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Abstract 
A method of optimal control computation is proposed for 
problems with control and state constraints. It uses a 
sequence of control structure adjustments in the form of 
generations and reductions of nodes and arcs, which do not 
change the current control but redefine the decision space. 
Several examples are given. 

1  Introduction 

Numerical methods of optimal control are divided into direct 
and indirect [1]. In the direct approach an approximating, 
finite dimensional optimization problem is constructed and 
solved by nonlinear programming algorithms. Collocation 
and SQP methods are often used, usually leading to large-
scale computations. The well established direct methods 
feature large areas of convergence but they are rather slow, 
especially in the final stage. This approach is not particularly 
demanding upon the user and is considered fairly universal. 
It has many powerful implementations like SOCS (Betts 
[1]), DIRCOL (von Stryk [10]) or DIRMUS (Hinsberger). 

In the indirect approach the optimal solution is computed by 
solving the boundary value problem obtained from the 
maximum principle. Multiple shooting is frequently used, 
with such implementations as BNDSCO (Oberle and 
Grimm), MUMUS (Hiltmann et al.) and MUSCOD-II 
(Diehl). The collocation methods for indirect computations 
(Kierzenka and Shampine [4]) involve large systems of 
algebraic equations requiring specialized algorithms. The 
rate of convergence of indirect methods is usually very high, 
but their area of convergence is small and so they require 
good initial guesses for the adjoint vector. Practically, the 
optimal control structure has to be known beforehand. This 
can be achieved by a direct algorithm (Shen and Tsiotras 
[8]) or using homotopy methods where a sequence of 
appropriately constructed auxiliary problems is solved by 
multiple shooting (Bulirsch et al. [3]). 

This paper describes a new direct approach to numerical 
dynamic optimization, called monotone structural evolution 
(MSE). It is effective for a large class of nonlinear problems 
with control and state constraints, including singular cases. 
MSE originates from the variable parameterization method, 

developed for the nonsingular affine case with simple 
control bounds in [5, 6, 11 – 15, 17]. A distinctive feature of 
MSE is that the decision space is systematically recon-
structed in the course of optimization, with changing the 
control structure, parameterization and, typically, the 
number of decision variables. The search for structural 
changes which lead to rapid improvement of the perform-
ance index is based on analysis of the discrepancy between 
the current approximation of solution and the maximum 
principle optimality conditions, and continues until these 
conditions are satisfied with sufficient accuracy. The proper 
choice of the sequence of decision spaces, utilizing 
information taken from the adjoint solution, allows the 
number of decision variables to be kept comparatively small, 
at least in early stages of optimization. In consequence, 
quasi-Newton or Newton optimization with analytical 
gradients can be used, which is vital for fast convergence. 
The dimension of the decision space grows only when this is 
necessary for improving accuracy of optimal control 
approximation. An important property of MSE is that the 
performance index decreases monotonously during optimiz-
ation, due to control preservation by the structure changes. 

2  Optimal control problem 

The control system is described by a state equation 

 ),( uxfx =
�

,   ],0[ Tt ∈ ,   0)0( xx =                    (2.1) 

where the state ntx R∈)(  and control mtu R∈)( . The 

admissible controls are piecewise continuous functions 
satisfying a vector inequality 

 0),( ≤uxg .                                              (2.2) 

It is assumed that for each component of g, the equation 
0),( =uxgi  always has a unique solution w.r.t. some 

component of u. The optimal control problem is to find an 
admissible control minimizing a performance functional 

 ))(()( TxuS ϕ= .                                         (2.3) 

The initial state 0x  and the horizon T are fixed. Vector state 
constraints of the form 0)( ≤xh  and terminal conditions on 

state can be also introduced and treated by means of penalty 
techniques. The functions f, g, h and ϕ  are sufficiently 



smooth. The adjoint trajectory ψ  is defined as a solution of 

the boundary value problem 

 ),,( uxHx ψψ −∇=
�

,  ))(()( TxT ϕψ −∇=              (2.4) 

where =),,( uxH ψ ),( uxfTψ  is the hamiltonian. 

3  Monotone Structural Evolution 

3.1  Control structure 

The structure of optimal control is usually understood as the 
sequence of sets of active constraints. The elements in the 
sequence are arranged as they follow in time. The corre-
sponding segments of control and state trajectory are called 
arcs (boundary, constrained, singular, etc.). We introduce a 
more general concept of structure for arbitrary admissible 
controls, basing on the observation that active constraints 
determine the shape of optimal control and the way it is 
computed. The control structure will thus mean the 
sequence of procedures used to determine control values in 
successive time intervals. The procedures for control 
computation are built with the condition of hamiltonian 
maximization taken into account. Typically, the control 
structure varies during optimization.  

For every control with a given structure a sequence of 
division nodes Nττ ,...,1  is defined, 

 TN =≤≤≤≤= ττττ ...0 210 .                           (3.1) 

In each interval [,[ 1 ii ττ − , a fixed procedure iP  is used to 

calculate control. The restrictions of control and state trajec-
tory to intervals [,[ 1 ii ττ −  are called arcs. The parameters of 

a control structure include the division nodes and, possibly, 
other parameters used by the procedures iP . The structure 

parameters are decision variables in the optimization 
algorithms of MSE. As quasi-Newton or Newton gradient 
optimization algorithms are used in the sequel, we need 
analytical formulas for derivatives of the performance 
functional (2.3) with respect to decision variables. It is 
convenient to express them in terms of the adjoint trajectory. 

3.2  Generations and reductions 

An optimal control approximation in the direct approach is a 
value of a mapping UDP →:  from a finite-dimensional 
space of decision variables into the functional control space. 
Every structural change in MSE, that is, both the generation 
and reduction basically consists in choosing a new decision 
space D′  and a new function UDP →′′ : . It is required 
that the control is not immediately affected, which means 
that )()( dPdP =′′  for Dd ∈  and Dd ′∈′  being the 

decision vectors just before and after the structural change. 
Thanks to this condition of control preservation, the 
performance index monotonously decreases during the 
overall optimization procedure. The dimension of the 
decision space increases in a generation, and is diminished 
in a reduction. Typically, only few selected elements 

defining the structure can be affected by a structural change.  
For example, one or two new procedures iP′  are introduced 

in a generation with inserting the corresponding new nodes, 
or one of the procedures iP  is modified.  

A typical reduction consists of eliminating an arc of zero 
length. More precisely, every arc of zero length is subject to 
reduction if the directional derivative of performance index 
w.r.t. its boundaries is nonnegative for all admissible 
directions. At the same time the decision variables that 
describe this control arc are eliminated, including at least 
one of the respective division nodes. Such a reduction occurs 
each time when one of the constraints (3.1) becomes active 
after the linesearch of the gradient optimization algorithm. 
Another typical reduction occurs when two adjacent arcs 
described by identical procedures are unified. 

3.3  General algorithm 

The basic algorithm of MSE consists of the following steps. 

10 Selection of starting point. 

20 Termination, if optimality conditions are satisfied. 

30 Generation, if it is sufficiently promising or needed. 

40 Iteration of gradient optimization. 

50 Reduction, if necessary.  

60 Return to 20. 

Step 30 is distinctive for MSE algorithms and crucial for 
their convergence. The changes of structure are mainly 
performed to speed up the optimization when a stationary 
point in the current decision space is being approached. This 
algorithm should be equipped with special procedures for 
gradient computation and evaluation of efficiency of gener-
ations. To treat state constraints, an outer loop of penalty 
modification has to be added. In the gradient optimization of 
step 40 the bounds on division nodes and control constraints 
are respected due to an appropriate organization of line-
search. Numerical solutions of differential equations are 
obtained by the RK4 method with mesh adjusted so as to 
include all discontinuity points. 

3.4 Rules for generations 

The efficiency of a generation is defined as the difference of 
squared Euclidean norms of antigradients of the perform-
ance index w.r.t. the decision vector immediately after and 
before the generation. This definition applies only to the 
case of admissible antigradients. In the general case the 
antigradients are replaced by their orthogonal projections 
onto the local conical approximation of the admissible set. 
Such a definition is justified in two ways. First, the square of 
the norm of gradient, multiplied by 1− , is equal to the 
derivative of the performance index w.r.t. the search line 
parameter in the steepest descent direction. The efficiency 
thus determines the increase of steepness of the performance 
index in this direction. Secondly, the efficiency so defined 
does not depend on those components of the gradient of 



performance index that are not affected by the generation, 
which simplifies computations. 

There are two kinds of generations: intentional, aimed at 
speeding up the optimization, and those enforced by the 
requirement that at the moment of gradient computation 
each control arc has to be either purely boundary or purely 
interior. The latter, called saturation generations, are 
performed when the optimization transforms an interior 
division interval into one that contains a segment with active 
control constraint (2.2). Such an interval is divided by 
introducing new division nodes.  

The generations of the first kind (intentional) are primarily 
based on relative efficiency, that is, the ratio of efficiency 
and the squared gradient norm. The generation takes place if 
the relative efficiency exceeds a given threshold. By 
choosing the threshold one can control the trade-off between 
the dimension of decision space and gradient magnitude. 
The number of simultaneously generated nodes is limited by 
additional rules (e.g, one or two per arc, solely at local 
maximizers of relative efficiency), to avoid an undesirable 
increase of the number of decision variables. Additional 
requirements can be imposed on generations to obtain 
controls with pre-selected regularity properties, like 
continuity or smoothness. The choice of particular gener-
ations is also subject to the condition that optimization 
should converge to the optimal control in the strong sense. 

4  Examples 

4.1  LQ problem with control constraints 

Consider a simple control-constrained LQ problem 
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The optimal control is continuous with two types of arcs 
possible: boundary and interior. Its first derivative may be 
discontinuous only at the ends of boundary arcs. It is 
assumed that admissible approximations of optimal control 
also have these properties. In every interior arc  

),,()( 1 iii twptu ττ −= T                                     (4.1)  

where ip  is a vector of parameters and w is a given vector 

function. First, we take the Hermite cubic polynomials  
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To ensure continuity at division points and smoothness 
between neighboring interior arcs, some parameters ikp  are 

fixed or identified.  

Let Σ  denote the performance index as a function of the 
parameters and division points. Its derivative w.r.t. ikp  reads  

 �
Π

∇∇−=Σ∇
ik

ikik
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where the derivatives of u are determined by (4.1), and ikΠ  

is the union of ],[ 1 ii ττ −  and, possibly, one of its neighboring 

interior intervals. The derivative w.r.t. iτ , 1,...,1 −= Ni  being 

the right-hand end of an interior interval is given by 

Σ∇+−Σ∇−−Σ∇−−=Σ∇ +−
443

)()()(
iiii pipipi uuu ττττ �����  

where Σ∇−
4ip  and Σ∇+

4ip  are computed according to (4.2), 

but with ikΠ  equal to ],[ 1 ii ττ −  and ],[ 1+ii ττ , respectively. 

For the left-hand end points we have 
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If iτ  is an end point of a boundary arc, the terms with 

vanishing control derivatives are dropped. 

The optimization starts from zero control. If we only admit 
generations of arcs due to control saturation, we obtain the 
approximation of optimal control shown with solid line in 
the upper part of Fig. 1. The division points are marked with 
circles. Since uHu −=∇ 2ψ , this control is evidently far 

from optimal. 

In the second stage of optimization, generations of addition-
al division points on the interior arcs are allowed. The 
generation criteria are based on relative efficiency and the 
distance of the control zeroing Hu∇ (i.e., equal to 2ψ ) from 

its local cubic approximation. The result, close to optimal, is 
shown in the lower part of Fig. 1. Observe the significant 
increase of the dimension of decision space (to 60). 

The second stage of optimization has been repeated with 
generations of another type consisting in an extension of the 
vector w with four new components 

3114 )()( wvwvvw ikikkk ττ −−= −+ ,  4,...,1=k  
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ss βα cose− , 1−−= its τ  are basis solutions of the canonical 

system restricted to an interior arc. Note that 11)( ii pu =−τ , 

3)( ii pu =τ . The continuity requirement, still valid, is thus 

easy to impose. The derivatives of Σ  are given by (4.2) and 
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where the derivative of u is by definition zero on boundary 
intervals.  
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Fig. 1.  

The optimization is restarted with such a generation applied 
only to the last arc. The parameters ikp , 4,...,1=k  are in-

herited from the first stage, and 0=ikp  for 8,...,5=k . The 

dimension of decision space increases to 15. This stage 
results in an approximation of the optimal control nearly 
identical with that shown in the lower part of Fig. 1 (but 
with only 6 nodes), and the coefficients of the polynomials 
close to zero for the last arc. Note that this particular choice 
of approximating functions leads to a solution satisfying the 
maximum principle conditions without any additional 
generations during the second stage. 

4.2 Singular problem 

The second example concerns a fermentation model (based 
on [7]) with a singular arc in the optimal solution. The 
problem is described as follows 
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with )()50)(()( 32 TxTxuS −= , 6=T , ),5,40,3(col)0( =x  

,1)(0 ≤≤ tu  2.01 =a , ,5.02 =a ,2.01 =b ,001.02 =b ,1.03=b  

,0004.04 =b ,25.01=c 00125.02 =c . 

As the rhs of the state equations are affine in control, we 
expect only two kinds of arcs in the optimal solution: 
boundary and singular. We therefore admit arcs that are 
either boundary or interior where control is determined from 
equating the switching function ),( ψφ x , and its first and 

second derivatives to zero (singularity of second order). We 

obtain a formula ))(()( int txutu =  expressing this control 

only by the state variable (which is rather particular). Note 
that the adjoint equation for the interior arcs reads =ψ

�
 

))(,,( int xuxHx ψ−∇  where x∇  denotes the total derivative. 
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Fig. 2. 

In this example, only spike and saturation generations are 
used. A spike generation consists in adding two nodes at the 
same point [,0] T∈τ , or one node at 0=τ  or T=τ . A seed 

of a new arc is thus planted into the structure. No require-
ment of control continuity on the boundaries of the new arc 
is imposed. The procedure of control calculation in the new 
spike is selected as follows. The arc is interior, if 

0))(),(( >τψτφ x  and  1))(()( int << ττ xuu  or 

0))(),(( <τψτφ x  and )())((0 int ττ uxu << . 

If neither of these occurs, the upper control bound is taken 
when 0))(),(( >τψτφ x  and 1)( <τu , and the lower bound 

when 0)( >τu  and 0))(),(( <τψτφ x . Besides, the rules of 

section 3.4 are applied. Effects of weak convergence (chat-
tering control) are eliminated by imposing a lower threshold 
for the efficiency of generations on interior arcs. The nodes 
coinciding with discontinuity points are the only decision 
variables. The derivative Σ∇

iτ  is equal to the jump of the 

hamiltonian [9, 16] 

))(),(),(())(),(),(( −−+=∆ iiiiiii uxHuxHH τττψτττψ .  



The optimization is started from a control that switches from 
0 to 1 at 3=t . During the optimization the control structure 
evolves in a number of generations and reductions. The first 
spike generation from the upper to lower bound is shown on 
the right of the first plot of Fig. 2. After a few iterations in a 
constant decision space, two other generations to intu  occur 

(second plot). Further optimization leads to an expansion of 
the new interior arcs (third plot). Finally, after two 
reductions and combining two interior arcs into one, we 
obtain the optimal control shown in the last plot of Fig. 2. 

4.3 State constrained problem 

The model below is taken from [2, example 9.3.13]. The 
task is to swing up an inverted pendulum on a cart from the 
down stable position, by applying a bounded horizontal 
force to the cart. The state equations are 
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The variable 1x  denotes the angle of the pendulum, 2x  its 

angular velocity, 3x  the position of the cart and 4x , veloc-

ity of the cart. The initial state is 0)0( =x . The force u and 

the cart position are bounded, 1|)(| ≤tu  and max33 )( xtx ≤ . 

The performance index has the form 
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As the rhs of the state equations are affine in u, only bound-
ary, singular, and state-constrained arcs are possible. By 
equating the derivatives of 3x  and 4x  to zero we obtain 

)()( 2
2con cxsxu +−= ε  for candidate state-constrained arcs. 

The singular arcs are explicitly described in [14]. Since the 
expression for control depends on the adjoint variables, the 
approach presented in section 4.2 is not directly applicable. 
Here we approximate the singular control by explicit func-
tions of time )(sng tu  using the cubic Hermite polynomials of 

section 4.1, but without the continuity or smoothness requi-
rements. The adjoint equation has the form (2.4) with the 
substitution of sngu  and )(con xu  for u on respective inter-

vals, and x∇  understood as the operator of total differentia-

tion. The derivatives of Σ  w.r.t. the parameters of polyno-
mial approximation are computed by (4.2), the derivatives 
w.r.t. the ends of the candidate singular arcs read  
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and just iH∆  for all other nodes. As we now have interior 

arcs of two types, the rules of generation of 4.2 are appropri-
ately completed with rules of selection between such arcs. 

The penalty coefficient ρ  is gradually increased up to 710  

in an outer loop of the algorithm described in section 3.3. 
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The computational experiment is performed for three values 
of the state bound max3x : 0.75, 0.5 and 0.25. Also in this 

example the MSE method exhibits rapid convergence. For 
the sake of brevity we omit the history of structural 
evolution and present only the final results, see Figs. 3, 4 
and 5. For 75.0max3 =x  the trajectory of 3x  exhibits a touch 

point, and the optimal control has a considerable singularity 



and no constrained arc. For a stricter bound 5.0max3 =x , the 

touch point develops into a constrained arc, neighboring 
with a short singular arc. For 25.0max3 =x  there is no 

singular arc at all, but the constrained arc becomes longer. 
Every figure shows also the plot of the scaled switching 
function, here defined as 42 ψψφ +−= c . The presented 

solutions apparently satisfy the optimality conditions of the 
Maximum Principle. 
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5 Conclusions 

Two features of MSE, i.e., the continuous reconstruction of 
decision space and increase of its dimension during 
optimization are also encountered in the well established 
numerical methods of optimal control. The latter is used in 
direct algorithms in the form of mesh refinement while the 
former is a foundation of the homotopy approach. The 
novelty of MSE lies in the systematic way the available 
information on expected structure of optimal control is used, 
and in the concept of control preservation by structural 
changes. Thanks to these, monotone descent of the perform-
ance index is guaranteed and the number of decision 
variables is economically determined, thus high rates of con-
vergence can be achieved together with relatively accurate 
representation of optimal control. All intermediate results 
are control admissible solutions of the control problem 
(without discontinuous approximations of state trajectories 
which appear in the homotopy methods with multiple 
shooting). Besides, among other direct methods, MSE offers 
the rare possibility of straightforward verification of the 
maximum principle optimality conditions in case of 
successful termination. 

The computational experience confirms that the rate of 
convergence of MSE is better than in comparable direct 
methods, and similar to the rate of convergence of indirect 
algorithms such as multiple shooting or indirect collocation. 
On the other hand, the area of convergence of MSE is like in 

other direct algorithms, and much larger than in indirect 
methods. The MSE method can be easily extended to 
problems with free horizon, including time-optimal. It is also 
possible to treat state constraints in a direct way (without 
penalty functions), similarly as control constraints and 
singularities in the presented examples.  
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