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Abstract

A Matlab toolbox implemented for the computation of the sta-
bility margin of uncertain systems affected by structured per-
turbations is presented. The linear time-invariant systems that
can be considered depend on continuously and nonlinearly by
uncertain parameters. The proposed algorithm computes the
stability margin as the maximal l∞ domain in the parameter
space compatible with stability. At the core of this algorithm
there is an interval procedure to check positivity on an annular
domain centered on the nominal parameter vector. An example
of the use of the toolbox is included.

1 Introduction

The dissemination and the adoption of complex procedures for
the analysis and design of control systems is greatly facilitated
by their implementation in suitable software routines, which
renders them transparent to the user. In this way, a deep under-
standing of these methodologies is not required in order to use
them and therefore, provided that their scope is clear, they can
be adopted as powerful tools by a large number of academi-
cians and industrial practitioners.
Based on these considerations, in this paper we present a tool-
box, which runs in the Matlab environment, for the determi-
nation of the stability margin of a linear system affected by
parametric uncertainties.
Consider linear time-invariant systems whose stability is inves-
tigated by examining its characteristic polynomial Q(s; p):

Q(s; p) = sn+a1(p)s
n−1+a2(p)s

n−2+. . .+an−1(p)s+an(p).

Here p := [p1, p2, . . . , pq]
T ∈ R

q is the uncertain parameter
vector and ai(p), i = 1, 2, . . . , n are known nonlinear continu-
ous coefficients depending on the uncertain parameters. Given
the nominal parameter vector po and a weighted l∞ norm in
the parameter space (||p||w∞ = maxi=1,...,q{|pi|/wi}, wi > 0),
define the l∞ domain B(ρ), centered on po, as

B(ρ) := {p ∈ R
q : ||p− po||w∞ ≤ ρ}.

Then the stability margin ρ∗ of the uncertain system is defined
as ρ∗ := supM with M := {ρ ∈ R : Q(s; p) is stable ∀p ∈
B(ρ)} .
In practical terms, the knowledge of ρ∗ gives the meaningful in-
formation on how far the uncertain parameters can deviate from

the nominal ones without suffering a loss of system stability.
Since the importance of this kind of robust stability analysis,
which can be also useful in the control system design context,
the problem of ρ∗ computation has been addressed by many re-
searchers (see e.g. [1, 2, 3, 4]). However, in order to allow any
nonlinear dependence on the uncertain parameters, which can
include polynomial as well as transcendental ones, these algo-
rithms are not sufficient. On the contrary, the use of interval
arithmetic has been proved to be useful in this context [5].
In this paper we implement an interval arithmetic based algo-
rithm which computes arbitrarily good lower and upper bounds
of ρ∗ and whose global convergence is assured under mild tech-
nical restrictions. At the core of this algorithm there is an ad
hoc interval procedure to check the positivity of an(p) and/or
Hn−1(p) (the Hurwitz determinant of order n − 1) on an l∞
annular domain centered on the nominal parameter vector po.

2 Theory

Denote with D any compact and convex set of R
q containing

po. A fundamental result which is instrumental to our develop-
ment is the following.

Theorem 1 (Frazer and Duncan, 1929) Q(s; p) is (Hurwitz)
stable for all p ∈ D if and only if:

a) Q(s; po) is (Hurwitz) stable;

b) an(p) > 0 ∀p ∈ D;

c) Hn−1(p) > 0 ∀p ∈ D.

This theorem was first presented, in slightly different terms, by
Frazer and Duncan [7] who derived it by means of a resultant-
based variable elimination starting from boundary crossing
conditions (see [8]).
This can be directly accomplished through the formula of Or-
lando [9, 10]. Indeed, having denoted with zi(p), i = 1, . . . , n
the roots of Q(s; p), we have that an(p) = (−1)n

∏n

i=1
zi(p)

and Hn−1(p) = (−1)
n(n−1)

2

∏1,...,n

i<k (zi(p) + zk(p)), the latter
being Orlando’s formula. Hence, the necessity part of The-
orem 1 stems from stability definition, i.e. Re[zi(p)] < 0,
i = 1, . . . , n. On the other hand, the sufficiency can be proved
by a continuity argument. The role of Orlando’s formula in
robustness has been shown by many researchers, Vicino et al.
[4], Ackermann [8], etc.
Stability of the nominal system – Q(s; po) is stable – is as-
sumed throughout. As a consequence M is not empty and
it can be rewritten, by virtue of Theorem 1, as M = {ρ :
an(p) > 0 , Hn−1(p) > 0 for all p ∈ B(ρ)}. This suggests



to compute the stability margin by solving the following opti-
mization problem:

ρ∗ = sup ρ (1)

subject to
an(p) > 0 ∀p ∈ B(ρ) (2)

Hn−1(p) > 0 ∀p ∈ B(ρ) (3)

This nonstandard semi-infinite optimization problem will be
solved exactly by the positivity-based algorithm presented in
the next section.
Define Ma := {ρ ∈ R : an(p) > 0 ∀p ∈ B(ρ)} and
Mh := {ρ ∈ R : Hn−1(p) > 0 ∀p ∈ B(ρ)}. Taking into
account the continuity property of an(p) and Hn−1(p) it fol-
lows thatMa = [0, ρ∗a) andMh = [0, ρ∗h) with ρ∗a = supMa

and ρ∗h = supMh.

Property 1 (Vicino, Tesi and Milanese, 1990)

ρ∗ = min{ρ∗a, ρ
∗
h}. (4)

Relation (4) was first presented in [4] using a signomial formu-
lation. The formal proof of this somewhat intuitive relation is
omitted for brevity [11].

Property 2 The following two statements hold:

1. If for a given real ρal it is verified that an(p) > 0 ∀p ∈
B(ρal) then ρal < ρ∗a, i.e. ρal is a strictly lower bound of
ρ∗a.

2. Let be given a point pc ∈ R
q such that an(pc) ≤ 0. Then,

having defined ρau := ||pc − po||w∞, it follows that ρau ≥
ρ∗a, i.e. ρau is an upper bound of ρ∗a.

Proof: Omitted for brevity [11].
Remark 1: A property, which is perfectly analogous to Property
2, holds in relation to set Mh. Indeed Property 2 still holds if
we substitute respectively an(p), ρal and ρ∗a with Hn−1(p), ρhl

and ρ∗h.

Property 3 Let be given real values ρal, ρhl, ρau and ρhu sat-
isfying

ρal < ρ∗a , ρhl < ρ∗h (5)

and
ρau ≥ ρ∗a , ρhu ≥ ρ∗h (6)

Then it follows that

min{ρal, ρhl} < ρ∗ and ρ∗ ≤ min{ρau, ρhu} (7)

Proof: Omitted for brevity [11].
The above Property 3 specifies how to construct lower and
upper bounds of ρ∗ from the knowledge of lower and upper
bounds of ρ∗a and ρ∗h. This result together with Property 2 con-
stitutes the theoretic basis of the positivity-based algorithm fol-
lowing in the next section.

3 The positivity-based algorithm

Nomenclature and Definitions 1
ρl: strictly lower bound of ρ∗: ρl < ρ∗

ρu: upper bound of ρ∗: ρu ≥ ρ∗

ρ∗a := sup{ρ ∈ R : an(p) > 0 ∀p ∈ B(ρ)}

ρal: strictly lower bound of ρ∗a: ρal < ρ∗a
ρau: upper bound of ρ∗a: ρau ≥ ρ∗a
ρ∗h := sup{ρ ∈ R : Hn−1(p) > 0 ∀p ∈ B(ρ)}
ρhl: strictly lower bound of ρ∗h: ρhl < ρ∗h
ρhu: upper bound of ρ∗h: ρhu ≥ ρ∗h
A(ρ1, ρ2) := {p ∈ R

q : ||p−po||w∞ ≥ ρ1 and ||p−po||w∞ ≤ ρ2}
with ρ2 > ρ1 ≥ 0 (l∞ annular domain centered on po)
ε: given required precision to compute ρ∗ (ε > 0)
εp: numerical threshold to be used with the IPTEST procedure
(εp > 0)
εz: numerical threshold to be used with the ZSEARCH proce-
dure (εz > 0)
f(p): real continuous function defined over the uncertain pa-
rameter space for which f(po) > 0 (it can be an(p) or
Hn−1(p)) ρ∗f := sup{ρ ∈ R : f(p) > 0 ∀p ∈ B(ρ)}
ρfl: strictly lower bound of ρ∗f : ρfl < ρ∗f
ρfu: upper bound of ρ∗f : ρfu ≥ ρ∗f
f∗(D): global minimum of function f(p) over any compact
domain D ⊆ R

q

Pa := {p ∈ R
q : an(p) > 0}, positive region of the parameter

space relative to an(p)
Ph := {p ∈ R

q : Hn−1(p) > 0}, positive region of the param-
eter space relative to Hn−1(p)
Pf := {p ∈ R

q : f(p) > 0}, positive region of the parameter
space relative to f(p)
∂P := boundary of (any) set P ⊆ R

q

S(p; r) := {p′ ∈ Rq : ||p′ − p|| ≤ r} (r > 0), sphere of radius
r and center p (|| · || denote any norm in R

q).
The positivity-based stability margin computation algorithm
herein presented, denoted shortly as algorithm PBSMC, is
composed of three parts, denoted as Phase I, Phase II and
Phase III. The input-output description of the overall algorithm
is the following.

Input of algorithm PBSMC: an(p), Hn−1(p), thresholds εp, εz
and precision ε.

Output of algorithm PBSMC: ρl and ρu satisfying ρu− ρl ≤ ε.

The variables εp, εz and ε has to be considered as global vari-
ables so that they are available to any phase or algorithm frag-
ment.
The aim of the following Phase I is to determine a positive
lower bound of ρ∗, i.e. ρl > 0.

Phase I

1. ρal := 0, ρau := +∞.

2. ρhl := 0, ρhu := +∞.

3. ρa := 1, ρh := 1.

4. Apply procedure LBIMPROVEMENT with arguments
an(p), ρal, ρa to obtain ρal > 0 and possibly a finite ρau.

5. Apply procedure LBIMPROVEMENT with arguments
Hn−1(p), ρhl, ρh to obtain ρhl > 0 and possibly a finite
ρhu.

6. ρl := min{ρal, ρhl}, ρu := min{ρau, ρhu}.

7. End.



The role of procedure LBIMPROVEMENT, applied twice at
steps 4 and 5, is the improvement of the current lower bounds
of ρ∗a and ρ∗h. It follows a formal description of this procedure.

Input of LBIMPROVEMENT: f(p), ρ1 and ρ2 such that ρ1 <
ρ∗f and ρ2 > ρ1 ≥ 0.

Output of LBIMPROVEMENT: ρfl such that ρ1 < ρfl < ρ∗f ,
and if possible a ρfu such that ρfu ≥ ρ∗f .

Procedure LBIMPROVEMENT

1. flagub := ”false”.

2. Apply procedure IPTEST to f(p) over A(ρ1, ρ2) and ob-
tain ξf .

3. In case ξf = −1 then ρ2 := (ρ1 + ρ2)/2, flagub := “true”
and go to 2.

4. In case ξf = 0 then εp := εp/2, ρ2 := (ρ1 + ρ2)/2 and
go to 2.

5. In case ξf = +1 then ρfl := ρ2.

6. If flagub = “true” then apply procedure ZSEARCH to ob-
tain ρfu.

7. End.

Procedure LBIMPROVEMENT uses, at step 2, the IPTEST
procedure to check the positivity of f(p) over the annular do-
main A(ρ1, ρ2). This positivity test, for which a suitable in-
terval application is proposed in Section 4, has to satisfy this
input-output definition.

Input of IPTEST: f(p) and A(ρ1, ρ2).

Output of IPTEST: an integer ξf ∈ {−1, 0,+1} satisfying
these statements:

a) if ξf = +1 then it has been proved that f(p) > 0 ∀p ∈
A(ρ1, ρ2) (11a);

b) if ξf = −1 then it has been found a point pc ∈ A(ρ1, ρ2)
such that f(pc) ≤ 0 (11b);

c) if ξf = 0 then it has been proved that |f∗(A(ρ1, ρ2))| <
εp. In case ξf = −1 the procedure output includes the
point pc ∈ A(ρ1, ρ2) and fc := f(pc) (11c).

At step 6 of procedure LBIMPROVEMENT if the logical vari-
able flagub is set to “true” we could define directly ρfu as
||pc − po||w∞ since ||pc − po||w∞ ≥ ρ∗f . In order to obtain a
better upper bound of ρ∗f , and in such a way to speed up the
convergence of the overall algorithm, it is applied the proce-
dure ZSEARCH which performs a zero search on the segment
line connecting po with pc: p(α) := (1−α)po+αpc, α ∈ [0, 1].
Indeed considering that f(po) > 0 and f(pc) ≤ 0 and taking
into account the continuity of f(p) it is possible to determine,
given a small positive threshold εz , a point of the segment p(α′)
for which f(p(α′)) ≤ 0 and f(p(α′)) + εz > 0. Therefore, in
general, ρfu := ||p(α′) − po||w∞ ≤ ||pc − po||w∞. This can
be accomplished by means of a simple bisection method. The
input-output definition of procedure ZSEARCH is the follow-
ing.

Input of ZSEARCH: f(p), pc, fc with fc = f(pc) ≤ 0.

Output of ZSEARCH: a ρfu such that ρfu ≤ ||pc − po||w∞ and
for which there exists p′ 3 ρfu = ||p′ − po||w∞, f(p′) ≤ 0 and
f(p′) + εz > 0.

The aim of the following Phase II is to determine a finite upper
bound of ρ∗.

Phase II

1. If ρu < +∞ then terminate Phase II.

2. ρ := max{ρal, ρhl}.

3. ρ := 2ρ.

4. Apply procedure IPTEST to an(p) overA(ρal, ρ) and ob-
tain ξa.

5. In case ξa = −1 apply procedure ZSEARCH to determine
ρau and terminate Phase II.

6. In case ξa = 0 set εp := εp/2 and apply procedure
IPTEST to Hn−1(p) over A(ρhl, ρ) and obtain ξh.

6.1. In case ξh = −1 apply procedure ZSEARCH to de-
termine ρhu and terminate Phase II.

6.2. In case ξh = 0 set εp := εp/2 and go to 3.

6.3. In case ξh = +1 set ρhl := ρ and go to 3.

7. In case ξa = +1 set ρal := ρ and apply procedure
IPTEST to Hn−1(p) over A(ρhl, ρ) and obtain ξh.

7.1. In case ξh = −1 apply procedure ZSEARCH to de-
termine ρhu and set ρl := ρhl, ρu := ρhu; then
apply procedure FINALP, with arguments Hn−1(p),
ρl, ρu, and terminate the algorithm (Phase III has not
to be activated).

7.2. In case ξh = 0 set εp := εp/2 and go to 3.

7.3. In case ξh = +1 set ρhl := ρ and go to 3.

8. End.

Remark 2: If Phase I has also determined a finite ρau or ρhu

then Phase II is not necessary (see step 1 of Phase II).

At step 7 of Phase II if ξh = −1 this proves that the critical
constraint of problem (1) is that relative to Hn−1(p). Hence
ρ∗ = ρ∗h and it is not necessary to proceed with Phase III.
Indeed it suffices to activate the procedure FINALP to improve
ρl and ρu until the required precision is reached.

Input of FINALP: f(p), ρfl and ρfu.

Output of FINALP: new values of ρfl and ρfu satisfying
(ρfu − ρfl) ≤ ε.

Procedure FINALP

1. If (ρfu − ρfl) ≤ ε then terminate.

2. ρ := (ρfl + ρfu)/2.



3. Apply procedure IPTEST to f(p) over A(ρfl, ρ) and ob-
tain ξf .

4. In case ξf = −1 apply procedure ZSEARCH to determine
ρfu and go to 1.

5. In case ξf = 0 set εp := εp/2 and ρ := (ρfl +ρ)/2; apply
procedure LBIMPROVEMENT with arguments f(p), ρfl

and ρ to improve ρfl and possibly ρfu. Go to 1.

6. In case ξf = +1 set ρfl := ρ and go to 1.

7. End.

It follows the description of the last Phase III which computes
ρl and ρu with required precision.

Phase III

1. ρu := min{ρau, ρhu}.

2. ρl := min{ρal, ρhl}.

3. If (ρu − ρl) ≤ ε then terminate.

4. ρ := (ρl + ρu)/2.

5. If (ρal ≥ ρhl) then go to 11.

6. If (ρau ≤ ρhl) then apply procedure FINALP with argu-
ments an(p), ρl, ρu and terminate.

7. Apply procedure IPTEST to an(p) overA(ρal, ρ) and ob-
tain ξa.

8. In case ξa = −1 apply procedure ZSEARCH to update
ρau and set ρu := ρau.

8.1. If (ρau ≤ ρhl) then apply procedure FINALP with
arguments an(p), ρl, ρu and terminate, else go to 3.

9. In case ξa = 0 set εp := εp/2 and ρ := (ρl + ρ)/2; ap-
ply also procedure LBIMPROVEMENT with arguments
an(p), ρal, ρ to improve ρal and possibly ρau.

9.1. If the application of LBIMPROVEMENT has also
improved ρau then ρu := ρau. Go to 2.

10. In case ξa = +1 set ρal := ρ and go to 2.

11. If (ρhu ≤ ρal) then apply procedure FINALP with argu-
ments Hn−1(p), ρl, ρu and terminate.

12. Apply procedure IPTEST to Hn−1(p) over A(ρhl, ρ) and
obtain ξh.

13. In case ξh = −1 apply procedure ZSEARCH to update
ρhu and set ρu := ρhu.

13.1. If (ρhu ≤ ρal) then apply procedure FINALP with
arguments Hn−1(p), ρl, ρu and terminate, else go to
3.

14. In case ξh = 0 set εp := εp/2 and ρ := (ρl + ρ)/2; ap-
ply also procedure LBIMPROVEMENT with arguments
Hn−1(p), ρhl, ρ to improve ρhl and possibly ρhu.

14.1. If the application of LBIMPROVEMENT has also
improved ρhu then ρu := ρhu. Go to 2.

15. In case ξh = +1 set ρhl := ρ and go to 2.

16. End.

The technical assumptions adopted for functions an(p) and
Hn−1(p) which are not restrictive from a control engineering
viewpoint, are introduced with the following definition.

Definition 1 The positive region Pf is said to be not degener-
ate if one of the following conditions holds:

i) ∂Pf is empty.
ii) For every p ∈ ∂Pf and for every sphere S(p; r) there

exists a point p̃ ∈ S(p; r) such that f(p̃) < 0.

If none of the above conditions is satisfied then Pf is said to be
degenerate.

Remark 3: Note that ∂Pf is empty if and only if Pf = R
q . The

assumed continuity of function f(p) implies also that for every
p ∈ ∂Pf then f(p) = 0.

Lemma 1 Procedure LBIMPROVEMENT converges with cer-
tainty, satisfying the exposed input-output definition, for any
positive values of εp and εz .

Lemma 2 Assume that Pf is not degenerate. Then procedure
FINALP converges with certainty, satisfying the exposed input-
output definition, for any positive values of εp and εz .

Theorem 2 Assume that Pa and Ph are not degenerate and
ρ∗ < +∞. Then algorithm PBSMC converges with certainty,
satisfying the exposed input-output definition, for every positive
values of εp and εz .

Proofs of the above lemmas and Theorem 2 are reported in [11].

4 The interval positivity procedure IPTEST

Nomenclature and Definitions 2

• “box” of R
q a finite multidimensional interval which can

be defined as [p−1 , p
+

1 ] × [p−2 , p
+

2 ] × . . . × [p−q , p
+
q ] ⊆ R

q

with −∞ < p−i ≤ p+

i < +∞, i = 1, 2, . . . , q.

• mid(B) := ((p−1 + p+

1 )/2, (p−2 + p+

2 )/2, . . . , (p−q +
p+

q )/2) ∈ R
q , “midpoint” of box B.

• lb(f,B) lower bound of the global minimum f ∗(B) com-
puted as lower endpoint of an “inclusion function” (asso-
ciated to f(p)) evaluated at B (see [14]).

The input-output definition of procedure IPTEST satisfying
statements (11) poses the problem of devising a suitable algo-
rithmic method which has to deal with the special l∞ annular
domain A(ρ1, ρ2).
A possible, but difficult, choice is that of adapting the meth-
ods of deterministic global optimization, for example those de-
scribed by Horst and Tuy [12], for solving with guaranteed pre-
cision a nonconvex minimization problem over an l∞ annular



domain.
In this paper we propose, as a more viable choice, to adapt —
for the special annular domain to be used — the interval posi-
tivity test over a box of R

q presented in [13] (a suitable intro-
duction to interval analysis techniques can be found in Moore’s
book [6]). Indeed it is always possible to decomposeA(ρ1, ρ2)
in 2q boxes of Rq . Consider for example the bidimensional
case q = 2. Then A(ρ1, ρ2) = B1 ∪ B2 ∪ B3 ∪ B4 with

B1 = [po
1 − w1ρ2, p

o
1 − w1ρ1]× [po

2 − w2ρ1, p
o
2 + w2ρ1],

B2 = [po
1 + w1ρ1, p

o
1 + w1ρ2]× [po

2 − w2ρ1, p
o
2 + w2ρ1],

B3 = [po
1 − w1ρ2, p

o
1 + w1ρ2]× [po

2 − w2ρ2, p
o
2 − w2ρ1],

B4 = [po
1 − w1ρ2, p

o
1 + w1ρ2]× [po

2 + w2ρ1, p
o
2 + w2ρ2].

(8)
Formulas (8) can be easily generalized for the q-dimensional
case.
The interval positivity test to be used with algorithm PBSMC
is the following.

Procedure IPTEST

1. u := +∞.

2. Decompose A(ρ1, ρ2) into 2q boxes B1,B2, . . . ,B2q .

3. For i = 1, 2, . . . , 2q.

3.1. If f(mid(Bi)) ≤ 0 then pc := mid(Bi), fc := f(pc),
ξf := −1 and terminate.

3.2. If lb(f,Bi) ≤ 0 then put pair (Bi, lb(f,Bi)) into
List in such a way to preserve the nondecreas-
ing ordering of the lower bounds and set u :=
min{u, f(mid(Bi))}.

3.3. End of i-loop.

4. If List is empty set ξf := +1 and terminate.

5. l := the second member of the first element of List.

6. If (u − εp) < 0 and (l + εp) > 0 then ξf := 0 and
terminate.

7. Bisect, thus getting boxes D1 and D2, the box of the first
element of List on its maximal dimension.

8. If f(mid(D1)) ≤ 0 then pc := mid(D1), fc := f(pc),
ξf := −1 and terminate.

9. Repeat for the boxD2 the same action performed (for box
D1) at step 8.

10. Discard the first element from List.

11. If lb(f,D1) ≤ 0 then put pair (D1, lb(f,D1)) into List in
such a way to preserve the nondecreasing ordering of the
lower bounds and set u := min{u, f(mid(D1))}.

12. Repeat for the boxD2 the same action performed (for box
D1) at step 11.

13. Go to 4.

14. End.

Remark 4: In Procedure IPTEST at any stage of iterations List
= {(C1, l1), (C2, l2), . . . , (Ch, lh)} with boxes Ci ⊆ A(ρ1, ρ2),
i = 1, 2, . . . , h and l1 ≤ l2 ≤ . . . ≤ lh ≤ 0 (l := l1).

Remark 5: Note that in case ρ1 = 0 it is not necessary to de-
compose A(ρ1, ρ2). Indeed A(0, ρ2) = B(ρ2) which is a box
of R

q . This permit to simplify, for the specific case, the instruc-
tions at step 3. Observe also that during Phase I the procedure
IPTEST is always called with ρ1 = 0.

Proof of convergence of procedure IPTEST according to state-
ments (11) is omitted (see [13] and [15]).

5 The Matlab Toolbox

The proposed algorithm has been implemented in Matlab1 and
it relies on the excellent b4m toolbox for Matlab made by
Zemke [17], in addition to the standard Symbolic toolbox of
Matlab. The choice to use Matlab has been done in order to
address the overall problem in an integrated environment, and
therefore to give the chance to solve the stability margin prob-
lem in a broader control system design context, despite the re-
sulting computational time is much higher than that required
by using C/C++ language or any other compiled languages in
which the code can be optimized.
The toolbox is based on the following main function:

function [ro l,ro u]=
stabilitymargin(Q,p 0,omega,epsilon,Baumann)

where ro l and ro u are the resulting strictly lower bound
ρl and upper bound ρu of ρ∗ respectively, Q is the symbolic
expression of the characteristic polynomial, p 0 is the array of
the nominal values of the parameters, omega is the array of the
weights associated with the parameters, epsilon is the value
of the precision parameter ε and Baumann is a flag which al-
lows to use the Baumann meanvalue form if it is fixed equal
to one (otherwise the standard inclusion function is adopted).
Note that the characteristic monic polynomial has to be ex-
pressed in symbolic form as an array whose elements are the
coefficients of the polynomial in descending order and in which
the uncertain parameters are denoted as p1, p2, etc. (see Sec-
tion 6). The first coefficient, which has to be equal to one, must
be omitted. Finally, note that, to keep the use of the toolbox as
simple as possible, it has been fixed εp = 10−3 and εz = 10−3

and the values of these parameters cannot be changed by the
user.

6 An illustrative example

In this section we describe the application of the function
stabilitymargin to a robust stability example taken from
the literature ([3]). Consider the following characteristic poly-
nomial

Q(s; p) = s4 + p3
1p2s

3 + p2
1p

2
2p3s

2 + p1p
3
2p

2
3s + p3

3 (9)
1The toolbox is available upon request to the authors



where p1, p2, and p3 are the uncertain parameters. The nominal
system takes the values po

1 = 1.4, po
2 = 1.5, and po

3 = 0.8;
Q(s; po) is stable. To perform the robust stability analysis we
chose w1 = 0.25, w2 = 0.20, and w3 = 0.20 as the l∞ norm
weights. From (9) it can be derived (note that this computation
is not required by the user):

a4(p) = p3
3

H3(p) = det





a1(p) a3(p) 0
1 a2(p) a4(p)
0 a1(p) a3(p)



 =

p6
1p

6
2p

3
3 − p6

1p
2
2p

3
3 − p2

1p
6
2p

4
3.

The function stabilitymargin has been adopted by
previously running the following commands:
syms p1 p2 p3
Q=[p1ˆ3*p2 p1ˆ2*p2ˆ2*p3 p1*p2ˆ3* p3ˆ2
p3ˆ3]
p 0=[1.4 1.5 0.8]; omega=[0.25 0.20 0.20]
epsilon=0.01
Baumann=0
The result ro l=1.086 and ro u=1.093 has been obtained
in 73.5 s. Instead, by applying the same function with
Baumann=1, the result ro l=1.089 and ro u=1.097 is
achieved in 76.1 s.

7 Conclusions

In this paper a Matlab toolbox, in which an algorithm for com-
puting without conservativeness the stability margin ρ∗ of lin-
ear time-invariant systems depending on uncertain parameters
is implemented, has been presented. The algorithm uses the
positivity of functions an(p) and Hn−1(p) over annular do-
mains centered on po to develop a branch and bound strategy
which permits efficiently to discard from computations, as soon
as possible, one of the two functions. The task of testing posi-
tivity over the annular domains of the parameter space is com-
mitted to an interval procedure. In such a way it is possible to
perform a robust stability analysis for systems whose character-
istic polynomials depend on uncertain parameters through gen-
eral nonlinear functions. In practice, the coefficients ai(p) can
be any continuous functions. The presented computational re-
sult show that the function stabilitymargin implemented
is very effective with small problems, despite the computa-
tional complexity of the stability margin computation does not
permit to claim the same effectiveness when analyzing moder-
ate or large robust stability problems. Thus, it can be a useful
tool in a general computer-aided control system design task.
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