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Abstract

In this paper, it is shown that observer-based controlled me-
chanical systems with friction may exhibit limit cycling. The
limit cycling is induced by the interaction between friction and
friction compensation, which is based on the estimated veloc-
ity. This limit cycling phenomenon, which is experimentally
observed in a rotating arm manipulator, is analyzed through
the shooting method and bifurcation analysis. The numerical
results match well with laboratory experiments. The bifurca-
tion analysis confirms that the limit cycling can be eliminated
by enlarging the controller gains and the observer gains at the
cost of a steady state error.

1 Introduction

Friction occurs in all mechanical systems, e.g. bearings, servo
systems, and robotic manipulators [2, 3, 12]. In motion con-
trolled systems, friction can severely deteriorate systems per-
formance in terms of tracking errors, large steady state errors,
and limit cycling oscillations. It is therefore important to un-
derstand friction phenomena and know how to deal with them
in order to improve the systems performance. The availability
of precise experimental observations has been a good driving
force for investigations of friction models and compensation
techniques of friction [2, 3, 5, 12]. Good matching between ex-
perimental observations and theoretical results is an important
aspect in these investigations.

In positioning control systems, limit cycling is an undesired
phenomenon due to its oscillatory and persistent behavior.
Friction induced limit cycling has been investigated in many
papers for examples see [1, 2, 9, 13, 16] and references therein.
Most of these papers investigate stick-slip limit cycling in PID
controlled systems. However, there is still a gap between the-
oretical results and practical observations; the disappearance
of the stick-slip limit cycle by properly tuned PID controllers
in industrial applications is not yet well understood. Recently,
Hensen [9] confirmed through computational bifurcation meth-
ods the disappearance of the limit cycle for certain settings of
a PID controller and some friction models. Limit cycling in a
flexible servo system is another friction induced limit cycling

that has been investigated, see e.g. [4, 19]. In this case, the in-
teraction between friction and the flexible mode of the system
play an important role for the occurrence of the limit cycle.
This type of friction induced limit cycling is far from fully be-
ing understood. According to the survey paper of Armstrong
et al. [2] and a recent literature study, limit cycling that is in-
duced by the interaction between friction and friction compen-
sation, which is based on estimated velocities in observer-based
controlled systems with friction has not been documented yet.
Nevertheless, we observe this limit cycling phenomenon ex-
perimentally in a rotating arm manipulator, so further study is
required.

Observer-based positioning control systems with friction are of
interest for the following reasons. In practical applications po-
sitioning control mechanical systems, such as robotic manip-
ulators, are not equipped with velocity sensors for reasons as
e.g. savings in cost, volume and weight that can be obtained.
On the other hand, friction is often understood as a function of
the velocity so that for friction compensation velocity signals
are needed. Thus, we need to design observers in order to ob-
tain velocity signals form the available position measurements
and use them for friction compensation. Unfortunately, most
of the available compensation techniques for friction, for ex-
ample see [2, 3, 5, 12], require the actual velocity signal. Some
authors have already addressed problems of friction compensa-
tion based on estimated velocity, see e.g. [7, 18]. In this case,
a very simple friction model is considered, which is a constant
times the sign of velocity, and no limit cycling result has been
reported.

We analyze limit cycling in an observer-based controlled po-
sitioning system with friction through numerical methods us-
ing the shooting method and computational bifurcation analy-
sis [10, 14]. Experimental validation is obtained from a rotat-
ing arm manipulator. The computed bifurcation diagram shows
some bifurcations of limit cycles including a fold bifurcation
where limit cycles disappear after the bifurcation point, which
is interesting for a control purpose to eliminate limit cycling.
In this case, we use a switch friction model, which is used
in [9, 10]. This switch friction model, which can be consid-
ered as an extension of the Karnopp friction model, is a static
friction model that consists of static friction, Coulomb friction,
Stribeck curve, and viscous friction. Leine et al. [10] show
that the switch friction model does not have any numerical
instability problem in the stick phase as the Karnopp friction
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Figure 1: The experimental setup

model has, and it is computationally efficient compared to the
smoothed friction model. The ability of the shooting method
to analyse stick-slip limit cycles induced by the switch fric-
tion model has been demonstrated in [9, 10]. Since the shoot-
ing method finds a limit cycle or a periodic solution of nonlin-
ear systems in general by solving a two-point boundary-value
problem, it can also find other types of friction induced limit
cycles of the switch friction model.

This paper is organized as follows. Section 2 introduces the
system of interest: the experimental setup, its model and the
observer-based controller scheme. In section 3, we discuss two
characteristics of the closed loop system; the equilibrium set
is discussed in subsection 3.1 and the dynamics of the switch-
ing surfaces is discussed in subsection 3.2. Section 4 consists
of three subsections: subsection 4.1 introduces limit cycling
behavior of the controlled setup, subsection 4.2 presents sim-
ulation results and validation of the model, and subsection 4.3
analyzes limit cycles of the controlled system using the shoot-
ing method. In section 5, we discuss computational bifurca-
tion analysis to verify the disappearance of limit cycles, and
we give some experimental validation of the bifurcation phe-
nomena. Finally, conclusions and future research are given in
section 6.

2 Experimental Setup

The experimental setup is a rotating arm manipulator consist-
ing of an induction motor, a planetary transmission, and a ro-
tating arm; which is depicted in Figure 1(a). Due to bearings
and seals in the motor and in the transmission, the inertia of
the total system, i.e. the combined inertia of the separate ele-
ments, is subject to friction. The system is controlled using a
PC with a dSPACE system [6]. During the experiment the sam-
pling frequency of the dSPACE is set to 5 khz, and the angular
displacement of the rotating arm is measured using an encoder
with accuracy 3.84 × 10−5 rad.

3 Modelling and Control

The rotating arm system with a regulation task can be consid-
ered as a system of a block mass that is moved by a control
force to a desired position on a surface with friction, see Figure
1(b). In figure 1(b), J is the inertia of the block, q its posi-
tion measured with respect to some reference point, and u the
control force. The dynamics of the block are given as

ẋ = Ax − Bf(x, u) + Bu (1)

y = Cx (2)

where x =
[

x1 x2

]T
is the state with x1 and x2 the

position and the velocity of the block respectively, A =[
0 1
0 −D/J

]
, B =

[
0

1/J

]
, with D the damping coeffi-

cient of the viscous friction, f is the nonlinear friction,C =
[ 1 0 ], and y is the measured position. The nonlinear fric-
tion is given by a switch model [10]

f(x, u) =




g(x2)sign(x2) if |x2| > η
u if |x2| ≤ η and |u| ≤ Fs

Fssign(u) otherwise
(3)

where g(x2) = Fc + (Fs − Fc)e−(x2/v)2 is the Stribeck curve
with Fc the Coulomb friction level, Fs > Fc the static friction
level, and v the Stribeck velocity; and η << 1 is a narrow band
around zero velocity that is introduced to overcome computa-
tional instability at zero velocity. The narrow band η is chosen
such that Tol < η << 1, where Tol is the tolerance of the
integration method, and in the ideal case η = 0. Applying
the switch friction model (3) to the state space (1), in the stick
phase the system is governed by

ẋ1 = x2 (4)

ẋ2 =
−D

J
x2. (5)

In this way, the acceleration in the stick phase is not immedi-
ately set to zero as in the Karnopp model, instead it is contin-
uously forced to zero by using the linear viscous friction. This



Parameter Value
J [kg.m2] 0.0260
D[N.m.s/rad] 0.0710
Fc[N.m] 0.4195
Fs[N.m] 0.5005
vs[rad/s] 0.15

Table 1: Parameter values of the rotating arm setup

term maintains the continuity of the velocity and thus avoids
numerical instability problems in the stick phase.

Parameter values of the setup for the derived model are given
in Table 1. The inertia parameter J is obtained from a Bode
plot and the friction parameters are obtained by fitting a curve
to the friction-velocity map, i.e. the averaged input torques at
different constant velocities, that minimizes the quadratic cost
function

min
θ

M∑
k=1

[fss(q̇k) − f(q̇k, θ)]2 (6)

where fss(q̇k) is the average input torque during a constant ve-
locity q̇k, θ = [ D Fs Fc vs ] is a vector containing all
friction parameters, and M is the number of data points [9].

In order to regulate the block mass at a desired position yd, we
consider a linear output feedback with friction compensation
of the form

u = ū + f̂(x̂, ū) (7)

where ū = N(x̂ − xd) with N = [ n1 n2 ] the controller
gain, xd = [ yd 0 ]T the desired state, x̂ the estimated state

that is obtained from an observer, and f̂ is the nonlinear friction
compensation. Without loss of generality, we assume that the
desired position is the origin, hence

u = Nx̂ + f̂ . (8)

Consider an observer of the form
.

x̂ = Ax̂ − Bf̂ + Bu + L(y − ŷ) (9)

where L = [ l1 l2 ]T is the observer gain. Substitution of
(8) into (9) results a linear observer

·
x̂ = (A − LC + BN)x̂ + LCx. (10)

This is an advantage of using feedback to compensate friction.
Rearranging the system (1) and (2) with the control law (8) and
the observer (10) yields the closed loop system[

ẋ
·
x̂

]
=

[
A BN

LC A − LC + BN

] [
x
x̂

]
+

[
B
0

]
(f̂ −f).

(11)
Since the pair (A, B) is controllable and the pair (C, A) is ob-
servable, we can assign separately poles for the controller and
poles for the observer in order to make the linear part of the
closed loop system exponentially stable [15]. The controller
poles and the observer poles are given by eigenvalues of the
matrices A + BN and A−LC respectively. We only consider
controller gains and observer gains with stable poles.

4 Equilibrium Set

Since we consider a regulation task, it is important to realize
that the desired position belongs to the equilibrium set of the
controlled system. The equilibrium set of the controlled sys-

tem (11) is obtained by setting ẋ = 0 and
·
x̂ = 0. Thus, the

equilibrium set is given by

ξ̄ =
{

(x̄, x̂)|x̄1 = Jl2+Dl1−n2l1−n1
n1l1

x̂2, x̂1 = Jl2+Dl1−n2l1
n1l1

x̂2,

x̄2 = 0,−Fs ≤ (Jl2
l1

+ D)x̂2 + f̂(x̂2) ≤ Fs

}
.

(12)
It is trivial that the origin, the desired state, belongs to equilib-
rium set (12). Since the size of the equilibrium set (12) depends
on solutions of the inequality constraint of x̂2, it can be manip-
ulated by tuning the observer gains l1 and l2. It is important to
realize that the size of this equilibrium set gives the boundary
of the possible steady state errors.

5 Limit Cycling Behavior

In this section, we investigate limit cycling behavior of the con-
trolled system (11). Firstly, we present some experimental re-
sults of the controlled setup for some sets of controller gains
N and observer gains L. Secondly, simulations results are pre-
sented in order to see the ability of the model to mimic the
dynamics of the experimental setup. At the end of this sec-
tion, limit cycles of the model are analyzed using the shooting
method and the results are compared with experimental obser-
vations.

5.1 Experimental Results

The response of the controlled setup with the con-
troller gain N = [ −0.26 −0.06 ], the observer gain
L = [ 2.3077 1.4793 ]T , and initial conditions x(0) =
[ 3.1 0 ]T , and x̂(0) = [ 3 0 ]T is shown in Figure 2. For
these gains the controller poles and the observer poles are lo-
cated at −2.519 ± 1.911i and −2.519 ± 1.198i, respectively.
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Figure 2: Response of the setup for smaller gains



Controller poles Observer poles Limit cycle
Amplitude Period

−2.519 ± 1.911i −2.519 ± 1.198i 0.2025rad 2.3345s
−2.519 ± 1.911i −6.519 ± 1.260i 0.1801rad 1.1247s
−7.00 ± 3.00i −6.519 ± 1.260i 0.0380rad 0.7839s
−7.00 ± 3.00i −12.00 ± 4.00i 0.0347rad 0.7809s

Table 2: Limit cycling of the controlled setup

Figure 2 shows that the controlled setup exhibits limit cycling
around the desired position. Limit cycling of the controlled
setup for some sets of gains are summarized in Table 2. Since
the poles give a qualitative feature of the gains, we represent the
gains by the corresponding poles. Notice that larger gains cor-
respond to faster poles. Table 2 shows that both the amplitude
and the period of the limit cycle decrease as the controller gain
and the observer gain increase, i.e. the poles become faster.
If we enlarge the gains to N = [ −3.016 −0.449 ] and
L = [ 21.2677 101.8901 ]T such that the controller poles
and the observer poles are located at −10 ± 4i and −12 ± 4i
respectively, the controlled setup does not exhibit limit cycling
anymore. The response of the controller setup for this set of
gains is depicted in Figure 3; a steady state error appears which
in this case equals 2.3×10−4 rad. If we repeat the experiment
with different initial conditions, we may end up at a different
steady state error.
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Figure 3: Response of the setup for larger gains

5.2 Simulation results and model validation

In order to validate the model derived in section 3, some simu-
lations are carried out in MatlabTM using the integration rou-
tine ode45 with the integration tolerance Tol = 10−9 and η =
10−5rad/s . Comparison between the responses of the model
and the experimental setup with N = [ −0.26 −0.06 ],
L = [ 2.3077 1.4793 ]T , x(0) = [ 3.1 0 ]T , and x̂(0) =
[ 3 0 ]T are depicted in Figures 4(a) and 4(b). These figures
show that limit cycle of the model matches well with the limit
cycle of the experimental setup. Simulation results also con-
firm the disappearance of the limit cycle, which is observed

in the experimental setup, if we enlarge the gains to N =
[ −3.016 −0.449 ] and L = [ 21.2677 101.8901 ]T . The
steady state error of a simulation result is 1.57 × 10−6 rad,
where the one obtained in the experimental setup is 2.3×10−4

rad. According to the equilibrium set (12), the steady state er-
ror is bounded by |ex1 | ≤ 2.6 × 10−6 rad. A larger steady
state error of the experimental result is due to the resolution of
the position measurements of 3.84 × 10−6 rad and the exact
nature of the friction that is not captured by the friction model
(3).
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Figure 4: Limit cycles of the controlled setup and the model

5.3 Numerical analysis of limit cycles

A limit cycle of the controlled system (11), if it exists, can
be computed by solving a two-point boundary-value problem
given by the periodic nature of the limit cycle. Let φt(ξ0)



denotes the solution of the controlled system (11) at time t ini-
tialized at t = 0 in ξ0, where ξ = [ x x̂ ]T . Since a limit
cycle γ is a periodic solution of the (11), then

φT (ξγ) − ξγ = 0 (13)

holds, where T is the period time of the limit cycle and ξγ ∈ γ
is point on the limit cycle. Equation (13) defines a two-point
boundary-value problem with unknowns T and ξγ related to
a limit cycle of the controlled system (11). A popular algo-
rithm to solve this two-point boundary-value problem, which
can handle the discontinuous friction model (3), is the shooting
method. The shooting method is an iterative scheme, which
is similar to the Newton-Raphson algorithm, for details see
[10, 14]. The stability of a limit cycle is determined by its Flo-
quet multipliers, which are eigenvalues of the monodromy ma-
trix [8]. The monodromy matrix is the transition matrix of the
linearization around a periodic solution after one period time.
Since the controlled system (11) is discontinuous, the associ-
ated monodromy matrix is obtained from a sensitivity analysis
as proposed in [10]. This monodromy matrix is used in the
shooting method to find a limit cycle and to determine its sta-
bility. Results of the shooting method are summarized in Table
3. The numerical results in Table 3 are comparable to the exper-
imental results in Table 2. These results of the shooting method
confirm stability of all limit cycles, which are obtained in the
experimental setup.

6 Bifurcation of Limit Cycles

Both experimental results and numerical results show that the
amplitude and the period time of the limit cycle decrease if
we make the controller poles and the observer poles faster,
and eventually the limit cycle disappears at some faster poles.
It is of interest to study bifurcations of limit cycles to ver-
ify these results. For this purpose, the controller gain N and
the observer gain L are parameterized by a single parameter
r such that the poles of the controller and the observer are
given by sc = − r

2 ± r
√

3
2 i and so = −αr

2 ± αr
√

3
2 i, respec-

tively. Since |sc| = r and |so| = αr, the parameter r is
essentially the distance of the controller poles from the ori-
gin and α is a scaling factor for the distance of the observer
poles. Using this parametrization the controller gain is given
by N =

[ −Jr2 D − Jr
]
, and the observer gain is given

by L =
[

αr − D/J (αr − D/J)D/J + α2r2
]T

. In this
case, we choose α = 1.2 in order to make the observer poles
faster than the controller poles. Possible bifurcations of the
limit cycle will be investigated with respect to variation of the
design parameter r. We use the pseudo-arclength continuation
method [14, 17] in combination with the shooting method to
trace the branches of limit cycles. A bifurcation point of limit
cycles is obtained when one Floquet multiplier (or a pair of
them) passes through the unit circle and one or more branches
of limit cycles may appear or disappear around the bifurcation
point [11, 17, 8].

The computed bifurcation diagram of limit cycles of the con-
trolled system for 2.5 � r � 19 is depicted in Figure 5. The
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Figure 5: Bifurcation diagram of the controlled system

vertical axis in Figure 5 is the peak value of the limit cycle.
The bifurcation diagram show six branches of limit cycles: A
is a branch of stable symmetric limit cycles with two stick-
ing events,i.e. the rotating arm sticks twice in one cycle, B
and F are branches of unstable symmetric limit cycles with-
out sticking event, C and D are branches of stable asymmetric
limit cycles with one sticking event, and E is a branch of stable
symmetric limit cycles without sticking event. The bifurcation
diagram also show two equilibrium sets: SE is a stable equilib-
rium set and UE is an unstable equilibrium set. There should
be another equilibrium set, which is the mirror of UE, due to
the symmetrical friction model, see the equilibrium set (12).

In the bifurcation diagram, we observe three bifurcations of
limit cycles. At the bifurcation point I, the symmetric branch
A becomes unstable, which creates the unstable branch B, and
two branches of asymmetric limit cycles, C and D that are mir-
ror of each other, are created. At this bifurcation point the sym-
metric branch not only looses its stability but it also looses
the sticking mode. This bifurcation could be called a ”dis-
continuous symmetry-breaking” bifurcation [11]. The sym-
metric branch E looses its stability at the bifurcation point II
and two branches of asymmetric limit cycles, C and D, ap-
pear. A this bifurcation point the symmetric branch does not
gain or loose any sticking mode, this bifurcation is called a
”symmetry-breaking” bifurcation. At the bifurcation point III,
the stable branch E collides with the unstable branch F and then
they disappear after the bifurcation point. This type of bifurca-
tion is called a fold bifurcation. Thus, the bifurcation diagram
confirms the disappearance of limit cycles at some faster poles
of the controller and the observer. Notice that the larger r the
faster the poles are.

7 Conclusions and Future Research

The limit cycling phenomena in observer-based controlled
systems with friction, which are experimentally observed in a



Controller poles Observer poles Limit cycle
Amplitude Period Stability

−2.519 ± 1.911i −2.519 ± 1.198i 0.2082rad 2.2292s stable
−2.519 ± 1.911i −6.519 ± 1.260i 0.1524rad 1.8541s stable
−7.00 ± 3.00i −6.519 ± 1.260i 0.0527rad 0.8915s stable
−7.00 ± 3.00i −12.00 ± 4.00i 0.0484rad 0.8363s stable

Table 3: Analysis of limit cycles using the shooting method

rotating arm system, have been analyzed using the shooting
method and computational bifurcation analysis. The numerical
results match well with the experimental observations. The
limit cycling appears to exhibit ”discontinuous symmetry-
breaking”, ”symmetry-breaking”, and fold bifurcations. The
bifurcation analysis confirms that the limit cycling can be
suppressed and eventually eliminated by making controller
poles and observer poles faster, i.e. enlarging the controller
gains and the observer gains. Further work is needed to derive
a design procedure for controller gains and observer gains,
which guarantees that the closed loop system does not exhibit
limit cycling. The current result suggests that the design
procedure can be based on an accurate prediction of a fold
bifurcation point.
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