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Abstract  
 
In this paper, we present a method to decompose the problem 
of computing the backward reachable set for a dynamic 
system in a space of a given dimension, into a set of 
computational problems involving level set functions, each 
defined in a lower dimensional (subsystem) space. This 
allows the potential for great reduction in computation time. 
The overall system is considered as an interconnection of 
either disjoint or overlapping subsystems. The projection of 
the backward reachable set into the subsystem spaces is over-
approximated by a level set of the corresponding subsystem 
level set function. It is shown how this method can be applied 
to two-player differential games. Finally, results of the 
computation of polytopic over-approximations of the unsafe 
set for the two aircraft conflict resolution problem are 
presented. 
 
1 Introduction 
 
Computation of reachable sets for dynamic systems has an 
important application in the automatic verification of safety 
properties and synthesis of safe controllers for air traffic 
systems [11, 17]. The exact reachable set boundary is known 
to be the zero level set of the viscosity solution [1] of a 
Hamilton-Jacobi type of partial differential equation (PDE) 
[13]. To the best of our knowledge, Leitmann was the first to 
recognize the relationship between Bellman functions and the 
boundaries of the reachable sets [10]. In [21] it was shown 
how to approximate boundaries of reachable sets with an 
arbitrary accuracy using smooth functions. In the sequence of 
papers by Khrustalev [3, 4], locally Lipschitz functions are 
used to describe arbitrarily accurate, under- and over-
approximations of reachable sets. Finally, polytopic [18] and 
ellipsoidal approximations [6-9] were developed to 
approximate reachable sets for linear systems (with and 
without perturbations). 
 

The numerical solutions which provide convergent 
approximations of reachable sets for dynamic systems have 
computational complexity which is exponential in the 
continuous variable dimension [12, 13]. To overcome this 
problem, in [2] the authors use a polytopic approximation 

method [18], based on optimal control methods (e.g., [5, 20]), 
and polytopic level set functions, to efficiently compute 
approximations of forward and backward reachable sets for 
linear dynamic systems. This approach is extended to 
feedback linearizable nonlinear systems, linear dynamic 
games, and norm-bounded nonlinear systems in [2].  
 

In [19], Vincent and Wu consider an approximation of the 
projection of the backward reachable (controllable) set for a 
class of hierarchical dynamic systems. Mitchell and Tomlin 
[14] approximate the backward reachable set for differential 
games by solving a set of lower dimensional Hamilton-
Jacobi-Isaacs PDEs in projected spaces. 
 

In this paper, we propose a method which decomposes the 
overall problem of computing an over-approximation for the 
backward reachable set of a general nonlinear dynamic 
system, into a number of lower dimensional computational 
problems. By doing so, the computational complexity of the 
problem is decreased: in general, we solve many reachability 
problems of lower dimension than the original reachability 
problem. For implementation, computational load may be 
distributed over a network of parallel computers. The overall 
dynamic system is considered as a set of interconnected 
subsystems. Then, with each subsystem we associate a level 
set function of Lipschitz type of which a particular level set is 
an over-approximation of the boundary of the backward 
reachable set in the subsystem state space (projection space).  
The interconnection of these sets is an over-approximation of 
the backward reachable set. 
 

The paper is organized as follows. In Section 2 we present the 
mathematical background for backward reachable sets. The 
analysis of the computation of over-approximations in the 
subsystem (projected) spaces is provided in Section 3. The 
method is extended to differential games in Section 4, with an 
application to the computation of the unsafe set in the two 
aircraft collision avoidance problem. Conclusions are 
presented in Section 5. 
 
2 Backward Reachable (Controllable) Sets 
 
Let us consider the following dynamic system 
 

( , , ) , [0, ], ( )f f fx f t x u t t x t= ∈ = ∈T X�
             (1) 

 



where 0 ft≤ < ∞ , nx ∈ �  is the state, mu ∈ ⊂U � is the 
control input with U a compact set independent of the state x. 
A compact set of final states is denoted as fX , n

f ⊂X � . 

The function : n nf × × →T U
� �

 is assumed to be Lipschitz 
continuous. The control input function ( )t u t→  is a 
measurable function, and the trajectory of the system 

( )t x t→  is an absolute continuous function such that 
equation (1) is satisfied almost everywhere. We will refer to 
the set of final states as the target set.  
 

The backward reachable (controllable) set (from a given 
target set fX ) for the system (1) is defined as follows: 
 

Definition 1. The backward reachable set ( )t
�

 at time t 
( t ∈ T ), of the system (1) from the target set  fX , is the set 
of all states x  for which there exists an admissible control 
input ( )u τ  ( [ , ]ft tτ ∈ ) and a corresponding absolute 

continuous trajectory ( )x τ  ( [ , ]ft tτ ∈ ) of the system (1), 

such that ( )f fx t ∈ X  and ( )x x t= . 
 

We define the Hamiltonian for the backward propagation of 
the system (1) as 
 

( , , ) min{ ( , , )}T
f u

H t x p p f t x u
∈

=
U

                           (2) 
 

with np ∈ �  being the adjoint state vector. The inner product 

of two vectors , na b ∈ � , is denoted as Ta b . It is well known 
[13] that for any t ∈ T , the exact boundary of the backward 
reachable set can be computed as the zero level set of the 
viscosity solution ( , )v t x  of the Hamilton-Jacobi equation, 
 

 ( , , / ) 0f

v
H t x v x

t
∂ + ∂ ∂ =
∂

                         (3) 

 

with the final condition ( , )fv t x  having zero level set which is 

the boundary of the target set fX . 
 

Let us rewrite system (1) in decomposed form as a set of N 
subsystems 

( , , ) , , {1,..., }i ix f t x u i N= ∈ =N N	
               (4) 

 

where in
ix ∈ 
  is the i-th subsystem state such 

that 1[ ,..., ]T T T n
Nx x x= ∈ � , that is, the subsystems are disjoint. 

 

Then, 
 

1 1

( , , ) min{ ( , , )}

min{ ( , , )} min{ ( , , )}

T
f u

N N
T T
i i i iu u

i i

H t x p p f t x u

p f t x u p f t x u

∈

∈ ∈
= =

=

= ≥
� �U

U U

  (5) 

 
By defining the subsystem Hamiltonians as 
 

( , , ) min{ ( , , )}
i

T
f i i iu

H t x p p f t x u
∈

=
U

                        (6) 

 
from equations (5) and (6) it follows that 
 

1

( , , ) ( , , )
i

N

f f i
i

H t x p H t x p
=

≥ 
                         (7) 

 
If we assume that each subsystem has its own independent 
input, that is,   

ˆ( , , ) ( , , )i i if t x u f t x u=                              (8) 
 

with im
i iu ∈ ⊂U � , 

1

N

i
i

m m
=

= � , (that is, decomposition of the 

input vector is disjoint) then using (5), (6), and (8) we obtain 
the following:  

ˆ
1

( , , ) ( , , )
i

N

f if
i

H t x p H t x p
=

= � .                     (9) 

 
Thus, when the subsystems can be chosen to have 
independent inputs, inequality (7) becomes equality (9).  
 

To conclude this section, let us state that the motivation for 
deriving inequality (7) and equality (9) is the idea of 
converting the high dimensional problem of computing the 
backward reachable set for the overall system into a set of 
lower dimensional problems involving subsystem 
Hamiltonians.  
 
3 Over-Approximations of the Subsystem Projections of 
the Backward Reachable Sets 
 
In order to compute an over-approximation of the backward 
reachable set, denoted as ( )tℜ , ( ( ) ( )t t⊆ ℜ

�
), to each 

subsystem we associate a level set function ( , ) ( , )i i it x v t x→  
which is assumed to be Lipschitz continuous with positive 
Lipschitz constant ik . By computing its derivative along the 
solution of system (1) we obtain 
 

(1)

( , )
( , , )

( , , )

T

i i i i

T

i i
i

i

dv t x v v
f t x u

dt t x

v v
f t x u

t x

∂ ∂
� �

= + � �
∂ ∂

� �
� �

∂ ∂
= + � �

∂ ∂
� �

                 (10) 

 
For /i i ip v x= ∂ ∂ , from equation (6) we obtain 
 

( , , ) ( , , )
i

T

i i
i f

i i

v v
f t x u H t x

x x

� �
∂ ∂

≥
� �

∂ ∂
� �                  (11) 

 
Now, from equations (10) and (11) it follows: 
 

(1)

( , , )
i

i i i
f

i

dv v v
H t x

dt t x
∂ ∂

≥ +
∂ ∂

                   (12) 

 

If there exists a measurable function ( )i tµ  such that (see [3, 
4, 7] for application to a single system) 
 



( , , ) ( )
i

i i
f i

i

v v
H t x t

t x
µ∂ ∂

+ ≥
∂ ∂

                           (13) 

 

then from (12) and (13) it follows: 
 

( ) ( )
( , ( )) ( ) max { ( , ( ))}

f

i f f i

t

i i i i f i fx t
t

v t x t d v t x tµ τ τ
∈

≤ − +
�

X
        (14) 

 

where ( )f iX  is the projection of the target set into the 

subsystem space in� , where in
ix ∈  . It is important to note 

that the choice of an appropriate ( )i tµ  in inequality (13) is 
very much problem dependent, and no suggestions of how to 
compute the set of measurable functions 1{ ( )}N

i itµ =  for the 
general system can be given. We will address this issue in 
more detail in Section 3.1 by considering interconnected 
systems as an example of systems with a special structure.   
 

The over-approximation of the reachable set for the 
subsystem with state ix  is given by the following formula [3, 
4, 7]: 

( ) ( )
( ) { | ( , ) ( ) max { ( , ( ))}}

f

i f f i

t

i i i i i i f i fx t
t

t x v t x d v t x tµ τ τ
∈

ℜ = ≤ − +
!

X

(15) 
 

Notice that from equation (15) it follows that we can compute 
an over-approximation of the backward reachable set for only 
a portion of the state space, that is, ix . The over-
approximation of the reachable set for the overall state is 
given by 
 

1( ) ( ) ... ( ), ( ) ( )Nt t t t tℜ = ℜ × ×ℜ ⊆ ℜ
"

               (16) 
 
where symbol “ × ” denotes the Cartesian product. 
 
3.1 Interconnected Systems 
 
In this section we consider a class of nonlinear systems with a 
special structure, that is, interconnected systems, for which 
we can analyze the procedure of determining a bound, 
represented by inequality (13), in more detail. Let us assume 
that functions 1{ }N

i if =   in equation (4) are of the following 
form: 
 

( , , ) ( , , ) ( , , )i i i if t x u g t x u h t x u= +                         (17) 
 

where : i in n
ig × × →T U

# #
 is a Lipschitz continuous 

function that represents subsystem dynamics, and 
: inn

ih × × →T U
$ $

 is a Lipschitz continuous function that 
represents interconnections between subsystems, for all i, 
i ∈ N . 

 

Let us assume that for each i there is a measurable function 
( )

ixt tµ→  over the finite time horizon T, such that 
 

( , ( ), ) ( )
i i

i i
g i x

i

v v
H t x t t

t x
µ∂ ∂

+ ≥
∂ ∂

                    (18) 

 
where the subsystem Hamiltonian ( , , )

igH ⋅ ⋅ ⋅  (as defined in (6)) 

is computed with respect to the function ( , , )ig ⋅ ⋅ ⋅  defined in 
(17). Then, 
 

(1)

( , )
( , , ) ( , , )

( , , ) min{ ( , , )}

( ) min{ ( , , )}

i

i

i

T

i i i i i i
i f

i i

T

i i i
g iu

i i

T

i
x iu

i

dv t x v v v v
f t x u H t x

dt t x t x

v v v
H t x h t x u

t x x

v
t h t x u

x
µ

∈

∈

% &
∂ ∂ ∂ ∂

= + ≥ +
' (

∂ ∂ ∂ ∂) *
% &

∂ ∂ ∂
≥ + +

' (
∂ ∂ ∂

) *
% &

∂
≥ +

' (
∂) *

U

U

(19) 

 
We assume that the interconnections satisfy sector bounds 
 

1

|| ( , , )} || ( )
j

N

i ij x
j

h t x u tβ µ
=

≤ +                            (20) 

 

for some ijβ ’s. Since ( , )i iv t x  is a Lipschitz function in ix  

with positive Lipschitz constant ik , we define 
 

1

( ) ( )
j

N

i i ij x
j

t k tβ β µ
=

= ,                               (21) 

 
such that 

min{ ( , , )} ( )
T

i
i iu

i

v
h t x u t

x
β

∈

- .
∂

≥ −
/ 0

∂
1 2

U
                   (22) 

 
From (19) and (22) it follows that: 
 

(1)

( , )
( ) ( )

i

i i
x i

dv t x
t t

dt
µ β≥ −                        (23) 

 

By equating ( ) ( )
ii x it tµ µ β= − , and integrating (23), the 

over-approximation of the backward reachable set for ix  is 
given by 

( ) ( )
( ) { | ( , ) ( ) max { ( , ( ))}}

f

i f f i

t

i i i i i i f i fx t
t

t x v t x d v t x tµ τ τ
∈

ℜ = ≤ − +
3

X

(24) 
 

which has the same form as (15), and the over-approximation 
( )tℜ  of the backward reachable set for the state x is obtained 

using (16). 
 
3.2 Overlapping Over-Approximations 
 
We have considered decomposing the overall state into 
disjoint subsystems. In this section, we allow partitioned 
subsystem states to overlap. Consider equations (14) and (15), 
and for simplicity of the presentation (and without loss of 



generality), assume that we have only two subsystems with 
states 1x , 1

1
nx ∈ 4 , and 2x , 2

2
nx ∈ 5 , such that they overlap, 

that is, 1x and 2x  share components, meaning 1 2 12x x x∩ = , 
12

12
nx ∈ 6 , 12 1n ≥ . Notice that 1 2 12n n n n+ − = . We define 

“extended” over-approximations as 
 

1

2

1 1
times

2 2
times

( ) ( )

( ) ( )

n n

n n

t t

t t

−

−

ℜ = ℜ × × ×

ℜ = × × ×ℜ

78:9<;=9?>
78:9@;A9?>

B B
B B                                 (25) 

 
where 1( )tℜ  and 2 ( )tℜ  are computed as in (15) or, in the 
case of interconnected systems, as in (24). Then, the 
following is true: 
 

1 2 1 2( ( ) ( )) ( ( ) ( )) ( ) ( ) ( )t t t t t t t⊆ ℜ ∧ ⊆ ℜ C ⊆ ℜ ∩ℜ
D D D

 (26) 
 
where symbol “ ∧ ” denotes the “and” logic operator. In other 
words, we can compute an over-approximation as an 
intersection of any set of extended lower dimensional over-
approximations in the subspaces that cover the whole space. 
The extension to N subsystems with overlapping states is 
clear. This gives us more freedom, since we are not any more 
restricted only to disjoint partitions of the state space. 
 
4 Differential Games with Application to Conflict 
Resolution  
 
In this section, we show how the analysis presented in Section 
3 carries over to accommodate the computation of the 
backward reachable set for the two player differential game. 
Let us consider a dynamic system with two independent 
inputs u and d as 
 

1 2( ) ( ) ( ) ( )

, , ,
i i i i i ix g x q x u q x d h x

t i u d

= + + +
∈ ∈ ∈ ∈T N U D

E
 (27) 

 

where U , um⊂U F , and D , dm⊂D G , are compact sets. 
Functions ( )t u t→  and ( )t d t→  are assumed to be 
measurable functions. The right-hand side of equation (27) is 
Lipschitz continuous, and the solution trajectories ( )t x t→  

are assumed to be absolute continuous. The partition 1{ }N
i ix =  

of the state x is a set of subsystem states that are either 
disjoint or overlapping. The target set is denoted as fX . 
 

The backward reachable set for the system (27) is defined as 
follows. 
 

Definition 2. The backward reachable set ( )t
H

 at time t 
( t ∈ T ), of the system (27) from the target set  fX , is the set 
of all states x  for which there exists an admissible control 
input ( )u τ  ( [ , ]ft tτ ∈ ) such that for any admissible input 

( )d τ  ( [ , ]ft tτ ∈ ), an absolute continuous trajectory ( )x τ  

( [ , ]ft tτ ∈ ) of the system (1) satisfies ( )f fx t ∈ X  and 

( )x x t= . 
 

The interpretation of Definition 2 is that “ u”  drives the system 
to fX  despite “ d” . For a given Lipschitz level set function 

( , ) ( , )i it x v t x→  we compute 
 

1

2

( ) ( ) min ( ) ( )

max ( ) ( ) ( )

TT

i i i
i i i iu

i

T

i
i id

i

v v v
t g x q x u t

t x x

v
q x d t t

x

µ

β

∈

∈

I JK L
∂ ∂ ∂

K L M M
= + + N OP QP Q

∂ ∂ ∂
R S R SM MT U
I JK L

∂
M M

+ +N OP Q
∂R SM MT U

U

D

   (28) 

 
along the solutions ( )x t  of (27), for all t ∈ T . We assume 

that ( )/ ( ( )) ( )
T

i iv x h x t tβ∂ ∂ ≤  holds for all t ∈ T . Then, the 
following set is the over-approximation of the backward 
reachable projection into inV , the state space of the 
subsystem with state ix : 

 
( ) ( )

( ) { | ( , ) ( ) max { ( , ( ))}}
f

i f f i

t

i i i i i i f i fx t
t

t x v t x d v t x tµ τ τ
∈

ℜ = ≤ − +
W

X

 (29) 
 

The only difference between equations (15) and (29) is that in 
computing ( )i tµ  we treat ( )d t  as the perturbation. Thus, the 
case of computing the backward reachable set for the 
dynamic system (27) which describes two player differential 
game follows directly from the analysis presented in Section 
3. 
 
4.1 Conflict Resolution between Two Aircraft 
 
To demonstrate the proposed procedure we consider the two 
aircraft collision avoidance problem [13] which is modeled as 
differential game (27).  In Figure 1 we show the relative 
configuration of the two aircraft where aircraft 1 tries to avoid 
the collision regardless of the behavior of aircraft 2. In this 
problem we wish to compute the backward reachable (unsafe) 
set from the target set (protected zone), that is, the set which 
includes all the states (in relative coordinates) from which 
aircraft 2 can choose a control that will lead to loss of 
separation for any control strategy of aircraft 1.  
 

 
 

Figure 1. Relative coordinate system for the two aircraft 
conflict resolution problem. 



 
We use the planar kinematic model for each aircraft, and after 
dynamic extension and feedback linearization of the model 
[15], we obtain the following linear model in terms of relative 
coordinates of the two aircraft [16]: 
 

2 1

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

x x u u

X Y X Y X YZ [ Z [ Z [Z [ Z [ Z [
= + −Z [ Z [ Z [Z [ Z [ Z [Z [ Z [ Z [\ ] \ ] \ ]
^

 (30) 

 

where 4x ∈ _  is the state vector, 2
1 1u ∈ ⊂U ` , and 

2
2 2u ∈ ⊂U a , are control inputs of the two aircraft, 

respectively. From the definition of the unsafe set notice that 

1u  corresponds to d, and 2u  corresponds to u in equation  

(27). We decompose the state vector x as 1 2[ , ]T T Tx x x= , where 

1 [ , ]T
r rx x y= , and the two remaining states form 2x . In other 

words, the overall state vector x is decomposed into two 
disjoint subsystems, each of dimension two. Then, system 
(30) in a decomposed form can be written as 
 

1 2

2 2 1

x x

x u u

=
= −

b
b                                           (31) 

 

with 2
1 2,x x ∈ c , 1 1u ∈ U , and 2 2u ∈ U .  

 

As level set functions we choose polytopic functions 
described as intersections of the supporting hyperplanes of the 
form [18]: 

1 1 1 1

2 2 2 2

( , ) ( ) ,

( , ) ( )

T

T

v t x t x

v t x t x

=

=

d
d                                    (32) 

 
The protection zone is the target set. Using (28) and the 
procedure proposed in [2, 18], we compute 
  

{ }

{ } { }

1 1 2 2

2 2 1 2

1
1 1 1 2

1 1 2 1 1 1,

2
2 2 2 2 1

2 2 2 2 1 2 2

;

( ) max ( )( ) for  ( ) ( )

( );

( ) min ( ) min ( ) for  ( ) ( )

T T

T
f fu u

T T

T T
f f fu u

dv
x x

dt
t t u u t t

dv
x u u

dt
t t u t u t t

µ

µ

∈ ∈

∈ ∈

= +

= − ≡

= + −

= − ≡

U U

U U

ef f
f f f

ef f
f f f f

(33) 
 
Using equations (29), (32), and (33) we obtain the over-
approximation 1ℜ  for 1x , that is, rectangular relative 
coordinates rx  and ry . Notice that in this procedure, the term 

1 2 1 2 1( )T Tx u u= −
g g

 is treated as an interconnection (that is, 
perturbation 1( )h x  in (27)). By computing the backward 
reachable approximation 2ℜ  in the 2x -space, the overall 
over-approximation is computed as 1 2ℜ = ℜ ×ℜ . In Figure 2, 

the inner set is the exact unsafe set in ( , , )r r rx y ψ -space, 

rψ being the relative heading angle as in Figure 1, and the 
outer set is the over-approximation obtained by projecting 

1 2ℜ = ℜ ×ℜ  into ( , , )r r rx y ψ -space. The exact set is 
computed in [13], using the convergent approximation 
designed there. This exact computation took approximately 
15 minutes on a Sun UltraSparc with 50 grid nodes in each 
dimension. The over-approximation computation (using 
MATLAB on a 700 MHz Pentium III PC) took 0.2 seconds 
(which includes plotting the figure). 
 

 
Figure 2.  An over-approximation of the exact unsafe set (two 

2-dimensional subsystems). 
 
If we choose the first three coordinates of the state space 
vector x as our subsystem, which turns out to be a finer 
decomposition, and compute the over-approximation in this 
three dimensional space, we obtain a better over-
approximation of the exact set, as shown in Figure 3.  

 
Figure 3. An over-approximation of the exact unsafe set (one 

3-dimensional subsystem). 
 
The over-approximation computation plotted in Figure 3 
(again, using MATLAB on a 700 MHz Pentium III PC), took 
0.31 seconds (including plotting the figure).  
 

Further refinements can be obtained by intersections of 
various disjoint or overlapping over-approximations, and an 
efficient methodology for doing this is the subject of our 
current research.  
 
5 Conclusions 
 
A method for solving the problem of computation of the 
backward reachable set, as proposed in this paper, 
decomposes the problem into a set of smaller dimensional 



problems on the basis of the decomposition of the overall 
dynamic system into a set of subsystems. Then the analysis is 
carried over using a set of subsystem level set functions of 
which the level sets provide the over-approximations of the 
projections of the reachable set into subsystem spaces. The 
method accommodates computation of the reachable sets for 
two player dynamic games and the application to computation 
of the unsafe set for the two aircraft collision avoidance 
problem produced encouraging results. Our future work is to 
consider computing reachable sets for hybrid systems using 
subsystem level set functions, and to work on higher 
dimensional applications. 
 

Finally, it is important to note that the analysis presented in 
this paper carries over to the computation of the forward 
reachable set of dynamic systems in an obvious way. 
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