
ROBUST SERVO CONTROL DESIGN FOR

MECHANICAL SYSTEMS USING MIXED

UNCERTAINTY MODELLING

P. Gaspar∗, I. Szaszi†, J. Bokor∗

∗ Computer and Automation Research Institute, Hungarian Academy of Sciences,
Kende u. 13-17, H 1111 Budapest,Hungary,

fax: +36 14667503, phone: +36 12796171, e-mail: gaspar@sztaki.hu
† Department of Control and Transport Automation, Budapest University of Technology and Economics,
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Abstract

In this paper, a servo control synthesis based on the µ
method is applied. With this method, a robust com-
pensator that achieves performance specifications can be
designed, which provides the track of the predefined ref-
erence signal, rejects the effects of the disturbances and
takes structured uncertainty into consideration. In the
mixed µ synthesis, both the real parametric and the com-
plex uncertainties are handled together, which usually
yields a less conservative compensator than the traditional
robust control design methods. The design strategy is il-
lustrated for an inverted pendulum device, which involves
real parametric uncertainties.

1 Introduction and motivation

Recently, the complex µ synthesis has become widespread
because this method yields a compensator that achieves
nominal performance and robust stability and takes struc-
tured uncertainties into consideration. In this method,
the structure of uncertainties is represented by a diagonal
structure with full or scalar complex blocks. For real para-
metric uncertainties the representation of the complex µ
method can be arbitrarily conservative. In practice, there
are several components whose parameters change around
their operational points. If the parametric uncertainties
are taken into account, the magnitude of the unmodelled
dynamics could be decreased. In this case, the structure of
uncertainties is represented by repeated real blocks. Ap-
plying the mixed µ method parametric uncertainties can
be taken into consideration, which is more realistic than
the traditional approaches, and the design process yields
a less conservative compensator than other robust control
design methods, [1, 5, 8, 10, 14].

In the last decade, the two degree-of-freedom compensator

for servo problems has been widely used in practice. They
comprise two components, a pre-filter and a feedback com-
ponent. Several methods for designing servo controllers
exist, [9, 11, 18], etc. Keviczky (1996) followed a differ-
ent path to design a servo system through an iterative
scheme. In this scheme the model identification and the
controller design steps are performed in a sequential way
to improve the performance properties of the controlled
system, [12, 13]. In an earlier work of our project, a servo
control design methodology based on H∞ and complex µ
was presented, [6].

The aim of this paper is to apply the mixed µ synthesis to
an inverted pendulum device. In a number of papers the
inverted pendulum is considered as a good demonstration
tool for the illustration of control design. Different control
strategies using traditional methods or modern methods
have been shown. In this paper, more information of the
mechanical system is assumed to be known and these data
can be taken into account in the mixed µ method. The
design process yields a controlled system with better per-
formance behavior and the conservatism is also decreased.

The organization of the paper is as follows. Section 2
presents the problem setup, i.e. the specifications of the
servo design for an inverted pendulum. Section 3 dis-
cusses the robust servo control design based on the mixed
µ synthesis. Section 4 demonstrates the application of the
µ synthesis in both complex and mixed µ methods, and
gives some comparison results.

2 Servo control specifications for uncer-

tain systems

The simplified structure of the inverted pendulum that is
installed in our laboratory is shown in Figure 1. The cart
is propelled by a DC servomotor supported by a power
amplifier, the cart position and the rod angle is measured
by potentiometers. Direct digital control can be realized
by means of a computer complemented with analog to
digital and digital to analog converters. The objective
of the experiment is to design a controller which stabilizes



the rod and keeps the cart in a desired position. Let m̄1 be
the mass of the rod, l̄ the length of the rod, m2 the mass
of the cart, Rm the armature resistance, Km the motor
torque constant, Kg the gear-ratio of gearbox, and r the
radius of the gear. The state space form of the nominal
model is as follows:
















ẋ1

ẋ2
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(1)

where xi’s are the state variables in the controllability
state space representation form, u is the input voltage, yx

is the car displacement and yθ is the rod angle, [16]. In Eq.

(1), the c1 =
KgKmAm

Rmm2r and c2 = −
K2

gK2
m

Rmm2r2 are constants.
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Figure 1: Schematic diagram of the experiment

The controller must be designed in such a way that the
following criteria are met. The closed-loop system must
be stable. The control voltage must not exceed 10 V. Let
the reference signal for the displacement be a square signal
with 0.2 magnitude, as well as a 0.2 amplitude sine signal.

The output signals, i.e. displacement yx (tracking) and
rod angle yθ (interaction), must satisfy the following spec-
ifications:

Specification 1: The settling time must be less than 10 sec:
|yx(t) − ȳx| < 0.02, for all t ≤ 10.

Specification 2: The overshoot must not exceed 10%:
yx(t) < 0.22 for all t.

Specification 3: The steady-state error must be below 1%:
|yx(t) − ȳx| < 0.002.

Specification 4: The interaction must be minimal: yθ(t) <

0.1 for all t.

Specification 5: Applying the disturbance signal the angle
must be minimal: yθ(t) < 0.1 for all t.

The difficulties of the control design is that the model
contains uncertainties, which are caused the parametric
uncertainties. The parametric uncertainties are generated

in a laboratory environment by varying the length of the
rod l and its mass m1.

The parameters are assumed to be uncertain, with a nom-
inal value and a range of possible variation:

m1 = m̄1(1 + dmδm), l = l̄(1 + dlδl) (2)

with dm, dl scalars, in which −1 ≤ δm, δl ≤ 1. The d
scalar indicates the percentage of variation that is allowed
for a given parameter around its nominal value. The
changing of δ parameters in the interval

[

−1 1

]

determines
the actual parameter deviation. The l and m1 parameters
occur in the differential equation so their LFT represen-
tation can be drawn up in the following way:

1

l
=

1

l̄(1 + dlδl)
= Fl

([

1

l̄
−dl

l̄
1 −dl

]

, δl

)

(3)

m1 = m̄1(1 + dmδm) = Fl

([

m̄1 1
dmm̄1 0

]

, δm

)

(4)

In Eq. (3) and Eq. (4), let Mm =
[

m̄1 1

dmm̄1 0

]

and Ml =
[ 1

l̄
−

dl
l̄

1 −dl

]

be the uncertain blocks.

The δ uncertainty blocks from the motion equations must
be pulled out. Let the input and output of δm be ym1

and um1
, and δl be yl and ul, respectively. In the differen-

tial equations of the nominal plant the length of the rod
l occurs in several times. In general such parameters can
only be treated as a repeated scalar block. It means that
different uncertain parameters must be handled by the
same uncertain coefficients (d, δ). Thus, l can be mod-
elled as a three times repeated parameter. The ui

l and yi
l

(i = 1, 2, 3) represent the input and output signals of the
length uncertainty, and ui

m, yi
m represent the signals of

the mass uncertainty.

Applying equations (3) and (4), the state space
form containing uncertain parameters between
[

ẋ1 ẋ2 ẋ3 ẋ4 y1
l y2

l y3
l y1

m yx yθ

]

and
[

x1 x2 x3 x4 u1
l u2

l u3
l u1

m u
]

can be for-
mulated. The uncertain state space model and its
illustration are shown in the following.
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Figure 2: Block structure of the uncertain model



3 Robust servo control design using the

mixed µ synthesis

Consider the closed-loop system which includes the feed-
back structure of the model G and controller K, and el-
ements associated with the uncertainty models and per-
formance objectives (Figure 3). In the diagram, r is the
reference, u is the control input, y is the output, n is the
measurement noise, and ze is the deviation of the output
from the required one. The structure of the controller
K may be partitioned into two parts: K =

[

Kr Ky

]

,
where Ky is the feedback part of the controller and Kr is
the pre-filter part.
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Figure 3: Closed loop interconnection structure

The required transfer function Tyr from r to y is defined
by the designer. In our application, Tyr is used to intro-
duce time domain specification into the design process.
Inside the dashed box there are two blocks to represent
both the unmodelled dynamic and the parametric uncer-
tainty. The uncertainties of the rod length and the rod
mass are represented by the ∆r block, whose input and
output are denoted by uδ and yδ. The transfer function
∆r contains the δlI3×3 < 1 and δm < 1 components in
diagonal form. The unmodelled dynamics is represented
by Wr and ∆m. It is assumed that the transfer function
Wr is known, and it reflects the uncertainty in the model.
The transfer function ∆m is assumed to be stable and
unknown with the norm condition, ‖∆m‖∞ < 1. In the
diagram, e is the input of the perturbation, d is its output.

The weighting function We reflects the relative importance
of the different frequency domains in terms of tracking er-
ror. The weighting function Wn represents the impact of
the different frequency domains in terms of sensor noise
n. The weighting function Wp represents the performance
of the rod angle. The role of the weighting function Wu

represents the different frequency domains of the input
effort. Necessary and sufficient conditions for robust sta-
bility and robust performance can be formulated in terms
of the structured singular value denoted as µ, [2].

By applying the weighting functions and the compensator,
the augmented plant P can be formalized between the out-
puts

[

e y1
l y2

l y3
l y1

m ze zp zu r yx yθ

]

and the inputs
[

d u1
l u2

l u3
l u1

m r w n u
]

:
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(5)

The mixed real and complex µ involves three types of
blocks: repeated real scalar, repeated complex scalar and
full blocks. Three nonnegative integers, Sr, Sc, and F
represent the number of repeated real scalar blocks, the
number of repeated complex blocks, and the number of full
blocks. The admissible set of uncertainties ∆̃ is defined as

∆̃ =





∆r 0 0
0 ∆m 0
0 0 ∆p



 , (6)

where ∆r ∈ R
4×4, ∆m ∈ C

1×1, ∆p ∈ C
4×3. The first

block, ∆r is a repeated real scalar block which represents
the parametric uncertainties. The second block of this
structured set corresponds to the scalar-block uncertainty
∆m which is used to describe the unmodelled dynamics.
The ∆p is a fictitious uncertainty block, which is used to
incorporate the H∞ nominal performance objective into
the µ framework. Given a matrix M , the mixed µ

∆̃
func-

tion is then defined by:

µ
∆̃

(M) :=
1

min {σ̄(∆) : ∆ ∈ ∆̃, det(I − M∆) = 0}
(7)

unless no ∆ ∈ ∆̃ makes I − M∆ singular, in which case
µ∆(M) = 0. Thus 1/µ

∆̃
(M) is the ”size” of the smallest

perturbation ∆, measured by its maximum singular value,
which makes det(I − M∆) = 0. Unfortunately equation
(7) is not suitable for computing µ since the implied opti-
mization problem may have multiple local maxima. How-
ever tight upper and lower bounds for µ may be effectively
computed for both complex and mixed perturbation sets.
Algorithms for computing these bounds have been docu-
mented in several papers, see e.g. [4, 19].

Let us define the following expressions:

Q =
{

∆ ∈ ∆̃ : φi ∈ [−1, 1], |δi| = 1, ∆i∆
∗
i = Imi

}

(8)

D =











diag
[

D̃1, D̃2, D̃3, D̃4, d1, I2

]

:

D̃1 ∈ C
1×1, D̃2 ∈ C

1×1, D̃3 ∈ C
1×1, D̃4 ∈ C

1×1

d1 ∈ R, I2 = I4×3











(9)

G =

{

diag [G1, G2, G3, G4, 0, 0] :
G1 ∈ C

1×1, G2 ∈ C
1×1, G3 ∈ C

1×1, G4 ∈ C
1×1

}

(10)

The upper bound can be formulated as a convex optimiza-
tion problem, so the global minimum can be found. For a
constant matrix M and both complex and mixed uncer-
tainty structure ∆̃, an upper bound for µ

∆̃
(M) that take



the phase information of the real parameters into account
can be formulated into an optimization problem:

inf
D∈D, G∈G

min
β

{

β | M
∗
DM + j(GM − M

∗
G) − β

2
D ≤ 0

}

(11)

The goal of the mixed µ synthesis is to minimize over-
all stabilizing controllers K, the peak value µ∆(·) of the
closed loop transfer function Fl(P,K). The formula is as
follows:

min
K

sup
ω

µ
∆̃

[Fl(P, K)(jω)] (12)

Using this upper bound, the optimization is reformulated
as

min
K

sup
ω

inf
D∈D, G∈G

min
β

{β | σ̄(Γ(ω)) ≤ 1)} (13)

where

Γ(ω) =

(

DωFl(P, K)(jω)D−1
ω

β
− jGω

)

(I + G
2

ω)−
1
2 (14)

where Dω, Gω are selected from the set of scaling D, G
independently of every ω.

The scaling G allows one to exploit the phase information
about the real parameters so that a better upper bound
can be obtained. The optimization problem can be solved
in an iterative way using for D, G and K, similarly to
D − K iteration. For fixed K(s) the problem of finding
D(ω), G(ω) and β is just the mixed upper bound problem.
Having found these scalings we may fix β∗ = max β and
fit transfer function matrices D(s) and G(s) to D(ω) and
jG(ω). It can then be shown, that using spectral factor-
ization, a stable interconnection PDG(s) can be formed,
which approximates Γ(ω) across frequency ω. For given
β∗, D(s) and G(s) the problem of finding the controller
K(s) will be reduced to a standard H∞ problem. The
optimization algorithm is called D,G − K iteration, see
[3, 17, 20].

4 The µ synthesis for an inverted pendu-

lum

The control design based on the µ synthesis is performed
in two ways. The first approach is based on the complex
µ synthesis, in which the model uncertainties are repre-
sented by complex frequency dependent ∆ blocks and a-
priory information about the real parametric uncertainties
is not used in the design process. The second approach is
based on the mixed µ synthesis, in which the real paramet-
ric uncertainties are taken into consideration, i.e. both the
complex and the real frequency independent uncertainties
are handled in ∆ blocks. The nominal parameters of the
inverted pendulum are shown in Table 1.

Let the required transfer function from the reference to the
displacement of the cart be the following simple first-order
system: Tyr = 1

s+1
. The reference tracking should ideally

be decoupled at the output channels and must fulfil the
requirements determined in the time domain. In order to

Table 1: Parameters of the pendulum

Parameters (symbols) Value

mass of the rod (m1) 0.210 kg
length of the rod (l) 0.305 m
mass of the cart (m2) 0,455 kg
armature resistance (Rm) 2.6 ω
motor torque constant (Km) 0.00767 Nm
gear-ratio of gearbox (Kg) 3.7
radius of the gear (r) 0.00635 m

meet our requirements for the tracking error, apply a We

weighting function, which reduces the steady state error

below 1%: We = 100 s/7+1

s/0.02+1
. It follows from the condi-

tion that the transfer function from the reference signal to
the cart position must be less than 1/We in the H∞ norm
sense i.e. less than 1

100
in steady state.

Let the frequency weighting function of the control input
be Wu = 1

20
. The fact that the magnitude of the reference

signal is 0.2 m entails that the effect of the reference signal
on the control input does not exceed 26 dB. It is assumed
that the sensor noise is 5 mm in the cart position and 0.01
rad in the rod angle in the entire frequency domain, thus
the weighting function of the sensor noise is represented by
Wn =

[

0.005 0
0 0.01

]

. It is assumed that in the low frequency
domain disturbances at the angle should be rejected by

a factor of 5 by using Wp = 5 s/2+1

s/0.1+1
. The weighting

functions for the performance and the tracking error are
illustrated in the left hand side of Figure 4.
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Figure 4: The weighting functions for performance and
uncertainties

In the first approach, uncertainty is modelled as a com-
plex scalar block with multiplicative uncertainty at the
plant input. Let the frequency weighting function of the

unmodelled dynamics be as follows: W 1
r = 0.5 s/10+1

s/40+1
. It

means that in the low frequency domain, the uncertainties
are about 50% and, in the upper frequency domain they
are up to 100%. The upper bound of the unmodelled dy-
namics is illustrated by the dashed line in the right hand
side of Figure 4. This estimation is analyzed in both sim-



ulation and real examinations. If a smaller upper bound is

applied e.g. W 12
r = 0.25 s/10+1

s/40+1
in the control design then

the robust performance cannot be guaranteed. It means
that the weighting function W 12

r does not cover the en-
tire model uncertainty, which comes from the parametric
uncertainty and the neglected dynamics.

In the second approach, in which mixed uncertainty is ap-
plied, information about the model uncertainties between
the model and the plant must be used in the control de-
sign, and the magnitude of the unmodelled dynamics is
reduced. Thus the uncertainties are selected significantly

smaller than in the previous case: W 2
r = 0.1 s/8+1

s/110+1
. It

means that in the low frequency domain the modelling er-
ror is about 10% and, in the upper frequency domain it is
up to 100%.

The complex µ synthesis is performed by using the D −
K iteration. The compensator order is selected 18, and
all the nominal performance, robust stability, and robust
performance are achieved. Using a simulation procedure,
the step responses of the cart position and the rod angle
with the control input are shown in Figure 5. The tracking
of the square reference signal meets the requirements both
in the transient time domain and in steady state. The
interaction between signals is also eliminated according to
the specifications. In the weighting function W 12

r case, the
robust stability requirement is not met and the oscillation
of the angle is relatively high.
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Figure 5: Step responses of the controlled system designed
by complex µ synthesis

The mixed µ synthesis is performed by using the D,G−K
iteration. The compensator order is selected 44, and all
the nominal performance, the robust stability, and the ro-
bust performance are achieved. The price of the mixed µ
synthesis is usually a controller with rather large order,
which can be usually reduced. The controller reduction
method is based on the balanced realization and optimal
Hankel norm approximation [7]. The order of the con-
troller reduced is selected 12. The result of the robustness
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Figure 6: Performance and robustness analysis of the
mixed µ controller
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Figure 7: Step responses of the controlled system designed
by mixed µ synthesis

and performance analysis is shown in Figure 6. Using a
simulation procedure, the step responses of the cart posi-
tion and the rod angle with the control input are shown
in Figure 7.

Finally, the compensators are used for the real inverted
pendulum, and they are analyzed for impulse disturbance.
The impulse responses of the controlled system using com-
plex µ controller are shown in Figure 8. The impulse re-
sponses of the mixed µ case are in Figure 9.

5 Conclusions

In this paper, the mixed µ synthesis has been presented
through the application of an inverted pendulum. As a
result of the control design the following conclusions can
be drawn. The magnitude of the unmodelled dynamics
between the model and the plant should be reduced if real
parametric uncertainties can be taken into consideration.
It means that information about the parametric uncer-
tainties must be used in the control design. In the case
of complex µ synthesis, in which the model uncertainties
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Figure 8: Measured signals using the complex µ compen-
sator

0 10 20 30 40 50
−0.2

−0.1

0

0.1

0.2
Step Response (AngleDist −> Pos)

Time (sec)

[m
]

0 10 20 30 40 50
−0.1

−0.05

0

0.05

0.1
Step Response (AngleDist −> Angle)

Time Time (sec)

[ra
d]

0 10 20 30 40 50
−1

−0.5

0

0.5

1
Control Input

Time (sec)

[V
]

Figure 9: Measured signals using the mixed µ compen-
sator

are handled by full or scalar complex blocks, the mag-
nitude of the uncertainty must be assumed larger than
in the mixed µ synthesis because of the worst case prin-
ciple, or the designed compensator might not be robust
against uncertainties. As a consequence the bandwidth
of the controlled system can be increased in case of the
mixed µ. The price of the mixed µ synthesis is usually a
controller with a large order, however, it can be effectively
reduced by using a controller reduction method.
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