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Abstract

Over-actuated linear systems with nonlinear output maps are
studied, taking into account input and state constraints. Using
a control Lyapunov function approach, we develop an optimiz-
ing dynamic controller that includes a dynamic reference feed-
forward. This allows optimizing control to be implemented
with low real-time computational complexity since the opti-
mization algorithm converges only asymptotically. Conditions
for local convergence and global asymptotic stability are estab-
lished. A highly nonlinear colorant mixing simulation example
is used to illustrate the approach.

1 Introduction

Consider the system

�� � ����� (1)
� � ���� (2)

where� � �
� , � � �

� and� � �
� . It is assumed that�

is a continuously differentiable nonlinear function,����� is
controllable,� � �, and� � 	. A characteristic feature of
the over-actuated control problem is that for a given reference
output�� the corresponding equilibrium point is not unique.
In this paper, it will be specified implicitly through a steady-
state optimization criterion, while the dynamic performance is
specified through a standard LQ criterion. This is useful in
problems where the multi-variable output map� is not directly
invertible or the system is over-actuated, such that� 
 � and
explicit solutions are hard to compute.

Computer processing capacity limits how quickly an iterative
optimization algorithm converges in a real-time implementa-
tion. We assume the optimization convergence can not be made
fast compared to the closed-loop dynamics such that the steady-
state optimization is a limiting factor for the control perfor-
mance. Rather than solving the steady-state and dynamic opti-
mization problems separately, we take a Lyapunov-design ap-
proach to solve the steady-state optimization problem simul-
taneously with the dynamic optimal control problem, borrow-
ing some ideas from adaptive and nonlinear control [11, 8].
This leads to a nonlinear dynamic controller that implicitly
solves the steady-state optimization problems asymptotically
via the real-time integration of an ordinary differential equa-
tion. Effectively, the approach cancels transients related to the
interaction between optimizer and feedback controller using a
reference feed-forward. The optimization approach here has
some conceptual resemblance to Lyapunov-based optimiza-
tion [13, 12], and the approach provides an alternative control
method for systems of the Wiener class, as treated recently in
[6, 3, 10]. A related approach was suggested in [4].

2 Control specification

Let ��� �� be an equilibrium point for the system (1), i.e. a pair
of vectors satisfying

� � �� ��� (3)

In general, there exists a vector � �
� that parameterizes

the equilibrium manifold such that all solutions to the homo-
geneous linear equation system (3) are given by

� � �� � � � (4)

Since the�	���-dimensional vector��� �� must lie in the null-
space of the	� �	 � ��-matrix �����, one may select any�-
dimensional basis for this space to build rows of� and�, with
� � 	� � � rank����� � �. Our objective is to choose��� ��
such that they minimize some steady-state performance crite-
rion � ���� �� ��� with �� � �� given. Assume this criterion is
given in the form

� ���� �� ��� �
�

�
��� � �����

�
� ��� � ����� � � ����� ��

(5)

where� �� is assumed to be continuously differentiable and posi-
tive semi-definite, and� � � is a symmetric weighting matrix.
Due to the parameterization (4) we define the re-parameterized
criterion function

��� ��� � � ������ ��� (6)

We will later extend this specification to include also con-
straints on the equilibrium state and input. The dynamic per-
formance specification is given in terms of an infinite-horizon
LQ criterion with� � �, and� � �:

����������� �

� �

�

�
����� � ��������� � ��

������� ���������� ��
�
�� (7)

3 Optimizing Lyapunov design

3.1 Unconstrained optimizing control

Let 	� denote the set of vectors that satisfy first order local
optimality conditions

	� � � � �� ������ �
�� � �	 (8)

Let � � 	� be a global minimizer, with the associated state
and input vectors�� � �� and�� � ��. In general,	� will
contain all local and global minima of��
� ��� such that� is
in general not uniquely defined. The control design is based on
the control Lyapunov function

� ��� � � ��� ���� ��� �� � ��� ���� ���� ���

(9)



where � � � will be specified shortly. It follows that
� ���� �� � � for any global optimizer�. Hence, the ob-
jective is to simultaneously optimize the equilibrium point
and achieve regulation to the optimal equilibrium. The time-
derivative of� along trajectories of the closed loop system is
given by

�� � ��� ���
�
���� ��� ��� ����� ��� �

�
���

� ��� �
�� � (10)

We choose the optimizing dynamic feedback

� � �
����� �
�� (11)

with 
 � � and the LQ-like controller

� � ������� ��� �� �� � � (12)

The matrix� � � satisfies the algebraic Riccati equation

��� � ��� ��������� � �� (13)

and� is yet unspecified. This leads to

�� � ���� ������� �����
� ��� �

��
����� �
��

����� ���� ��� � ���� (14)

It is desirable to choose� such that�� � � � since this cancels
the interaction term such that�� � �. This is certainly possible
under some matching condition:

Matching condition: Assume that for all� � �
� there exists

a vector� � �� such that�� � ��. �

Proposition 1 Suppose ����
 are symmetric and positive
definite matrices, the linear system ����� is controllable, and
the matching condition holds. Then the dynamic controller
(11), (12) with � defined by �� � � � has the following prop-
erties:

1. If � is strictly convex, the equilibrium ���� �� is globally
asymptotically stable.

2. If � is lower bounded and radially unbounded, then for
any ���� � �

� and ��� � �
� , the states ���� and ���

are uniformly bounded. Moreover ���� 	� and �������
������� � � as ���.

Proof. It is easily shown that���� �� is an equilibrium point
for the system defined by (1), (11) and (12) for any � � 	�

with �� � ��. Under the stated matching condition, the last
term in (14) vanishes, and gives�� � �.

Part 1 of the result follows directly from LaSalle-Krasovskii’s
theorem [7] because the strict convexity of� implies unique-
ness of� such that

� � ���� � � ���� � �� ��� � � �	 (15)

� ���� � � ���� � � � �� ����� �
�� � �	(16)

� ����� ��	 (17)

Part 2 can be proven as follows: From (14),� ������ ���� is
uniformly bounded and��� and���� must be bounded because
� is radially unbounded. The conditions of Barbalat’s lemma

hold because��� is Lipschitz due to the differentiability of� ,
such that�� ���� � as���, [7]. It follows from (14) that

������� ������� � �� as��� (18)
�������� �

��� �� as��� (19)

Due to the continuity of��� , (19) implies that��� � 	� as
���. �

Corollary 1 If � �� � � and the criterion satisfies the conditions
of part 1 of Proposition 1, then �������� �� as ���. �

Corollary 2 Proposition 1 still holds when � � � � and � is
arbitrary, instead of the matching condition. �

Proof. The dynamics of the optimizing dynamic feed-forward
(11) does not depend on the state�. Hence,

�� � ���
� ��� �

��
����� �
�� � � (20)

and the convergence/asymptotic stability of��� follows under
the stated assumptions. It also follows that���� � � such that
���� � � as� � �. The state���� is then described by an
exponentially stable linear system perturbed by a time-varying
vanishing perturbation����, and the convergence/asymptotic
stability of���� follows.�

Remark 1. With constant
 � �, (11) corresponds to a gra-
dient descent minimization of� . Notice, however, that
 in
(11) can be replaced by any time- or state-dependent positive
definite-matrix, such as a possibly modified inverse Hessian of
� , leading to a Newton-like method, in order to improve speed
of convergence [9].

Remark 2. In part 2 of Proposition 1, we have shown con-
vergence to the (possibly uncountable) set of local minimizers.
Obviously, if� is convex (but not strictly convex) this implies
convergence to the set of global minimizers.

Remark 3. The main ideas and resulting controller is similar to
what is achieved using Lyapunov design in the context of adap-
tive and nonlinear control, e.g. [11, 8]. It adaptively optimizes
the equilibrium point. The term� in the control law coun-
teracts the undesired effects of transients due to interactions.
Notice that no differentiation with respect to time is required
to compute the term� in the expression for�, since an explicit
expression (11) for� is known.

Remark 4. The matching condition is restrictive, but not nec-
essary from a stability point of view as shown in Corollary 2.
A typical choice is� � ��� , where�� denotes the Moore-
Penrose pseudo-inverse of the matrix�. In the latter case, the
interaction transients are not exactly cancelled, but minimized
in the least-squares sense. Notice that the last term in (14) is
not exactly cancelled in this case, only asymptotically since
����� � and����� � as�� �.

Example 1. This example is trivial from an application point
of view, and its only purpose is to illustrate the benefits of the
term� in the controller. Consider the first order system

�� � �� � (21)
� � � (22)

For this problem � � � ��, or � � � and� � ��. We
observe that the matching condition is satisfied, and the control



design with� � �, � � � gives� � � � � and the control
law

� � ����� ��  � � (23)
� �  ��� � � (24)
� � � � � ��� (25)

Select the gain � �. It is straightforward to show that the
transfer function from�� to � is given by

!

! �
�"� �

�

"� �
(26)

For comparison, if we choose� � � in (23) we get the transfer
function

!

! �
�"� �

�

�"� ���"� ��
(27)

Hence, the beneficial effect of the term� is that it cancels the
stable pole at" � ��. We remark that this pole is the closed
loop pole due to the feedback gain� and is therefore in general
stable and can be cancelled. The cancelling zero is introduced
since� depends directly on��, and not only indirectly through
 as with� � �. The transient performance is therefore im-
proved due to this zero.�

Example 2.Again, this is a trivial example whose only purpose
is to shed some light on the fact that the matching condition is
not essential. Consider the 2nd order linear system

��� � ��� � �� (28)
��� � �� � � (29)
� � �� (30)

In this case, � �� � �� � ��, or � � ��� ��� and� �
��. Since� � ��� ��� the matching condition isnot satisfied.
Choosing� � diag��� �� and� � � gives the controller

� � ��#������ � �� �#������� � ��  � � (31)

Choosing � � and� � ��� � (with ��� � �) gives

!

! �
�"� �

"� �

�"� ���"�

���

(32)

where the double pole" � �� is due to the LQ controller,
while the pole" � �� is due to the optimizer ( � �). We
notice that the zero" � �� (due to the feed-forward from�)
counteracts to a large extent the pole" � ��. With � � �
the transfer function becomes

!

! �
�"� �

�

�"� ���"�

���

(33)

which indicates slower response compared to (32). We con-
clude that the matching condition is indeed not necessary for
reducing interaction transients.�

3.2 Constrained optimizing control

Assume a compact and convex constraint set		 � �
� is given.

Such a convex set can be derived from any convex state and in-
put constraint sets. Let the interior of		 be denoted int�		�,

its boundary be denoted$		 and assume the set		 is repre-
sented as

		 � � � �� � %�� � �	 (34)

where% � �� � �

 is a smooth convex vector-valued function.

The set of vectors � 		 satisfying first order optimality con-
ditions is defined in terms of the Karush-Kuhn-Tucker (KKT)
conditions:

	�
	 � � � 		� ����� �

�� �


�
���

&��%��� � ��

&�%��� � �� &� � �	 (35)

As before,� � 	�
	 denotes an arbitrary global minimizer and

�� � ��. Next, define the logarithmic barrier function

'�� � '� �

�
���

�����%���� (36)

where the constant'� � � is selected such that'�� 
 � for all
 � int�		�. Such a'� exists due to the compactness of		. A
fundamental property of this barrier function is that it is well-
defined and convex on int�		� since		 is convex [5]. More-
over, its value goes to infinity as � $		, and it is undefined
outside		. The unconstrained cost function is augmented by
a term containing this barrier function when defining a control
Lyapunov function

� ��� � (� � �� � ���� ��� �� � ��� � ����

�('�� �
�

�
(� (37)

For all weighting parameters( 
 � the barrier function will
prevent the solution from escaping the interior of	 	. When
applying such barrier functions in numerical optimization, con-
vergence toward the optimum is achieved by letting( � � as
���, [9, 5], and we take a similar approach here.

Proposition 2 Consider the optimizing controller

� � �
)�� (� ��� (38)
�( � �*( (39)

� � ������� ��� �� �� � � (40)

where 
 � �, * 
 �, � are as in Proposition 1, and
)�� (� ��� � ����� �

�� � (�'��. Let the matching con-
dition hold and define � by �� � � �. Assume 		 is a con-
vex and compact set, and the function % is differentiable. Then
this controller has the following properties for all ���� � �

� ,
��� � int�		� and (��� 
 �:

1. If � is strictly convex, then the equilibrium point
��� � (� � ���� �� �� is asymptotically stable

2. If � is lower bounded and radially unbounded, then all
variables are uniformly bounded and ��� � int�		� for
all � � �. Moreover, ���� 	�

	 , and �������������� �
� as ���.

Proof. The time-derivative of the Lyapunov function candidate
(37) along closed loop trajectories is given by

�� � ���� ������� �� ���
� ��� �

�� �

�(�� '�� � � �('�� � �((

� ���� ������� ��� )� �� (� ���
)�� (� ���

�*(� � *('�� (41)



Notice that(��� � (��� �����*�� such that(��� 
 � for all
� � �. Since'�� goes unbounded and all other terms remain
bounded when approaches the boundary of	 	, it is clear that
��� � int�		� for all � � �. Hence, the last term in (41) is non-
positive because'�� is positive for all � int�		�. It follows
immediately that�� � � and��(���'��������, ��������������,
�(���� and��)����� (������� are uniformly bounded.

In part 1,� is a unique global minimum due to strict convexity,
and we have

� � ���� � (� � �� �		 � ����� � �� ��� � (� � �	
� ���� � (� � �� �		 � ����� � ( � �� ('�� � ��

� � �� ����� �
�� � (�'�� � �	 (42)

Elementary calculations show

�'�� � �

�
���

�%���

%���
(43)

Define the vector& � �

 in terms of its components (which

can be interpreted as Lagrange multipliers, see also [9]):

&� � � (

%���
(44)

which is well-defined for � int�		�. Hence, the last condi-
tion in (42) can be written

����� �
�� � &��%�� � � (45)

Since( � � and %�� + � for all  � int�		�, it follows
that& � �. Hence, the 1st and 3rd KKT condition in (35) are
satisfied. Since( � � the 2nd KKT condition is also satisfied
due to (44), and we conclude that � � in (42). It follows
that� � ���� ��� ��	 and part 1 of the proposition is proven
by Barbashin-LaSalle’s theorem [7].

Part 2 can be proven as follows. Since' is locally Lipschitz
in int�		� the conditions of Barbalat’s lemma hold [7], and we
conclude that�� � � as��� such that (41) implies

(���� �� as��� (46)
(���'����� � �� as��� (47)

������ � ������� � �� as��� (48)
���������� �

�� � (����'�������� � �� as��� (49)

As above, with&���� � �(���,%������, it is clear that (49)
implies

�������� �
�� �


�
���

&�����%������� �� as��� (50)

Because all functions are continuous in int�		� and (46) im-
plies&����%������ � � as� � � for all - � ��� �� ###� )	, it
is evident that all KKT conditions in (35) hold asymptotically.
Since&���� 
 � for all � � �, we conclude��� � 	�

	 as
���. �

Remark 5. The autonomous differential equation (39) for(
can be replaced by any ODE such that(��� � � as� � � ,
giving flexibility for tuning.

Remark 6. The choice of gain matrix
 is important to achieve
numerical robustness and fast convergence of the optimiza-
tion. We observe that all the proofs hold if this matrix is time-
depending, such that there is considerable flexibility available.

A good choice is generally a matrix proportional to some pos-
itive definite approximation to the inverse Hessian [9]. In a
discrete-time implementation, a line search method is useful to
adapt the gain such that descent and convergence are guaran-
teed. In the simulation examples in this paper we have made a
very simple choice, namely
��� �  ���. , where ��� 
 � is
determined by a line search based on an Armijo condition [9].

4 Simulation example: Colorant mixing process

Assume we have a mixture of one base color and	 colorants
being feeded continuously at individually controlled rates to a
stirred tank. The objective is to control the feeding rates of each
colorant to achieve a specified color in the mixture. First order
mixing dynamics can be represented as

�� � � �

/
��

�

/
�� � � ���� (51)

The composition of colorants� � �
� in the mixture deter-

mines the color, represented by� � �
� , through the highly

nonlinear mapping� � ���� which is described in the Ap-
pendix. The control variables are the flow-rates of colorants
� � �

� . In general, the number of available colorants	 is
always at least 3, and may in some applications be very large
(tens or hundreds of colorants). In addition to handling the
strongly nonlinear mapping� the different colorants have dif-
ferent costs, which suggests to the criterion

� ����� �� � 0��� subject to � � � (52)

Since � � � �, we get

��� ��� �
�

�


�
���

��� � �����
�� ��� � ����� � 0� 

subject to � � (53)

where�� � �
� is the specified color to be produced at mini-

mum cost. The vector0 represents cost of colorants relative to
the cost of an error�� � � in the achieved color. Notice that
there may in general be different output mappings� �� ###� �

that represents different illumination spectra, as described in
the Appendix, and it is desirable to select a mixture of col-
orants such that the appearance of the color is not sensitive to
the illumination spectrum.

In the simulation example, the mixing time constant equals
/ � �#�. Four colorants (yellow, green, blue and red) are
being mixed in a light brown base color. In the simulations
we have added some noise and disturbances on the feed flow
rates. The weighting matrix is� � . , * � �, (��� � �#�,
� � . , and� � �. . The gain matrix is
��� �  ���. , where
� +  ��� � �#� is determined by a line search. The sampling
interval is 0.01.

Figures 1 and 2 show some simulation results. The dynamic
controller quickly establishes an optimal set-point for the col-
orants after it is switched on a time 0. At time� � �� the col-
orant cost vector is changed from0 � ��#��� �#���� �#��� �#���
to 0 � ��#��� �#���� �#��� �#���, and we observe that a new
optimal set-point is found after a short transient. At� � ��
is reference color is changed, and a new equilibrium is estab-
lished.
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Figure 1: Colorant mixing process simulation. Optimized equi-
librium point � � � � (top), states� (middle) and control�
(bottom). The colors on the curves are the colors of the associ-
ated colorants.

5 Conclusions

The motivation of this work is the need for computationally ef-
ficient optimizing control strategies for certain classes of over-
actuated systems. It has been shown theoretically and by ex-
amples that this can be achieved using a control Lyapunov
approach, where an optimizing dynamic feedback law is de-
signed. The design approach is similar to recently developed
methods for nonlinear and adaptive control [8], taking explic-
itly into account the optimizing controllers transient behavior
in the control design.
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Appendix A: Kubelka-Munk theory of colorant
mixing process

Many computer supported color recipe management systems
are based on the Kubelka-Munk theory [1, 2]. This theoreti-
cal framework assumes that the colorants affect the reflectance
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Figure 2: Colorant mixing process simulation. Color and set-
point in ��� 1� '� space (top), in RGB (%) space (middle), and
barrier function weight( (bottom).

spectrum of the product. The reflectance of the colored product
is a nonlinear combination of the reflectance of each individual
colorant in it. In addition, the comparison between two colors
requires the use of non-linear transformations and weighted in-
tegrals of the reflectance curves over a certain region in the
visible spectra. At any location in the paint, a certain fraction
of light, �, travelling in each direction will be absorbed by the
material and another portion,2, will be scattered. The spec-
trum of the reflected light at every wavelength is the base mea-
surement for color and it is called reflectance�. For complete
hiding, the reflectance can be expressed in terms of� and2
as:

� � � �
�

2
�
�

�
�

2
�

�
�

2

��
� (54)

or �,2 � �� � ���,��. The properties of mixtures of pig-
mented solutions can be found by using the fact that combina-
tions of absorbtion and scattering are linear:

�� �

��
���

��%�� 2� �

��
���

2�%�� (55)



and: �
�

2

�
�

�

	�

�����%�	�

��� 2�%�
� (56)

where�� is the absorption of the mixture,2� the scattering
of the mixture,	 number of pigments in the mixture,% � con-
centration of the-th pigment in the mixture by weight of dry
pigment,�� absorbtion of the-th pigment, and2 � the scatter-
ing of the-th pigment.

Each equation must be calculated for each wavelength. The
units of� and2 are not important for the purposes of these
equations, since in the Kubelka-Munk equations they are al-
ways used in conjunction with each other; the important factor
is the ratio between them. Taking into account this consider-
ation and given a spectral reflectance curve for�, � can be
calculated from equation (54) by setting the values of2 equal
to one at all wavelengths. Thus, equation (56) can be written as

�
�

2

�
�

�

��
���

��

2�

%�	�

��� %�
� (57)

this equation means that the concentrations enter the system
as fractions. Let�%� � %�,

	�

��� %�, and the reflectance of the
mixture is

�� � � �

�
�

2

�
�

�
�

�

�
�

2

�
�

�

�
�

2

��
�

� (58)

where
�

�

�
�

can be written in terms of the reflectance of each
colorant as �

�

2

�
�

�

��
���

�%�
������

�

���

# (59)

Several simplifying assumptions were made by Kubelka and
Munk. The pigmented solution is considered as a uniform ma-
terial, assuming complete dispersion of pigments and homo-
geneous density of pigments particles over a planar surface.
There is also no account for surface reflection, since they con-
sider diffuse lighting and viewing conditions.

The color sensor contains a light source and a detector which
measures the reflected light from the object to be measured.
The spectrum of the reflected light compared to the spectrum
of the source light at every wavelength is the reflectance, and it
is expressed as a vector of values at each wavelength. The qual-
ity of the color adjustment is found by looking at the difference
between the spectral distribution of the product and that of the
target spectrum. The task of the color management system is
to find the colorant concentrations so that, the best approxi-
mation of the target spectrum is reached. The human eye is
evenly sensitive to each wavelength within the spectrum of vis-
ible light; this effect is represented by a set of weighted coeffi-
cients��, ��, and��, called CIE standard Observer. The tristimu-
lus values are defined by the relations3 � 4



��&���2�&��&,

! � 4


��&���2�&��&, and5 � 4



��&���2�&��&, where

2�&� is the relative spectral distribution function of the spec-
tral power distribution of a standard illuminant, and��&� is the
spectral reflectance curve. The constant4 is a normalizing fac-
tor chosen as:4 � ���,



��2�&��&. The color measurement

is specified in terms of the triplet��� 1� '�, defined in terms of

the tristimulus values as follows:
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where3�, !� and5� are the tristimulus values of the light
source. Since the tristimulus considers the illumination, it is
possible to have different samples, but with a similar look, and
they are called metamers.
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