high number of unfit offspring, or lethals.
A further refinement to the MOGA is therefore to
bias the manner in which individuals are paired
for recombination, often termed mating restric-
tion. This restricts reproductions to individuals
that are within a given distance of each other.
Population diversity is maintained by adding ran-
dom genetic information at each generation as
well as mutating existing individuals. (see ’Add
Random Immigrants’ in Fig. 4 above)

The use of MOGA in tuning weighting functions
for Hoo-based controllers has proved successful
when applied to a number of previous problems
(Dakev et al 1997), (Griffin et al 1998), (Griffin et
al 2001). This paper describes a preliminary in-
vestigation into extending this approach to using
MOGA to tune the uncertainty and performance
weighting functions during DK-iteration. In Fig.
5, a flowchart highlighting the fundamental steps
involved in the evolutionary u-synthesis procedure
is shown.

Create objective function to address
the performance requirements of all
three opsrating poinis

h

Generate genotypes of initial random
population of potential solutions

Mew generation
of potential
solutions

Matrix of genotypes
h,

Decode genotypic representation into
phenotypes or dacision variables

Weighting function
matrices W, and W

¥

Perform DK iteration procedurs with
three iterations

Fitness ranking, selection,
breeding, mutation and
introduction of random
immigrants performed

Contraller K,

k.

Apply cbieciive funclion io individuals

successfully completing three iteration
stages

Vector  of objective
funclion values

Termination
criteria
salisfied?

Yes

End of
process

Fig. 5. Flow chart of the MOGA/u-synthesis
controller design process.

5. GAS TURBINE ENGINE

This section describes the application of the
MOGA /u-synthesis approach to the design of a
controller for an aero gas turbine. A multiple
model representation of the engine is used, with



linear, time invariant models representing the en-
gine at 100%, 95% and 90% of high pressure spool
speed. Gas turbine engines traditionally use a loop
selection strategy depending upon their operating
condition (Astrom & Hagglund, 1995). Steady-
state control is administered by different control
loops to that used for transient control. Here,
a control design is considered for a steady-state
condition. The controller is a 2x2 multivariable
controller using fuel flow and compressor vari-
able guide vanes as inputs and thrust, P50, and
intermediate pressure compressor speed, NI, as
outputs. Due to limitations in the available model,
the handling bleeds were designated as distur-
bance inputs via which disturbance events could
be introduced into the system. The controller
synthesis procedure was performed at the 100%
high pressure spool speed operating point and the
controller tested for robustness by assessing its
performance at the other two operating points.

The optimization objectives chosen for this exer-
cise can be seen in Table 1. The objective function
values were produced in simulation using step and
sine wave signals applied to the handling bleed
inputs of the engine model. Table 1 lists the ob-
jectives used.

The weighting functions used to represent the
plant uncertainty and performance requirements
were diagonal matrices of first order lags of the
structure a(bs 4+ 1)/(cs + 1). The same parame-
ters were used for both channels of the system for
both the uncertainty and the performance. This
was done in order to number of decision variables
to a minimum for this initial investigation. The
design procedure was a two-step process. Firstly,
the MOGA was required to tune six decision vari-
ables, taking account of both the uncertainty and
performance weighting functions. Once a robustly
stable solution was available, this first MOGA was
terminated. The parameters for the uncertainty
weighing function were then declared as constants
using the values from the chosen individual from
the first MOGA. The second MOGA run was
performed using only three decision variables for
the performance weighting function, in an effort
to optimise robust performance. The upper and
lower bounds for the six decision variables were
set as 0-100 for the gain, 0-7 for the lead time
constant and 0-2 for the lag time constant.

6. GTE RESULTS

The performance of each candidate solution that
is generated and assessed by the MOGA as dis-
played on a parrallel coordinates graph. The graph
resulting from this design procedure is shown in
Figure 6

| Obj. No. | Objective Description

Peak Fluctuation of P50 from 100% load O.P.

Peak Fluctuation of N2 from 100% load O.P.

Peak Fluctuation of P50 from 95% load O.P.

Peak Fluctuation of N2 from 95% load O.P.

Peak Fluctuation of P50 from 90% load O.P.

Peak Fluctuation of N2 from 90% load O.P.

N[O O [ W N

Max. cont. eigenvalue of system

8 Mu robust performance measure, p

Table 1. GTE Controller Design Objectives

MOGA for tuning H-infinity LSDP for GTE
T T T T

Cost

»
N
w

Objective no.

Fig. 6. Parallel co-ordinates graph for the GTE
controller design procedure

The x-axis of the parrallel coordinates graph
shows the objectives as described in Table 1. The
y-axis shows the performance level for each objec-
tive, the scale being different for each. Each line
represents the performance of a Pareto-optimal
candidate solution with respect to the objectives
shown along the x-axis. The crosses mark the
performance goal for each objective. A line that
achieves a value below the cross can be seen to
have achieved the performance objective. Here,
the performance objectives were maximum al-
lowed fluctuations in P50 and NI for a bleed valve
disturbance event. It can be seen that all lines
in Figure 6 achived the P50 related targets with
only small breaches of the NI related targets.
The 8 objectives used in this problem were all
equally weighted. A solution was selected from
the graph and time plots were produced using the
closed-loop representation in Simulink and those
for the 100% and 90% operating points are shown
in Figures 7, 8, 9, 10. Given that the controller
design procedure was carried out at 100% and 90%
is the furthest from that design point, these can
be considered to be the nominal and worst-case
responses of the closed-loop system. The closed-
loop Simulink model is of the configuration shown
in Figure 1.

The control performance for the GTE can be seen
to be acceptable for the step and well as the sine
wave disturbance events across the operating en-
velope being studied here. This is reflected by the



EPR s fime at 100% NH
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Fig. 7. Output responses to a step disturbance at
100% NH - p controller

EPR s time at 100% NH
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time

NI vs time at 100% NH
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Fig. 8. Output responses to a sine wave distur-
bance at 100% NH - u controller

EPR vs time at 90% NH

Fig. 9. Output responses to a step disturbance at
90% NH - p controller

EPR vs time at 90% NH

Fig. 10. Output responses to a sine wave distur-
bance at 90% NH - u controller

w1 value of the controller being ¢ = 0.99 indicating
an acceptable level of robust performance.

7. GASIFIER CONTROL REQUIREMENTS

Further to the study of the GTE, the use of
multiobjective optimiser to tune the performance
and uncertainty weighting functions during DK-
iteration was investigated by designing a con-
troller for a coal-burning gasification plant. The
gasifier aims to burn coal in a clean, efficient
manner to generate electricity. This problem was
presented to British Universities as a Benchmark
Challenge by a leading British energy producer
(Griffin et al 1998).

A mixture of ten parts coal to one part limestone
is pulverised and conveyed into the gasifier in a
stream of air and steam. Once in the gasifier, the
air and steam react with the carbon and other
volatile elements in the coal. This reaction results
in a low calorific value fuel gas and residual ash
and limestone derivatives. This residue falls to
the bottom of the gasifier and is removed at a
controlled rate. The fuel gas escapes through an
aperture at the top of the gasifier and is cleaned
before being used to power a gas turbine.

The control design problem was to synthesise a
controller at a single operating point that repre-
sented the highly non-linear gasifier at the 100%
load case. Input and output constraints were spec-
ified in terms of actuator saturation and rate lim-
its and maximum allowed deviation of controlled
variables from the operating point. It was fur-
ther specified that the controller developed should
be tested at two other linear operating points.
These represented the 50% and 0% load cases.
This testing was to be performed off-line using
the MATLAB/Simulink analysis and simulation
package in order to assess robustness.

The gasifier was modelled as a 6-input, 4-output
multivariable system. The inputs and outputs of
the models are shown in Table 2 below.

[ INPUT |

1 - WCHR - Char Extraction Flow (kg/s)
2 - WAIR - Air Mass Flow (kg/s)

3 - WCOL - Coal Flow (kg/s)

4 - WSTM - Steam Mass Flow (kg/s)

5 - WLS - Limestone Mass Flow (kg/s)

6 - PSINK - Sink Pressure (N/m?)
ouTPUT

1 - CVGAS - Fuel Gas Calorific Value (J/kg)
2 - MASS - Bed Mass (kg)

3 - PGAS - Fuel Gas Pressure (N/m?)

4 - TGAS - Fuel Gas Temp. (°K)

Table 2. Table of Gasifier I/O

The state-space representations of the system are
linear, continuous, time invariant models and have
the inputs and outputs ordered as shown in Table
2. They represent the system in open-loop and are
of 25th order.



The purpose of introducing limestone into the
gasifier is to lower the level of harmful emissions.
Limestone absorbs sulphur in the coal and there-
fore needs to be introduced at a rate proportional
to that of the coal. It was specified that the lime-
stone flow rate should be set to a constant ratio
of 1:10, limestone to coal, making the limestone a
dependent input. Given that PSINK is a distur-
bance input, this leaves four degrees of freedom
for the controller design. The controller design can
therefore be approached as a square, 4x4 problem.

The underlying objective of the controller design
is to regulate the outputs during disturbance
events using the controllable inputs. The outputs
of the linear plant models are required to remain
within a certain range of the operating point
being assessed. These limits are expressed in units
relative to the operating point and are therefore
the same for all three operating points. They are
as follows:

(1) The fuel gas calorific value (CVGAS) fluctu-
ation should be minimized, but must always
be less than +/-10KJ /kg.

(2) The bed mass (MASS) fluctuation should be
minimized, but must always be less than 5%
of the nominal for that operating point.

(3) The fuel gas pressure (PGAS) fluctuation
should be minimized, but must always be less
than +/-0.1bar.

(4) The fuel gas temperature (TGAS) fluctua-
tion should be minimized, but must always
be less than +/-1°C.

The sink pressure (PSINK), represents the pres-
sure upstream of the gas turbine which the gasifier
is ultimately powering. Fluctuations in PSINK
represent adjustments to the position of the gas
turbine fuel value. It was specified that the value
of PSINK should be adjusted in the following ways
to generate disturbance events.

(1) Apply a step change to PSINK of -0.2 bar 30
seconds into the simulation. The simulation
should be run for a total of 300 seconds.

(2) Apply a sine wave to PSINK of amplitude 0.2
bar and frequency 0.04Hz for the duration of
the simulation. The simulation should be run
for a total of 300 seconds.

7.1 Ewvolutionary p-synthesis for the gasifier

The design procedure for the gasification palnt
was conducted as follows. Two disturbance condi-
tions, a step of -0.2 bar and sine wave of amplitude
0.2 bar and frequency 0.04Hz, were applied to the
closed-loop system at each operating condition us-
ing Simulink. Candidate solutions were generated
by the MOGA in Matlab and these were passed
to Simulink for the objective function values to be

generated through simulation of the closed-loop
system. A Simulink representation of the closed-
loop system was used for each operating point and
for each disturbance condition.

In order to apply the evolutionary p-synthesis
approach to the gasifier, sixteen objectives were
identified for the MOGA. A full listing of these
objectives can be seen in Table 3. The principal
objectives were those relating to the maximum
fluctuation of each measured variable from the
operating point. It has been found empirically,
that framing the design criteria such that max-
imum fluctuations from the operating point are
minimized, is most effective.

In addition to twelve primary objectives, four
further objectives were identified as being de-
sirable. The maximum continuous eigenvalue of
the closed-loop system was minimised in order to
maximise nominal stability. The p value for robust
performance was also optimised in an attempt to
improve the characteristics of the resulting con-
troller. It also became apparent during test runs
of the optimisation that not all candidate solu-
tions were suitable for the DK-iteration process
when applied to the gasifier model. In order to
address this problem, the optimiser attempted to
maximise the number of iterations performed for
each candidate solution up to a maximum of three.
Any candidate solution that did not achieve three
iterations was not assessed in terms of its control
performance on the plant. The inclusion of this
objective encouraged the population to evolve to-
wards feasible areas of the solution space. Finally,
the number of floating point operations performed
by the machine when simulating the closed-loop
system for each candidate solution is optimised.
This objective was included in an attempt to avoid
badly conditioned candidate solutions.

[ Obj. No. | Objective Description |
1 Peak fluctuation of CVGAS from 100% O.P.
2 Peak fluctuation of MASS from 100% O.P.
3 Peak fluctuation of PGAS from 100% O.P.
4 Peak fluctuation of TGAS from 100% O.P.
5 Peak fluctuation of CVGAS from 50% O.P.
6 Peak fluctuation of MASS from 50% O.P.
7 Peak fluctuation of PGAS from 50% O.P.
8 Peak fluctuation of TGAS from 50% O.P.
9 Peak fluctuation of CVGAS from 0% O.P.
10 Peak fluctuation of MASS from 0% O.P.
11 Peak fluctuation of PGAS from 0% O.P.
12 Peak fluctuation of TGAS from 0% O.P.
13 Max. cont. eigenvalue of system
14 Mu robust performance measure, .

15 No. of successful DK-iterations
16 FLOPS (No. of floating point opertations)

Table 3. Gasifier controller design objectives

The performance and uncertainty weighting func-
tions were chosen to be diagonal matrices of first
order transfer functions:- a(bs + 1)/(cs + 1).



This structure was chosen in order to minimise
the complexity of the resulting H,, controllers in
the candidate solution set. A population size of
50 individuals was used and the maximum and
minimum ranges for the parameters were chosen
to be 0-100 for the gains, a, 0-7 for the lead time
constants, b, and 0-2 for the lag time constants,
c.

The 100% load linear model of the gasifier was
used for the H., controller synthesis exercise. In
order to run the DK-iteration process successfully,
the order of the 100% gasifier model was reduced.
Firstly, a minimal realisation was found, elimi-
nating any uncontrollable or unobservable modes.
This reduced the model from 25th order to 17th
order. The model order was reduced still further
using the Matlab 'modred’ command to 4th order.

In order to produce the results for the gasifier, the
MOGA was run in two stages. Firstly, the MOGA
was configured in order to optimize the param-
eters for both the performance and uncertainty
weighting matrices simultaneously. This meant
that 24 parameters were optimized. Once a so-
lution had been produced that exhibited suitable
stability characteristics across the operating enve-
lope of the gasifier, the first stage was terminated.
The uncertainty weighting function parameters
from this solution were then assumed to be a
suitable representation of the variations in dy-
namics across the operating envelope. The MOGA
was then re-run holding the uncertainty weighting
matrix elements constant at these values and op-
timizing only the twelve parameters used for the
performance weighting function matrix. This two-
step approach was found to be the most effective
way of producing a solution in a reasonable time
frame.

7.2 Gasifier Results

The performance of each candidate solution that
is generated and assessed by the MOGA as dis-
played on a parrallel coordinates graph. The graph
resulting from this design procedure is shown in
Figure 7?7

The x-axis of the parrallel coordinates graph
shows the objectives as described in Table 3. The
y-axis shows the performance level for each objec-
tive, the scale being different for each. Each line
represents the performance of a Pareto-optimal
candidate solution with respect to the objectives
shown along the x-axis. A solution was selected
from the graph and time plots were produced
using the closed-loop representation in Simulink
and those for the 100% and 0% operating points
are shown in Figures 12, 13, 14, 15

MOGA for tuning H-infinity LSDP for GTE
T T T T

Cost

. I P
8 9 10 11 12 13 14 15 16
Objective no.

Fig. 11. Parallel co-ordinates graph for the gasifier
controller design procedure
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Fig. 12. Output responses to a step disturbance
at 100% load - u controller

Gas Calorific Value Bed Mass

Fig. 13. Output responses to a sine wave distur-
bance at 100% load - p controller

These results show that a controller has been
produced that is stable across the operating range
of the plant. This is confirmed by analysing the
closed-loop eigenvalues. Performance is, however,
poor for step responses particularly at the 0% load
operating point. The design procedure has also
resulted in a p value of p=135.2. This confirms
that the level of robust performance provided by
the controller is not satisfactory in this case. This
is reflected by the poor performance in response
to a step in the disturbance signal.



Fig. 14. Output responses to a step disturbance
at 0% load - p controller

Gas Calorific Value Bed Mass

Fig. 15. Output responses to a sine wave distur-
bance at 0% load - u controller

8. CONCLUSION

A preliminary investigation into the use of a
multiobjective genetic algorithm for the tuning
of uncertainty and performance weighting func-
tions has been presented and applied to two case
studies. The technique was further applied to the
design of a controller for a gas turbine engine.
Again, a multiple model representation was used
with controller synthesis being performed at one
operating point and robustness being assessed by
applying the resulting controller to other operat-
ing points. The set of linear models for the GTE
did not present the same scaling difficulties during
the DK-iteration process as those for the gasifier,
allowing a slight simplification of the design pro-
cedure in terms of the number of objectives used
in the optimization. This resulted in an acceptable
controller as shown by the attainment of a value
of p = 0.99. Results for the coal-burning gasifier
showed that this technique was capable of pro-
ducing a stable, linear controller across a highly
non-linear operating envelope. Performance lev-
els were, however, not adequate at the operating
point furthest from that at which the controller
synthesis had been performed. This was reflected
in an unacceptable value of y = 135.2.

It has been shown that this approach is capable
of producing stable, robust linear controllers that
can be applied to a non-linear operating envelope.
Despite the unacceptable value of p attained for
the gasifier, the GTE case study demonstrates the

ability of the approach to produce controller with
a p value less than 1, indicating acceptable levels
of robust performance. It is therefore considered
that this approach is worthy of further investiga-
tion. Further work will draw comparisons between
the wholly MOGA-based approach and an ap-
proach where uncertailty weights are analytically
produced.
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