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Abstract

Exploitation of the NP hard, mixed µ problem structure pro-
vides a polynomial time algorithm that approximates µ with
usually reasonable answers. When the problem is extended to
the skew µ problem an extension of the existing method to the
skew µ formulation is required. The focus of this paper is to
extend the µ upper bound derivation to the skew µ upper bound
and show its direct computation by way of a generalized eigen-
value solver and an LMI algorithm.

1 Introduction

µ analysis provides a general framework for robust analysis
in the face of system/model uncertainties. However, in prac-
tice skewed µ problems commonly occur, perhaps even more
so than µ problems. The most common example of a skew µ
problem is the formulation for robust performance (see [10]
among others). Ranges for uncertainties are chosen for a rea-
son. Typically one does not want these uncertainties re-scaled
in an analysis of system performance. The robust performance
question that needs to be answered is “For uncertainties with
these ranges, what level of performance can be expected from
the system?”. This is a skew µ problem. The physical uncer-
tainties have a fixed range, and the performance block is al-
lowed to vary to determine the point where the system could
potentially become unstable.

Another common example of skew µ is stability analysis over
a given frequency range. By reformulation of the problem us-
ing frequency as a perturbation variable, the gridded µ problem
becomes a skew µ problem where no frequencies are missed in
the search [9].

Both these skew µ problems can be approached as iterative µ
problems in order to achieve a value of skew µ, however, the
process is much slower than the results presented here. Where
the speed of the computational algorithm provided here is on
the order of the µ upper bound algorithm, an iterative µ proce-
dure could easily be an order of magnitude slower.

The goal of this paper is to extend the theoretical concepts of
a upper bound for skew µ and provide an outline of procedures

for the calculation of an upper bound for skew µ.

1.1 Finding Skew µµµ

Systems in robust analysis are often modeled using the LFT
(Linear Fractional Transform) as seen in figure 1. In the LFT,
unknown (or uncompensated) dynamics and parameter varia-
tions are modeled by ∆, where ∆ includes block structure re-
quirements. The stability measure for an LFT is known as the
SSV (Structured Singular Value) or µ, and is defined in defini-
tion (1). Values of µ(M) ≥ 1 provide the possibility of becom-
ing unstable, while values of µ(M) < 1 are stable. Because
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Figure 1: Basic LFT System Diagram

finding µ is extremely computationally intensive, bounds on
µ are normally calculated, rather than calculating µ directly.
Skew µ inherits most of the properties of µ, including the prop-
erty related to computational difficulties. This necessitates the
development of a skew µ upper bound similar to the µ upper
bound.

2 Notation and Preliminaries

The notation used to provide mathematical descriptions is
fairly standard and is essentially taken from Fan et. al. [2],
in addition, the support basis for skew µ development comes
from Young et. al. [11].

For any square complex matrix M, denote the complex conju-
gate transpose by MH . The largest singular value and the struc-
tured singular value are denoted by σ(M) and µK (M) respec-
tively. The spectral radius is denoted ρ(M) and the real spectral
radius ρR(M) = max{|λ| : λ is a real eigenvalue o f M} , with
ρR(M) = 0 if M has no real eigenvalues. For any complex vec-



tor x, then xH denotes the complex conjugate transpose, ‖x‖2

the Euclidean norm, and ‖x‖∞ the infinity norm.

The definition of µ and skew µ are dependent upon the under-
lying block structure of the uncertainties, which is defined as
follows. Given a matrix M ∈ C

n×n and three non-negative in-
tegers mr, mc, and mC with m , mr + mc + mC ≤ n, the block
structure K (mr,mc,mC) is an m-tuple of positive integers

K = (k1, . . . ,kmr ,kmr+1, . . . ,kmr+mc ,kmr+mc+1, . . . ,km) (1)

where the requirement is ∑m
i=1 ki = n in order that these dimen-

sions are compatible with M. This determines the set of allow-
able perturbations, which are defined as

XK =
{

∆ = block diag(δr
1Ik1 , . . . ,δ

r
mr

Ikmr
,δc

1Ikmr+1 , . . . ,

δc
mc

Ikmr+mc
,∆C

1 , . . . ,∆C
mC

) :

δr
i ∈ R,δc

i ∈ C,∆C
i ∈ C

kmr+mc+i×kmr+mc+i
}

.

(2)

Note that XK ∈C
n×n and that this block structure is sufficiently

general to allow for repeated real scalars, repeated complex
scalars, and full complex blocks. The purely complex case cor-
responds to mr = 0, and the purely real case to mc = mC = 0.

Additionally note that all the results which follow are easily
generalized to the case where the full complex blocks need not
be square, and the blocks may come in any order. These re-
strictions in equation (2) are made purely for notational conve-
nience.

In order to more easily generalize the case of the µ upper bound
to the skew µ case, the formal definition of µ is given as:

Definition 1 The structured singular value µ(M) of a matrix
M ∈ C

n×n with respect to a block structure K (mr,mc,mC) is
defined as:

µK (M) =
1

min
∆∈XK

{σ(∆)| det(I −∆M) = 0 f or structured ∆}
(3)

with µK (M) = 0 if no ∆ ∈ XK solves det(I −∆M) = 0.

This definition and associated block structure format is well
known. Using the general structure of the definition of µ, a
definition for skew µ can now be created.

2.1 Scaling Set Notation

In order to develop the skew µ upper bound, some sets of block
diagonal scaling matrices will need to be used. These matrices
are defined here for easy reference, and are used throughout the
remainder of this paper. These scaling sets are also dependent
on the underlying block structure (K (mr,mc,mC)), and similar
to those used in [12].

DK =
{

block diag(D1, . . . ,Dmr+mc ,d1Ikmr+mc+1 . . . ,dmC Ikm)

: det(Di) 6= 0,Di ∈ C
ki×ki ,di 6= 0,di ∈ C

}
.

(4)

D̂K =
{

block diag(D1, . . . ,Dmr+mc ,d1Ikmr+mc+1 . . . ,dmC Ikm)

: 0 < Di = DH
i ∈ C

ki×ki ,0 < di ∈ R
}

.

(5)

GK =
{

block diag(G1, . . . ,Gmr ,0kmr+1
, . . . ,0km) :

Gi = GH
i ∈ C

ki×ki

}
.

(6)

ĜK =
{

block diag(g1, . . . ,gnr ,0knr+1
, . . . ,0kn) : gi ∈ R

}
,

(7)
where nr = ∑mr

i=1 ki.

3 Formal Definition of Skew µ

For a system M, with a set of perturbations, the definition of
skew µ is the smallest SSV of a subset of perturbations that
destabilizes the system M with the remainder of the perturba-
tions being of fixed range. Formally developing this:

Given a set of allowable perturbations

YK =
{

∆v = block diag(δr
1Ik1 , . . . ,δ

r
mr

Ikmr
,δc

1Ikmr+1 , . . . ,

δc
mc

Ikmr+mc
,∆C

1 , . . . ,∆C
mC

) : δr
i ∈ R,δc

i ∈ C,

∆C
i ∈ C

kmr+mc+i×kmr+mc+i
}

,

(8)
and a secondary set of perturbations with structure K̂ defined
as

ZK̂ = {∆ f = block diag(δr
1Ik̂1

, . . . ,δr
mr

Ik̂mr
,δc

1Ik̂mr+1
, . . . ,

δc
mc

Ik̂mr+mc
,∆C

1 , . . . ,∆C
mC

) : δr
i ∈ R,δc

i ∈ C,

∆C
i ∈ C

k̂mr+mc+i×k̂mr+mc+i},
(9)

where ZK̂ are restricted to the unit ball

BZK̂ = {∆ f ∈ ZK̂ : σ(∆ f ) ≤ 1}. (10)

The composite (∆) perturbations are defined as

WK ,K̂ = {∆ = block diag(∆ f ,∆v)}, (11)

or

∆ =

[
∆ f 0
0 ∆v

]
. (12)

These specifications allow the skewed SSV definition:

Definition 2 The skewed structured singular value µs(M)
of a matrix M ∈ C

n×n with respect to a block structure
K (mr f ,mc f ,mC f ,mrv ,mcv ,mCv) is defined as:

µs(M) =
1

min
∆∈WK ,K̂

{σ(∆v)| det(I −∆M) = 0 f or structured ∆}

(13)
with µs(M) = 0 if no ∆ ∈WK ,K̂ solves det(I −∆M) = 0.

Note that WK ,K̂ ⊂ C
n×n and that this block structure is suffi-

ciently general to allow for repeated real scalars, repeated com-
plex scalars, and full complex blocks in both the fixed range
and varying perturbations.



4 Developing a Skew Mu Upper Bound

As previously mentioned, the skew µ problem is computation-
ally hard. Because of the difficulty in calculating skew µ, upper
and lower bounds are used to provide information concerning
the value of skew µ. The skew µ upper bound is defined the
following section.

4.1 Defining the Skew µ Upper Bound

In this paper, the upper bound on skew µ will be referred to as
ν, however, first it must be shown that ν is an upper bound on
skew µ. This is done by initially defining a matrix of the block
form

S =

[
I f 0
0 νIv

]
, (14)

where the S matrix is partitioned such that the blocks I f and νIv

are sized to correspond to the fixed range and varying uncer-
tainties ∆ f and ∆v respectively, as in equation (12). Then let
the matrix Ms be defined as

Ms = S−1M. (15)

From the definition of skew µ, there must exist an Ms for some
choice of ν such that µ(Ms) = 1, if not, then µs(M) = 0 . From
this, the following theorem can be derived.

Theorem 1 The value of ν is an upper bound on µs(M).

Proof: The desire is to have a ν that sets the det(I −Ms∆) = 0,
thus it can be stated that

(I −Ms∆)x = 0
x = Ms∆x

‖x‖ ≤ ‖Ms∆‖‖x‖
1 ≤ ‖Ms∆‖ ≤ ‖Ms‖‖∆‖

therefore
1

σ(∆)
≤ σ(Ms) = σ(S−1M). (17)

Since µ(Ms) = 1 for skew µ, then ν is chosen such that
σ(S−1M) = 1, where σ(S−1M) is an upper bound on µ and thus
ν is an upper bound on µs(M). 2

Remarks: This is predicated on the fact that µ(S−1M) = 1,
which follows from the definition of skew µ.

4.2 Implications of Using
√

S−1M
√

S−1 Versus S−1M

There are several ways to form the product of the skewing ma-
trix S and the system matrix M. One way is to form the product
S−1M. A second method is to form the product

√
S−1M

√
S−1.

The advantage of the second method can be seen by dissecting
the products in block form. When this is done, two things are
apparent: first, both systems have the same eigenvalues and
second, if M is norm-balanced (via Osborne balancing [8]),
then the second method causes less upset on the matrix bal-
ance than the first method. Hence, the second method is the
recommended implementation in software using Osborne bal-
ancing.

4.3 Direct Computation for a Skew µ Upper Bound

The first method proposed for finding an upper bound on skew
µ is via a direct computation for the upper bound in terms of a
generalized eigenvalue problem. To facilitate this method re-
quires some re-arrangement of M and ∆. WLOG, elementary
transformations can be used to arrange M and ∆ such that the
interacting components of ∆ f and M are arranged to allow ∆ f

to occupy the upper left quadrant of ∆, and ∆v occupies the
lower right quadrant of ∆ as in equation (12) . Keeping this
arrangement in mind, the following bound on skew µ can be
stated:

Theorem 2 The skew µ upper bound ν can be calculated from
the generalized eigenvalue problem







M11MH
11 − I f M11MH

21 0
M21MH

11 M21MH
21 I

0 I 0




+
1
ν




M12MH
12 M12MH

22 0
M22MH

12 M22MH
22 0

0 0 I









x1

x2

x3


 = 0. (18)

Proof: From theorem (1), the requirement that

σ(
√

S−1M
√

S−1) ≤ 1 (19)

is evident. This can be expanded to

σ(
√

S−1M
√

S−1) = λ̄([
√

S−1M
√

S−1
√

S−1H
M
√

S−1H
),
(20)

where λ̄ indicates the magnitude of the largest eigenvalue. Note

that SH = S and
√

S−1H
=
√

S−1, which implies that
√

S−1MS−1MH
√

S−1 ≤ I, or MS−1MH ≤ S. (21)

From previous definitions,

S =

[
I f 0
0 ν · Iv

]
and S−1 =

[
I f 0
0 1

ν · Iv

]
. (22)

Partition S, such that

S = X +νY =

[
I f 0
0 0

]
+ν

[
0 0
0 Iv

]
(23)

and

S−1 = X +
1
ν

Y =

[
I f 0
0 0

]
+

1
ν

[
0 0
0 Iv

]
. (24)

Substituting these definitions into equation (21) and re-
arranging gives

MXMH +
1
ν

MY MH −X −νY ≤ 0. (25)

Examine the terms of equation (25) to get

MXMH =

[
M11MH

11 − I f M11MH
21

M21MH
11 M21MH

21

]
=

[
U W

W H V

]
(26)



and

MY MH =

[
M12MH

12 M12MH
22

M22MH
12 M22MH

22

]
=

[
E G

GH F

]
. (27)

At this point, one notes that it is possible to construct a general,
augmented problem,







U W 0
W H V I

0 I 0


+

1
ν




E G 0
GH F 0
0 0 I









x1

x2

x3


 = 0.

(28)
One also notes that this problem is of the form Ax = λBx, a
generalized eigenvalue problem, which can be readily solved.

Now show that this general case applies to the specific problem
in equation (25),

Note that

x3I = −νx2I (29)

in equation (28). Thus reduced equations can be written from
equation (28) as

(U + 1
ν E)x1 +(W + 1

ν G)x2 = 0
(W H + 1

ν GH)x1 +(V −νI + 1
ν F)x2 = 0.

(30)

Reforming equation (30) into a matrix form,

[
U + 1

ν E W + 1
ν G

W H + 1
ν GH V −νI + 1

ν F

][
x1

x2

]
= 0. (31)

Now, substituting in the individual components one gets

[
M11MH

11 − I f + 1
ν M12MH

12 M11MH
21 + 1

ν M12MH
22

M21MH
11 + 1

ν M22MH
12 M21MH

21 −νIv + 1
ν M22MH

22

]
×

[
x1

x2

]
= 0.

(32)

At this point, one notes that this is easily reduced to the equa-
tion of interest, (25). Thus equation (28) can be readily solved
for the desired value ν. This value is found at the equality. The
inequality was originally constructed because the desire was to
find an upper bound on the value of skew µ.

The problem has been solved for a νi that sets σi(S−1M) = 1.
This does not guarantee that σi(S−1M) = σ(S−1M). Now,
suppose that another νb is found such that solves equation
(28), such that νb < νi. However, if νb < νi, then σb(S−1M) <

σi(S−1M), which means that σb(S−1M) < 1, a contradiction
on the requirements of the solution. Thus if νi solves the equa-
tions, then σi(S−1M) = σ(S−1M). 2

Remarks: A numerical solution to equation (18) can typically
be found using an generalized eigenvalue solver like those in
Matlabr.

5 An LMI Methodology for the Skew µµµ Upper
Bound

5.1 Skew µ LMI Upper Bound Derivation

It is possible to derive an expression that provides for acquiring
the D-scales as well as skew µ in terms of an LMI. There are
several sources where a basic form for this LMI can be found,
in particular [1], [4], and [5]. In [5] the actual skew µ upper
bound is given without derivation. Within LMI terminology,
this problem is commonly referred to as the generalized eigen-
value problem (GEVP).

To obtain an understanding of the GEVP, start from theorem 1,
where it was shown that

µ(Ms) ≤ 1.

Consequently, from µ theory it can be stated that

σ(DLMsD
−1
R ) ≤ 1 or (DLMsD

−1
R )H(DLMsD

−1
R ) ≤ I.(33)

Noting that the matrix S−1 commutes with D, the previous
equation can be written as

(DLMD−1
R S−1)H(DLMD−1

R S−1) ≤ I. (34)

Expanding and manipulating this equation gives

MHDH
L DLM ≤ DH

R DRS2
. (35)

Note that since full block complex perturbations (∆C
mC

in equa-
tion (2)) need not be square, M need not be be square and D-
scales need not be the same size on each side of M. However,
each D-scale will be square. Theoretically, it causes no com-
plications, but it needs to be pointed out occasionally. In the
midst of software programming, it can be a terribly annoying
discovery.

Now let PL , DH
L DL and PR , DH

R DR, which have a Hermitian
matrix structure [7], then

MHPLM−
[

I f 0
0 ν2Iv

]
PR ≤ 0. (36)

Partitioning along the lines of the fixed and varying compo-
nents, letting λv = ν2, and manipulating gives,

MHPLM−
[

I f 0
0 0

]
PR ≤ λv

[
0 0
0 Iv

]
PR. (37)

Note that equation (37) is approximately in the form of an
eigenvalue problem where λv is the square of the value sought.
The desired value to be found is

√
λv.

By partitioning all matrices along the fixed and varying pertur-
bations and rearranging, the following can be arrived at (no-
tation change PL , PL and PR , PR to help reduce equation
clutter),

[
MH

11 MH
21

MH
12 MH

22

][
PL

11 0
0 PL

22

][
M11 M12

M21 M22

]

−
[

PR
11 0
0 0

]
≤

[
0 0
0 λv ·PR

22

] (38)



To formulate this as an LMI compatible with the Matlab
r LMI Controls toolbox [4], equation (38) is broken down
in the following manner,

[
MH

11PL
11M11 +MH

21PL
22M21 −PR

11

MH
12PL

11M11 +MH
22PL

22M21

MH
11PL

11M12 +MH
21PL

22M22

MH
12PL

11M12 +MH
22PL

22M22 −λv ·PR
22

]
≤ 0. (40)

Here, 0 is an appropriately size n×n matrix.

Note that this method is better suited to cases where the pertur-
bations are predominantly complex in nature. Real perturba-
tions may be included; however, depending on the nature of the
problem, the bound may be overly conservative. An addition
to this method which improves the bound for real perturbations
is given in section 5.2.

From this derivation, the following can be said about skew µ
and the matrix M:

µs(M) ≤ ν, (41)
and

µs(M) ≤ infD∈DK f ,Kv
min0≤ν∈R

{
ν : MHDH

L DLM

−
[

I f 0
0 ν2 · Iv

]
DH

R DR ≤ 0

}
.

(42)

Where λv has been replaced by ν2 to be consistent with other
works in this area. A brief reference to this can be found in [5].

Care must be given to setting up the variable structure of these
matrices in the LMI toolbox code. A note of importance is that
the number of variables can grow tremendously as the size of
the problem increases. What may appear to be a reasonable
size problem can easily generate over 5000 variables, enough
to overburden the computational horsepower of many PC’s.

5.2 Inclusion of G-Scales

Real parameter variations take place along the real axis (oddly
enough), whereas complex parameter variations are assumed
to vary on a disk in the complex plane with a radius of the
specified ∆. This extra piece of phase information about real
perturbations allows for the construction of disks which cover
the uncertainties, but which are not necessarily centered at the
operation point in the complex plane. Ultimately this yields a
less conservative upper bound on µ.

To obtain this less conservative bound in the case of skew µ,
first consider a set of scaling matrices constructed similar to
those in [2].

The G-scales associated with the fixed range perturbations are
defined as

GK f = {block diag(G1, . . . ,Gmr f
,0kmr f +1

, . . . ,0km) :

Gi = GH
i ∈ C

ki×ki}
(43)

and the G-scales associated with the varying range perturba-
tions are defined as

GKv = {block diag(G1, . . . ,Gmrv
,0kmrv+1

, . . . ,0km) :

Gi = GH
i ∈ C

ki×ki}. (44)

The combined G-scales for skew µ may then be written as

GK f ,Kv = {G = block diag(G f ,Gv)}. (45)

The subscript mr indicates the number of real perturbation
blocks, and the subscript mr+1 to km indicates the number of
complex block and full block perturbations. Note that the ma-
trix G only affects the parts of M subject to real perturbations,
not the complex or full block perturbations, and is Hermitian in
structure. This structure corresponds to the structure set forth in
section 3 where the complex perturbation elements have been
set to 0.

5.2.1 G-Scale Derivation

Starting with the basic eigenvalue form (I − 1
ν ∆M)x = 0, the

case for G scales can be derived. For G ∈ G , the following set
of equations holds true, assuming ν 6= 0. If there exists a ∆ and
x such that

∆Mx = νx, (46)

then
x = 1

ν ∆Mx
xHGMx = 1

ν (xHMH∆H)GMx
xHGMx = xHMHGH 1

ν ∆Mx
xHGMx = xHMHGHx

xH(GM−MHGH)x = 0. (47)

Using properties of Hermitian matrices [7], (GM −MHGH) is
skew-Hermitian, j(GM−MHGH) is Hermitian. Equation (47)
is in the form of an LMI with the exception of the equality
sign. Equation (47) can be used in addition to the previous
upper bound LMI derivation in equation (38) to achieve a less
conservative upper bound.

5.2.2 Upper Bound including G-Scales

Using the derivation of the G-scales from the previous section,
the following construction of the upper bound can be created
(see [2] , [13] or [12] for more background). This is the same
form as equation (42) with the exception of the addition of G-
scales.

µs(M) ≤ inf D∈DK f ,Kv ,

G∈GK f ,Kv

min0≤ν∈R

{
ν : MHDH

L DLM

+ j(GM−MHG) −
[

I f 0
0 ν2 · Iv

]
DH

R DR ≤ 0

} (48)

Note that if G = 0 in equation (48), then the standard complex
ν upper bound is recovered.

Since the matrix G only affects the parts of M subject to real
perturbations, not the complex or full block perturbations, it
only affects the singular values associated with the real pertur-
bations.



5.2.3 The Specifics of a Skew µ Upper Bound Including
G-Scales

The specifics of the skew µ LMI equations are laid out for clar-
ity. As with the original skew µ LMI, care needs to be taken
when setting up the variables for solution because of their Her-
mitian nature.

Referencing equations (37) and (39), the following LMI’s in-
cluding G-scales are achieved

MHPLM + j(GM−MHGH)−
[

I f 0
0 ν2 · Iv

]
PR ≤ 0. (49)

This structure is similar to the structure set forth in section
3 where the fixed and varying complex perturbation elements
have been set to 0.

Partitioning the G-scales in a similar fashion to the LMI’s of
section 5.1, the expression for j(GM−MHGH) is achieved,

j







G11M11 −MH
11GH

11 G11M12 −MH
21GH

22

G22M21 −MH
12GH

11 G22M22 −MH
22GH

22




 . (50)

Finally, inserting the detailed G-scale expression into the LMI
upper bound expression, equation (39),



MH
11PL

11M11 +MH
21PL

22M21 + j(G11M11 −MH
11GH

11)−PR
11

MH
12PL

11M11 +MH
22PL

22M21 + j(G22M21 −MH
12GH

11)

MH
11PL

11M12 +MH
21PL

22M22 + j(G11M12 −MH
21GH

22)

MH
12PL

11M12 +MH
22PL

22M22 + j(G22M22 −MH
22GH

22)−λvPR
22


≤ 0.

(52)
This expression is in the proper format for implementation via
Matlabr LMI Toolbox.

6 Conclusion

An extension of the µ upper bound methodology is devised to
provide for the solution of the potentially more common skew
µ problem. This method is superior to previous skew µ calcula-
tion methods because it does not include repetitive calculations
of µ to find skew µ [3]. These previous methods are compu-
tationally expensive in comparison to both µ and the proposed
skew µ technique.

In addition to theoretical development of two skew µ upper
bounds, methodologies for calculating the skew µ upper bound
via software algorithms are outlined.

Associated issues such as conversion of scaling sets between
the two types of upper bounds and extended algorithms have
been dealt with, to bring the state of skew µ development near
to that of µ. Details of these issues and expanded discussion of
the developments and software algorithms described here can
be found in [6].
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