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robustness analysig;based controller design k., was coined and denoted ly
-1
Abstract w(M) = {IAnei%a(A) o det(l — MA) = O} 3)

The paper introduces a new approach for the compl_Jtation Oﬁ?e exact computation of is an NP-hard problem, there-
lower bound on thestructured singular valugSSV), . in the o6 |ower and upper bounds are considered in the literature.
presence of purely real and mixed/complex uncertainties. Tife | nner hounds are defined as convex optimisation problems
approach utilises a frequency sweeping technique based g4 \ATLAB software, which uses a suitably defined fre-
linear fractional transformation representation of structured YWhiency grid to determine an upper bound;oft, 8] is known
certair_nty. The technique is _applied to a well-known civil tranﬁb work quite well, with the possible exception of when the
port alrcraft example. A_f|xed structure contr.oller SY'f‘thesﬁncertainty consists of purely real blocks, [13]. This is a par-
strategy is developed, ‘_Nh'Ch addresses. potential Stab'l',ty pr(ﬁ%’ular problem for the practical interacting systems where the
lems that can occur using standard design methodologies. | ot exhibits multiple narrow peaks. These peaks can neces-
sitate a prohibitively narrow grid using standardechniques.

An upper bound solution to the frequency gridding problem

Notation has been presented by Feron [6], whereby stability guarantees,
w(M)  structured singular value (SSV) of (albeit with fairly mild restrictions), are possible within a pre-
(M) largest singular value af/ specified frequency interval. However, the algorithm can po-
Fi(M,A) lower Linear Fractional Transformation of, A tentially yield a conservative upper bound if the frequency in-

R real part of a complex number terval is quite wide.

S imaginary part of a complex number ) . . )

R field of real numbers All available lower bound computation techniques consist of

¢ field of complex numbers finding a perturbation which corresponds to the limit of stabil-
M(M) eigenvalues of/ ity. A fixed point power algorithmis presented in [11]. Un-

fortunately, when uncertainties are modelled as real parame-
ter variations this approach does not converge well enough.
An improvement can be achieved by adding a small amount
The concept of robustness analysis for systems with structuféccomplex uncertainty [12] but this amount needs to be fixed
uncertainties first appeared in 1980 when the so calless by trial and induces approximation in the results that is diffi-
stability margin which later became known as theultiloop cult to evaluate. Moreover, the solution is suboptimal in the
stability marginwas introduced, [14]: real parameters. An approach for purely real uncertainties is
presented in [3], but the method is of exponential time and its
practical use is only for small uncertainty sets. An optimisation
based approach presented in [9] provides a satisfactory lower
bound for largeA’s, but the algorithm is quite sensitive to the

where M represents the value of the transfer function materOice of initial st.arting point and recalculations are required
M(s) ats = jw, D is the set of all admissible perturbation?t some frequencies.

1 Introduction

km = glelg{k €[0,00) : det(I —kAM)=0} (1)

andA is a structured perturbation defined as A different lower bound approach, which features a frequency
independenj, computation is considered here. It is has been
— r r c c found that this approach works quite well on a wide variety
A = diag(6]T O I 07 L 11y 05 Lo s ! : -
Zgg( ! 1’C mr ot C’H o T; ¢ of practically motivated problems, reducing the gap between
AT A ) 0 €R, 65 € C, A € C e the lower and upper bounds @nto a very small level. A key

i=1,....m j=1,....me; k=1,....mc (2) feature of the approach is that an accurate combination of pa-



rameters that results in a destabilising perturbation is returrfed a A of the structure defined in eqn. (2) withc = 0 the
at each iteration. This “unwrapping” procedure may be uséallowing equality holds

in conjunction with upper bound reatsolvers like e.g., [6], to

inform the frequency interval selection process and therefore 7(A) =[[Allr = [[All2 = [[Alloo (6)
also offer an easy way of reducing the potential conservati

on the upper bound for real %r the case of scalar perturbatiopg;orresponds to the small-

estA of appropriate structure that will move an eigenvalue of
The paper is organised as follows: Section 2 is dedicated to thento the imaginary axis. The singularity condition in the
proposed new approach for the computation of a lower bouddfinitiondet(M (jw)A — I) = 0 corresponds t0,,.x (Ag) =

on realu. Section 3 demonstrates the use of the new approagtHence,

as a tool for robustness analysis and controller design. An eas-

ily reproducible civil transport aircraft model, presented in [7], w(M(s)) = { max min (7(A)) :

is taken as a representative example. Finally, some conclusions w AeD

and future research directions are given in section 4. -1
det(M (yw)A — 1) :0} (7)

2 A Pole Placement Approach for the Compu-

tation of a  Lower Bound is identical to

2.1 Description p(M(s)) = {glel% Al

Typical strategies for the computation of the structured singu-
lar value involve the evaluation of a nominal systéif(s) at
different frequencies, i.e., a so call&é@quency griddingap-
proach. However for the lightly damped systems that are ndw@n. (8) is a minimisation with a nonlinear constraint which
appearing in the literature it is quite possible to miss a fréeplaces the minimax problem of egn. (7). Also eqn. (8) deter-
quency where one of possibly multiple resonant peaks ocotines a (suboptimal) destabilisiny and essentially gives the
Inaccuratei: bounds can be observed with this type of protasis of the proposgble placement approadPPA).

lem. Moreover, the number of frequency points and indeed the

frequency range necessary to obtain good qualitpunds can 2.2  On the Practical Implementation of the Approach

also be difficult to select in advance.

-1
Amax(A + BA(I — DA)™1C) = o} (8)

o i The u lower bound algorithm motivated by egn. (8) can be
More sophisticated methods that address this problem haygyressed iMATLAB using constraint optimisation software
been considered in the literature. The migration of a set ;S’irovided by theOptimisation toolbox[2]. To locate the min-
closed loop nominal poles through the imaginary axis due Qfisation vectorz, it is common for the optimisation algo-
suitably scaled uncertainty set is considered in [7, 10]. Denotgghms to consider the first two terms of the Taylor approxi-
asfrequency sweepinghe idea is to find the smallest perturynation of f(2) at a candidate. This recasts the minimisation

baFionA eD Fhat \{vill move a pqle (or a complex conjugat% asequential quadratic programmingroblem:
pair) onto the imaginary axis while all other poles remain in

the LHP. In [10], the idea is formulated as a quadratic optimi-
sation under linear constraints. A different formulation of the
frequency sweeping technique is presented in this paper.

f(a) = GaT H()e + 2" g(x)
whereH (x) is the Hessian andl(z) is the gradient.
Let (4, B,C, D) be the nominal state space representati
of an uncertain systemM (s). Note thatB, C and D
are sized compatibly with the size &f. If the quadruple
(A, B,C, D) is perturbed by\, the state matrix of the closed
loop F;(M(s),A) is

%'should be emphasised that in order to allow complex param-
eters to enter the optimisation procedure in this scheme, each
complex entry has to be factored into two real optimisation
variables. ltis clear that for A with m. = 0 andm¢ = 0, the
number of optimisation variables involved in the problem (8)

Ao = A+ BA(I — DA)~1C (4) is m,. Suppose that:. # 0. Then eacly{ is separated into
two real variables, i.ed{ = a; + yb;. Henced{ will appear in
Denote the eigenvalues df, by \;, i = 1,...,n. The matrix the optimisation code ag andb;. The number of optimisation

Ao will be called adestabilising perturbatiorif and only if Variablesn would then be
>
Amax(Ao) > 0, where m = my + 2m, ()]
Amax(Ao) = arg (Inﬁxm{)\i(z‘lo)}) (5) Eqn. (9) indicates that the algorithm is likely to be inefficient
for mixed or complex uncertainty sets.

The “minimum” perturbationA is defined in terms of the A major problem in the non-convex optimisation algorithms
largest singular value ah, i.e.,(A). It can be shown that is the choice of initial conditions. An interesting approach of



choosing the starting point for optimisation is employed in this
algorithm. For simplicity, the case whek is a real perturba-
tion (i.e.,m. = 0 andm¢ = 0) is presented, but this can easily
be recasted for mixed and compléxs. Consider the partial
derivatives

(14) (14)

Ay

C [Pmae(A) Onan(A)

= . 10

v o (10)
which are expected to give a rough estimate of how the param- y
eter perturbations] impact on the migration of the dominant @

eigenvalue ofdA. Hence, an initial starting point can be pro-
vided by simply takingz, := V.

Although potential discontinuities in the optimisation problem
of eqn. (8) are known to exist, numerical experience suggests
that (10) is a good way to locate an initial starting point. Initial-
isation and local minima recovery can be implemented using
a so called “Tree” test which is motivated by the exponential
time Tree Structured Decomposition approach of Degaston &
Safonov, [4]. The procedure genera®®s sets ofA’s, where
each entry) takes a value of either1 or 1. Hence, theA that
causes largest {\,,....(Ao)} is chosen as initial condition.

It should be noted that in addition to the destabilisikg un- Figure 1: Lateral flight control system for a civil aircraft
wrapped from the optimisation variables, the critical peak fre-
guency is also extracted:

o Some comments are appropriate about this block diagram. The
wp = [S{Amaz (Ao)} LFT is set up in such a way that the uncertainty in the stability
L . ] derivatives is captured bfx;. The A, block acts on the non-
3 Application: Analysis and Synthesis for a zero elements of the controlléf, . A, will be a zero matrix for
Civil Aircraft the initial analysis problem. Latef\, will be non-zero when

o L the new algorithm is used for controller synthesis.
3.1 Description of the Civil Aircraft

The civil aircraft that is considered here is described in d8-2 Analysis of Stability Robustness

tail, (including full non-linear equations of motion) in [7]. The ¢ vsis for the civil t ¢ aircraft is initiall
system has 2 inputs and 4 outputs and a linear aerodynatl% ustness analysis tor the civil transport aircraft IS initially

model is obtained using standard MATLAB trimming techperformed_ onM(s) without the actuators in the_problem for-
nigues. The lateral-axis model has 4 states that dependn&lﬁlat'on (|.e.,A01.: 1andA.; = 1). The following 1. algo-
14 stability derivatives. For this example, uncertainty is irﬂtth were used:

troduced to all of the stability derivatives at an arbitrarily des-
ignated level of30% of the nominal values. The number of i
uncertain parameters means that this represents a class of prob-[9]: Which computes good lower bounds on real

lem that is beyond the point where conventional exasolvers o Iippa - the pole placement approach (PPA) presented in
like [3] can be used. this paper.

1. upea - @ basic optimisation algorithm (BOA) proposed in

The system has an unstable mode in open loop. A nominally [, ] 1
. ) u u

stabilising static output feedback controllgh has been syn-- r6ides poor lower bounds and potentially inaccurate up-
thesised using an approach presented in [15]. Four of 8 entries per bounds for purely real uncertainty sets. Upper bounds
are fixed at zero thus allowing the remaining 4 to determine the 11 are computed to both default accuracy (optiah °
closed loop shape. The static output feedback design is: and denoted by.,) and greatest accuracy (optinC9’,

2.995 0 0 0 and denoted by:’), while lower bounds are computed
0 —92035 —80.894 30 (11) with maximal accuracy (optioritR9 ', denoted byy;).

- standargu-toolbox code [1], which normally

K, =

Standard Linear Fractional Transformation (LFT) tools approachesuy.., (i andpu,/uy, are used initially for a fre-

used to implement the closed loop design with attached actgaency grid of 300 points in the rangi) =2, 10?%] rad/s. The

tors (A.; andA..) as shown in Figure 1. corresponding: plots are shown in Figure 2. Table 1 illustrates
1775 4 399 2.652 — 11855 4+ 27350 1 bounds, critical frequencies and computation time for each of

Ap - ——— c2 = 1
1T 4825 +399° (2T S5+ 777s% 133315 + 27350 (e considered approaches.




Robustness Analysis Without Acuators in mind the nature of the worst case perturbation that is

;i‘ff;f,‘i"‘:‘-“‘m(g:?,i’;‘;?:?:uv:;m determined by an exagtalgorithm like for example, that
S | given n (3]
Ajentries|  fipoq Kppa i
o7 -1.5042 | -1.4956 | -2.3982
0% -0.9736| -1.4956 | -2.3982
0% 0.9015 | 1.4955 | 2.3982
A -1.3747| 0 0
ol of 0.1999 0 0
' 0 -1.5085| -1.4956| 1.7238
ol 67 -1.4949] -1.4956| -2.3982
0% 1.5075 | 1.4956 | 2.3982
e o ; ‘ - 0§ 0.6040 0 0
o 070 0.7679 0 0
_ _ _ n 1.5081 | 1.4956 | -2.3982
Figure 2:u-analysis for 30 level of uncertainty 5, 15048 -1.4955| -2.3982
Ts -1.5060| -1.4956| 2.3982
[ [ () | @y [radjs] | CPUtime[s] | 0l | 05531] 0 0
Hboa 0.6629 0.3055 6360
Hppa 0.6686 0.3121 20 Table 2: Destabilising\,'s obtained from the: lower bounds
L 0.4170 0.9847 1437
Hu 0.6910 0.2245 64 3.3 Output Feedback Controller Design using the PPA
w 0.6662 0.3055 549

For this design example the actuators are now introduced into
Table 1: Robustness AnalySiS for the Civil Transport Aircrafﬁhe pr0b|em formulation. Note that the output feedback con-
troller design presented here is significantly different from the
standard D-K iteration approach tesynthesis. The proposed
approach is based on nonlinear unconstrained optimigation
The objective is to perturb the coefficients in the nominal con-
troller K; so that the robustness indicatofM (s)) is min-
imised. The objective for controller design is

The following observations can be outlined:

1. The peak lower bound achieved py,,, is slightly larger
than the one obtained by,,,. Note that the compu-
tation time required fon,,, is about20 sec while ap- . M 12
proachu,, heeds more than an hour and half to evaluate Angler}c {maxu( (Jw))} (12)

u for 300 frequency points However, both approaches . . I
found the critical peak at approximately the same fr vhere K is the set of all suitably structured stabilising con-

quency ( = 0.31 rad/). It should be emphasised tag & 05 28 S TR FREIER, P COU TR0 O
the lower boundu, is zero for almost all frequency pOIntS'should be noted that the objective function in egn. (12) is non-
2. Note the conservatism qm‘u and the Computationaj Costlinear and therefore the solutidi; is suboptimal. The nomi-
associated withu%. It can be noted that the peak valudally stabilisingk’ is determined whed\, = 0, while K is
of u determined by is in fact smaller than the peakdetermined by the perturbatiak, that satisfies eqn. (12):
lower bound achieved by,,,. Computation ofu;; at a
frequency ofw = 0.3121 rad/s returns a value which is Ay = arg {AIniIIlC uppa(M(s))} (13)
virtually the “same” (to within an accuracy of 4 significant 2€

digits) as the one computed by the new algorithm, i.e., o )
11, = fippa = 0.6686. Robustness analysis is carried out for the closed loop system

with controller K; using the samg approaches as in the pre-

3. Consider the returned worst-case destabiligiés, that vious subsection. Results from the analysis are presented in Ta-
are presented in Table 2. It can be noted that the unckle 3. Figures 3 and 4 depict the bounds.ofor 200 and 600
tainty entriesdy, 05, dg, 410, 014 have no effect on the sys-frequency points, respectively. As thetools lower boundy;)
tem stability as indicated by,,, and;. Moreover, the has shown to be very poor it is omitted from the figures. The
nonzeroA, entries obtained by,,,, have values of either computed lower boungd,,, = 1.4256 was found at frequency
Ky, or —k,,. This is an intuitively pleasing result bearingof w,, = 11.0632 rad/s. In order to confirm the reliability of

w

1Analysis is carried out on a PC with MATLAB 6.1 benchmark 6.8 2The Simplex method of Nelder-Mead, [2] is used by the authors



this indicator, a comparison with analysis results achieved frdirst resonant peak. Note that these upper bounds are signifi-
frequency-grid based approaches is necessary.

Robustness Analysis with controller K1 (200 freq. points)
T T

T

— - Basic Optim. Approach Mooa
— - u-tools uu(defaull accuracy)

— u-tools p;(grealesl accuracy)

% Pole Placement Approach Hopa

0.5

*

Figure 3: Robustness analysis wih (200 pts.)

Robustness Analysis with controller K1 (600 freq. points)

T
— - Basic Optim. Approach Booa
— - u-tools pu(deiault accuracy)
— p-tools u;(greatest accuracy)
% Pole Placement Approach Hopa

*

Figure 4: Robustness analysis with (600 pts.)

cantlysmallerthan i, (M (s)).

The lower bound determined by the pole placement algorithm
clearly indicates the need for a much finer frequency grid. In-
creasing the number of frequency points from 200 to 600 al-
lows the i, (M (s)) algorithms to catch the more significant
second resonant peak, as shown in Figure 4. Note that the peak
value for bothy,, andy is noww, = 11.0937 rad/s, which

is much closer to the critical frequency determined;by,
(11.0632rad/s). Nevertheless, the accurate upper bound solu-
tion u; is still smaller than the lower bound,,,,. This suggests

that an even more narrow frequency band has to be considered.
Computingu at the critical frequency associated wjtfy,, now
returns larger values for botla, andp: 1.4416 and 1.4272,
respectively. The latter is larger thap,, and the gap between
them is negligible:1.4272 — 1.4256 = 0.0016. The fact that

the closed-loop system withi; is obviously not robustly stable
suggests that a new controller needs to be designed.

Applying the proposed synthesis algorithm formulated by eqn.
(12) determines a new output feedback controller:

[2494 0 0 0

Ky = 0 —31.637 —70.352 19.632

(14)

K, achieves a robustness indicator.gf,, = 0.7468 (w,
0.1505 rad/s). To verify this designy analysis is carried out
using a narrow frequency grid of 600 points. Analysis results
are illustrated in Figure 5 and Table 4.

Robustness Analysis with controller K2 (600 freq. points)
T T

T
— - Basic Optim. Approach Mooa
—— p-tools % (greatest accuracy)
— . p-tools H, (default accuracy)
% Pole Placement Approach Hopa

05y \\ > /’,1," \ [ i
lHl\IL B X\ /'!,
200600 frequency points
p(M(gwp)) | wp[rad/s] | CPU time[s] N
. ‘ ‘ ‘
lpoa | 0.88461.4079 [ 0.232711.0937 | 469811972 o 0" 1o’ 1o’ 1
Lippa 1.4256 11.0632 28 , _ ,
1. | 0.96751.4306 | 0.232711.0937 | 45/38 Figure 5: Robustness analysis wif)
1o | 0.90181.4108 | 0.255211.0937 | 465291

Table 3: Robustness indicators wikfhy

First, consider the frequency grid of 200 points. Note that two
resonant peaks can now be seen in ghplots. The second
peak at approximately0 rad/s is particularly narrow and is
the focus of our observations. Bothupper bound plots (rep-
resentingu,, and x;) reach their maximum peaks around the

|

| W(M(ywp)) | wp [rad/s] | CPU time[s] |

fiboa | 0.7446 0.1520 9287

lippa | 0.7468 0.1506 24
1. | 0.8153 0.1801 141
pi | 0.7550 0.1592 1298

Table 4: Robustness indicators wilfy



Note that the gap between the peak uppgrand lower iy,
bounds is insignificant).75497 — 0.7468 = 0.0082. The syn-

thesised controlleK; ensures a closed loop with multivariable
stability margin ofk,,, ~ 1.33. This is a significant increase in

robustness when compared with the performanck of Typ-

(2]

M.A. Branch, A. Grace. Optimization Toolbox, User’s
Guide The MathWorks Inc, Natick, 1996.

3] R. Dailey. “A new algorithm for the real structured singu-

ical step responses are presented in Figure 6. This figure il-

lustrates roll rate in response to a step demand on aileron d
flection for this aircraft. Note that the combination of stability

derivatives that will causg peak to occur for desigi’; will

be different to that for desigi’s. Both combinations are easily

lar value”. Proceedings of the American Control Confer-
ence, ACC'90pp. 3036-3040, 1990.

f R. Degaston, M.G. Safonov. “Exact calculation of the

multiloop stability margin”.|IEEE Transactions on Auto-
matic Contro] Vol. 33, pp. 156-171, 1998.

unwrapped using the new algorithm and #iis are constrained [5] J.C. Doyle. “Analysis of feedback systems with structured

to be within[—1, 1]. Itis interesting to note that controlléf,
offers better performance for both; combinations.

Nominal unit step responses

Figure 6: Step responses wilty (dashed)K: (solid)

4 Conclusions

(6]

(7]

(8]

9]

(10]

This paper has considered the computation of a good lower

bound ory. for systems that are subject to strictly real paramero] A. Packard, P. Pandey. “Continuity properties of the
ter uncertainty. A new algorithm that improves on crude lower

bound optimisation approaches has been presented. The al-
gorithm works very well, pointing out potential difficulties in

frequency grid selection for conventional upper bound based

p-analysis. The new algorithm has been shown to be supt3]

rior to any of the currently available tools that compute strictly
real destabilising perturbations. A fixed structure synthesis al-
gorithm has also been introduced. The algorithm is easy to

use and works well on a representative practical example.
search is ongoing on the developmengggdriori tests that can
indicate whether lower boundalgorithms are likely to exhibit
convergence difficulties.
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