
ON µ-ANALYSIS AND SYNTHESIS FOR SYSTEMS SUBJECT TO
REAL UNCERTAINTY

P. Iordanov∗, M. J. Hayes†, and M. Halton‡

Department of Electronic and Computer Engineering,
University of Limerick, Ireland,

∗ e-mail: petar.iordanov@ul.ie
† e-mail: martin.j.hayes@ul.ie
‡ e-mail: mark.halton@ul.ie ,

Keywords: structured singular value, real-valued uncertainty,
robustness analysis,µ-based controller design

Abstract

The paper introduces a new approach for the computation of a
lower bound on thestructured singular value(SSV),µ in the
presence of purely real and mixed/complex uncertainties. The
approach utilises a frequency sweeping technique based on a
linear fractional transformation representation of structured un-
certainty. The technique is applied to a well-known civil trans-
port aircraft example. A fixed structure controller synthesis
strategy is developed, which addresses potential stability prob-
lems that can occur using standard design methodologies.

Notation

µ(M) structured singular value (SSV) ofM
σ(M) largest singular value ofM

Fl(M, ∆) lower Linear Fractional Transformation ofM, ∆
< real part of a complex number
= imaginary part of a complex number
R field of real numbers
C field of complex numbers

λ(M) eigenvalues ofM

1 Introduction

The concept of robustness analysis for systems with structured
uncertainties first appeared in 1980 when the so calledexcess
stability margin, which later became known as themultiloop
stability marginwas introduced, [14]:

km = min
∆∈D

{k ∈ [0,∞) : det(I − k∆M) = 0} (1)

whereM represents the value of the transfer function matrix
M(s) at s = ω, D is the set of all admissible perturbations
and∆ is a structured perturbation defined as
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i = 1, . . . ,mr; j = 1, . . . ,mc; k = 1, . . . ,mC (2)

In [5], the termstructured singular valuefor the reciprocal of
km was coined and denoted byµ:

µ(M) =
{

min
∆∈D

σ(∆) : det(I −M∆) = 0
}−1

(3)

The exact computation ofµ is an NP-hard problem, there-
fore lower and upper bounds are considered in the literature.
The upper bounds are defined as convex optimisation problems
[11]. MATLAB software, which uses a suitably defined fre-
quency grid to determine an upper bound onµ [1, 8] is known
to work quite well, with the possible exception of when the
uncertainty consists of purely real blocks, [13]. This is a par-
ticular problem for the practical interacting systems where the
µ plot exhibits multiple narrow peaks. These peaks can neces-
sitate a prohibitively narrow grid using standardµ-techniques.
An upper bound solution to the frequency gridding problem
has been presented by Feron [6], whereby stability guarantees,
(albeit with fairly mild restrictions), are possible within a pre-
specified frequency interval. However, the algorithm can po-
tentially yield a conservative upper bound if the frequency in-
terval is quite wide.

All available lower bound computation techniques consist of
finding a perturbation which corresponds to the limit of stabil-
ity. A fixed point power algorithmis presented in [11]. Un-
fortunately, when uncertainties are modelled as real parame-
ter variations this approach does not converge well enough.
An improvement can be achieved by adding a small amount
of complex uncertainty [12] but this amount needs to be fixed
by trial and induces approximation in the results that is diffi-
cult to evaluate. Moreover, the solution is suboptimal in the
real parameters. An approach for purely real uncertainties is
presented in [3], but the method is of exponential time and its
practical use is only for small uncertainty sets. An optimisation
based approach presented in [9] provides a satisfactory lower
bound for large∆’s, but the algorithm is quite sensitive to the
choice of initial starting point and recalculations are required
at some frequencies.

A different lower bound approach, which features a frequency
independentµ computation is considered here. It is has been
found that this approach works quite well on a wide variety
of practically motivated problems, reducing the gap between
the lower and upper bounds onµ to a very small level. A key
feature of the approach is that an accurate combination of pa-



rameters that results in a destabilising perturbation is returned
at each iteration. This “unwrapping” procedure may be used
in conjunction with upper bound realµ-solvers like e.g., [6], to
inform the frequency interval selection process and therefore
also offer an easy way of reducing the potential conservatism
on the upper bound for realµ.

The paper is organised as follows: Section 2 is dedicated to the
proposed new approach for the computation of a lower bound
on realµ. Section 3 demonstrates the use of the new approach
as a tool for robustness analysis and controller design. An eas-
ily reproducible civil transport aircraft model, presented in [7],
is taken as a representative example. Finally, some conclusions
and future research directions are given in section 4.

2 A Pole Placement Approach for the Compu-
tation of a µ Lower Bound

2.1 Description

Typical strategies for the computation of the structured singu-
lar value involve the evaluation of a nominal systemM(s) at
different frequencies, i.e., a so calledfrequency griddingap-
proach. However for the lightly damped systems that are now
appearing in the literature it is quite possible to miss a fre-
quency where one of possibly multiple resonant peaks occur.
Inaccurateµ bounds can be observed with this type of prob-
lem. Moreover, the number of frequency points and indeed the
frequency range necessary to obtain good qualityµ bounds can
also be difficult to select in advance.

More sophisticated methods that address this problem have
been considered in the literature. The migration of a set of
closed loop nominal poles through the imaginary axis due to a
suitably scaled uncertainty set is considered in [7, 10]. Denoted
as frequency sweeping, the idea is to find the smallest pertur-
bation∆ ∈ D that will move a pole (or a complex conjugate
pair) onto the imaginary axis while all other poles remain in
the LHP. In [10], the idea is formulated as a quadratic optimi-
sation under linear constraints. A different formulation of the
frequency sweeping technique is presented in this paper.

Let (A,B, C, D) be the nominal state space representation
of an uncertain systemM(s). Note that B, C and D
are sized compatibly with the size of∆. If the quadruple
(A,B,C, D) is perturbed by∆, the state matrix of the closed
loopFl(M(s),∆) is

A0 = A + B∆(I −D∆)−1C (4)

Denote the eigenvalues ofA0 by λi, i = 1, . . . , n. The matrix
∆0 will be called adestabilising perturbationif and only if
λmax(A0) ≥ 0, where

λmax(A0) = arg
(
max

i
<{λi(A0)}

)
(5)

The “minimum” perturbation∆ is defined in terms of the
largest singular value of∆, i.e., σ(∆). It can be shown that

for a ∆ of the structure defined in eqn. (2) withmC = 0 the
following equality holds

σ(∆) = ‖∆‖1 = ‖∆‖2 = ‖∆‖∞ (6)

For the case of scalar perturbations,µ corresponds to the small-
est∆0 of appropriate structure that will move an eigenvalue of
A onto the imaginary axis. The singularity condition in theµ
definitiondet(M(ω)∆− I) = 0 corresponds toλmax(A0) =
0. Hence,

µ(M(s)) =
{

max
ω

min
∆∈D

(σ(∆)) :

det(M(ω)∆− I) = 0
}−1

(7)

is identical to

µ(M(s)) =
{

min
∆∈D

‖∆‖∞ :

λmax(A + B∆(I −D∆)−1C) = 0
}−1

(8)

Eqn. (8) is a minimisation with a nonlinear constraint which
replaces the minimax problem of eqn. (7). Also eqn. (8) deter-
mines a (suboptimal) destabilising∆ and essentially gives the
basis of the proposedpole placement approach(PPA).

2.2 On the Practical Implementation of the Approach

The µ lower bound algorithm motivated by eqn. (8) can be
addressed inMATLABusing constraint optimisation software
provided by theOptimisation toolbox, [2]. To locate the min-
imisation vectorx, it is common for the optimisation algo-
rithms to consider the first two terms of the Taylor approxi-
mation off(x) at a candidatex. This recasts the minimisation
to asequential quadratic programmingproblem:

f(x) =
1
2
xT H(x)x + xT g(x)

whereH(x) is the Hessian andg(x) is the gradient.

It should be emphasised that in order to allow complex param-
eters to enter the optimisation procedure in this scheme, each
complex entry has to be factored into two real optimisation
variables. It is clear that for a∆ with mc = 0 andmC = 0, the
number of optimisation variables involved in the problem (8)
is mr. Suppose thatmc 6= 0. Then eachδc

i is separated into
two real variables, i.e.,δc

i = ai + bi. Henceδc
i will appear in

the optimisation code asai andbi. The number of optimisation
variablesm would then be

m = mr + 2mc (9)

Eqn. (9) indicates that the algorithm is likely to be inefficient
for mixed or complex uncertainty sets.

A major problem in the non-convex optimisation algorithms
is the choice of initial conditions. An interesting approach of



choosing the starting point for optimisation is employed in this
algorithm. For simplicity, the case when∆ is a real perturba-
tion (i.e.,mc = 0 andmC = 0) is presented, but this can easily
be recasted for mixed and complex∆’s. Consider the partial
derivatives

∇ =
[
∂λmax(A)

∂δr
1

, . . . ,
∂λmax(A)

∂δr
mr

]
(10)

which are expected to give a rough estimate of how the param-
eter perturbationsδr

i impact on the migration of the dominant
eigenvalue ofA. Hence, an initial starting point can be pro-
vided by simply takingx0 := ∇.

Although potential discontinuities in the optimisation problem
of eqn. (8) are known to exist, numerical experience suggests
that (10) is a good way to locate an initial starting point. Initial-
isation and local minima recovery can be implemented using
a so called “Tree” test which is motivated by the exponential
time Tree Structured Decomposition approach of Degaston &
Safonov, [4]. The procedure generates2mr sets of∆’s, where
each entryδr

i takes a value of either−1 or 1. Hence, the∆ that
causes largest<{λmax(A0)} is chosen as initial condition.

It should be noted that in addition to the destabilising∆0 un-
wrapped from the optimisation variables, the critical peak fre-
quency is also extracted:

ωp = |={λmax(A0)}|

3 Application: Analysis and Synthesis for a
Civil Aircraft

3.1 Description of the Civil Aircraft

The civil aircraft that is considered here is described in de-
tail, (including full non-linear equations of motion) in [7]. The
system has 2 inputs and 4 outputs and a linear aerodynamic
model is obtained using standard MATLAB trimming tech-
niques. The lateral-axis model has 4 states that depend on
14 stability derivatives. For this example, uncertainty is in-
troduced to all of the stability derivatives at an arbitrarily des-
ignated level of30% of the nominal values. The number of
uncertain parameters means that this represents a class of prob-
lem that is beyond the point where conventional exactµ-solvers
like [3] can be used.

The system has an unstable mode in open loop. A nominally
stabilising static output feedback controllerK1 has been syn-
thesised using an approach presented in [15]. Four of 8 entries
are fixed at zero thus allowing the remaining 4 to determine the
closed loop shape. The static output feedback design is:

K1 =
[

2.995 0 0 0
0 −2.935 −80.894 30

]
(11)

Standard Linear Fractional Transformation (LFT) tools are
used to implement the closed loop design with attached actua-
tors (Ac1 andAc2) as shown in Figure 1.

Ac1 =
−1.77s + 399

s2 + 48.2s + 399
, Ac2 =
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Figure 1: Lateral flight control system for a civil aircraft

Some comments are appropriate about this block diagram. The
LFT is set up in such a way that the uncertainty in the stability
derivatives is captured by∆1. The∆2 block acts on the non-
zero elements of the controllerK1. ∆2 will be a zero matrix for
the initial analysis problem. Later,∆2 will be non-zero when
the new algorithm is used for controller synthesis.

3.2 Analysis of Stability Robustness

Robustness analysis for the civil transport aircraft is initially
performed onM(s) without the actuators in the problem for-
mulation (i.e.,Ac1 = 1 andAc2 = 1). The followingµ algo-
rithms were used:

1. µboa - a basic optimisation algorithm (BOA) proposed in
[9], which computes good lower bounds on realµ.

2. µppa - the pole placement approach (PPA) presented in
this paper.

3. µl, µu/µ∗u - standardµ-toolbox code [1], which normally
provides poor lower bounds and potentially inaccurate up-
per bounds for purely real uncertainty sets. Upper bounds
on µ are computed to both default accuracy (option ‘u’,
and denoted byµu) and greatest accuracy (option ‘uC9’,
and denoted byµ∗u), while lower bounds are computed
with maximal accuracy (option ‘ltR9 ’, denoted byµl).

Approachesµboa, µl and µu/µ∗u are used initially for a fre-
quency grid of 300 points in the range[10−2, 102] rad/s. The
correspondingµ plots are shown in Figure 2. Table 1 illustrates
µ bounds, critical frequencies and computation time for each of
the considered approaches.
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Figure 2:µ-analysis for 30% level of uncertainty

µ(M(ωp)) ωp [rad/s] CPU time[s]
µboa 0.6629 0.3055 6360
µppa 0.6686 0.3121 20
µl 0.4170 0.9847 1437
µu 0.6910 0.2245 64
µ∗u 0.6662 0.3055 549

Table 1: Robustness Analysis for the Civil Transport Aircraft

The following observations can be outlined:

1. The peak lower bound achieved byµppa is slightly larger
than the one obtained byµboa. Note that the compu-
tation time required forµppa is about20 sec while ap-
proachµboa needs more than an hour and half to evaluate
µ for 300 frequency points1. However, both approaches
found the critical peak at approximately the same fre-
quency (ωp ≈ 0.31 rad/s). It should be emphasised that
the lower boundµl is zero for almost all frequency points.

2. Note the conservatism ofµu and the computational cost
associated withµ∗u. It can be noted that the peak value
of µ determined byµ∗u is in fact smaller than the peak
lower bound achieved byµppa. Computation ofµ∗u at a
frequency ofω = 0.3121 rad/s returns a value which is
virtually the “same” (to within an accuracy of 4 significant
digits) as the one computed by the new algorithm, i.e.,
µ∗u = µppa = 0.6686.

3. Consider the returned worst-case destabilising∆1’s, that
are presented in Table 2. It can be noted that the uncer-
tainty entriesδ4, δ5, δ9, δ10, δ14 have no effect on the sys-
tem stability as indicated byµppa andµl. Moreover, the
nonzero∆1 entries obtained byµppa have values of either
km or−km. This is an intuitively pleasing result bearing

1Analysis is carried out on a PC with MATLAB 6.1 benchmark 6.8

in mind the nature of the worst case perturbation that is
determined by an exactµ algorithm like for example, that
given in [3].

∆1 entries µboa µppa µl

δr
1 -1.5042 -1.4956 -2.3982

δr
2 -0.9736 -1.4956 -2.3982

δr
3 0.9015 1.4955 2.3982

δr
4 -1.3747 0 0

δr
5 0.1999 0 0

δr
6 -1.5085 -1.4956 1.7238

δr
7 -1.4949 -1.4956 -2.3982

δr
8 1.5075 1.4956 2.3982

δr
9 0.6040 0 0

δr
10 0.7679 0 0

δr
11 1.5081 1.4956 -2.3982

δr
12 -1.5048 -1.4955 -2.3982

δr
13 -1.5060 -1.4956 2.3982

δr
14 0.5531 0 0

Table 2: Destabilising∆1’s obtained from theµ lower bounds

3.3 Output Feedback Controller Design using the PPA

For this design example the actuators are now introduced into
the problem formulation. Note that the output feedback con-
troller design presented here is significantly different from the
standard D-K iteration approach toµ-synthesis. The proposed
approach is based on nonlinear unconstrained optimisation2.
The objective is to perturb the coefficients in the nominal con-
troller K1 so that the robustness indicatorµ(M(s)) is min-
imised. The objective for controller design is

min
∆2∈K

{
max

ω
µ(M(ω))

}
(12)

whereK is the set of all suitably structured stabilising con-
trollers for this design. The objectivemax µ(M(ω)) can be
readily addressed using the newµ lower bound algorithm. It
should be noted that the objective function in eqn. (12) is non-
linear and therefore the solutionK2 is suboptimal. The nomi-
nally stabilisingK1 is determined when∆2 ≡ 0, while K2 is
determined by the perturbation∆2 that satisfies eqn. (12):

∆2 = arg
{

min
∆2∈K

µppa(M(s))
}

(13)

Robustness analysis is carried out for the closed loop system
with controllerK1 using the sameµ approaches as in the pre-
vious subsection. Results from the analysis are presented in Ta-
ble 3. Figures 3 and 4 depict the bounds onµ for 200 and 600
frequency points, respectively. As theµ-tools lower bound (µl)
has shown to be very poor it is omitted from the figures. The
computed lower boundµppa = 1.4256 was found at frequency
of ωp = 11.0632 rad/s. In order to confirm the reliability of

2The Simplex method of Nelder-Mead, [2] is used by the authors



this indicator, a comparison with analysis results achieved from
frequency-grid based approaches is necessary.
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Figure 3: Robustness analysis withK1 (200 pts.)
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Figure 4: Robustness analysis withK1 (600 pts.)

200/600 frequency points
µ(M(ωp)) ωp [rad/s] CPU time[s]

µboa 0.8846/1.4079 0.2327/11.0937 4698/11972
µppa 1.4256 11.0632 28
µu 0.9675/1.4306 0.2327/11.0937 45/138
µ∗u 0.9018/1.4108 0.2552/11.0937 465/1291

Table 3: Robustness indicators withK1

First, consider the frequency grid of 200 points. Note that two
resonant peaks can now be seen in theµ-plots. The second
peak at approximately10 rad/s is particularly narrow and is
the focus of our observations. Bothµ upper bound plots (rep-
resentingµu andµ∗u) reach their maximum peaks around the

first resonant peak. Note that these upper bounds are signifi-
cantlysmallerthanµppa(M(s)).

The lower bound determined by the pole placement algorithm
clearly indicates the need for a much finer frequency grid. In-
creasing the number of frequency points from 200 to 600 al-
lows theµu(M(s)) algorithms to catch the more significant
second resonant peak, as shown in Figure 4. Note that the peak
value for bothµu andµ∗u is nowωp = 11.0937 rad/s, which
is much closer to the critical frequency determined byµppa

(11.0632rad/s). Nevertheless, the accurate upper bound solu-
tionµ∗u is still smaller than the lower boundµppa. This suggests
that an even more narrow frequency band has to be considered.
Computingµ at the critical frequency associated withµppa now
returns larger values for bothµu andµ∗u: 1.4416 and 1.4272,
respectively. The latter is larger thanµppa and the gap between
them is negligible:1.4272 − 1.4256 = 0.0016. The fact that
the closed-loop system withK1 is obviously not robustly stable
suggests that a new controller needs to be designed.

Applying the proposed synthesis algorithm formulated by eqn.
(12) determines a new output feedback controller:

K2 =
[

2.494 0 0 0
0 −31.637 −70.352 19.632

]
(14)

K2 achieves a robustness indicator ofµppa = 0.7468 (ωp =
0.1505 rad/s). To verify this design,µ analysis is carried out
using a narrow frequency grid of 600 points. Analysis results
are illustrated in Figure 5 and Table 4.
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Figure 5: Robustness analysis withK2

µ(M(ωp)) ωp [rad/s] CPU time[s]
µboa 0.7446 0.1520 9287
µppa 0.7468 0.1506 24
µu 0.8153 0.1801 141
µ∗u 0.7550 0.1592 1298

Table 4: Robustness indicators withK2



Note that the gap between the peak upperµ∗u and lowerµppa

bounds is insignificant:0.75497− 0.7468 = 0.0082. The syn-
thesised controllerK2 ensures a closed loop with multivariable
stability margin ofkm ≈ 1.33. This is a significant increase in
robustness when compared with the performance ofK1. Typ-
ical step responses are presented in Figure 6. This figure il-
lustrates roll rate in response to a step demand on aileron de-
flection for this aircraft. Note that the combination of stability
derivatives that will causeµ peak to occur for designK1 will
be different to that for designK2. Both combinations are easily
unwrapped using the new algorithm and theδi’s are constrained
to be within[−1, 1]. It is interesting to note that controllerK2

offers better performance for both∆1 combinations.
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Figure 6: Step responses withK1 (dashed),K2 (solid)

4 Conclusions

This paper has considered the computation of a good lower
bound onµ for systems that are subject to strictly real parame-
ter uncertainty. A new algorithm that improves on crude lower
bound optimisation approaches has been presented. The al-
gorithm works very well, pointing out potential difficulties in
frequency grid selection for conventional upper bound based
µ-analysis. The new algorithm has been shown to be supe-
rior to any of the currently available tools that compute strictly
real destabilising perturbations. A fixed structure synthesis al-
gorithm has also been introduced. The algorithm is easy to
use and works well on a representative practical example. Re-
search is ongoing on the development ofa priori tests that can
indicate whether lower boundµ algorithms are likely to exhibit
convergence difficulties.
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