
ON THE COMPUTATION OF INVARIANT SETS FOR
CONSTRAINED NONLINEAR SYSTEMS: AN INTERVAL

ARITHMETIC APPROACH
J.M. Bravo∗, D. Limon†, T. Alamo† and E.F. Camacho†

∗Departamento de Ingenierı́a Electrónica, Sistemas Informáticos y Automática. Universidad de Huelva
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Abstract

This paper shows how interval arithmetic can be applied to the
computation of control invariant sets. The paper reviews some
concepts in invariant set theory and presents recursive algo-
rithms to compute sequences of control invariant sets. These
ideas can be used to design stable controllers subject to state
and control constraints. To prove set inclusion and inversion,
interval arithmetic is also used.

1 Introduction

The concept of invariant set is a direct derivation of the theory
of Lyapunov. A Lyapunov function can be used to show that
an equilibrium point of a dynamical system is asymptotically
stable. The region of the state space where this Lyapunov func-
tion is bounded is an attraction region of the equilibrium point,
and constitutes a positive invariant set. Excellent surveys about
invariant sets are given in [3, 10].

Set invariance theory has been applied to a lot of fields in con-
trol [2, 6, 1, 10]. This theory is very useful for analysing con-
strained systems and for designing controllers, which guarantee
constraint satisfaction.

Interval mathematics is a generalization of real mathematics
in which intervals numbers replace real numbers [14]. Interval
arithmetic has been applied to bound the solution set of interval
linear and nonlinear systems [9] and finding global minimum
points [7]. In the control context, interval arithmetic has been
used in robust control [4], parameter and state estimation [8]
and model predictive control [12].

This paper deals with the application of interval analysis to de-
sign algorithms that determine subsets of the state space of a
discrete nonlinear system that can be steered to any given tar-
get set by a control law, while fulfilling control and state con-
straints. In section 2 basic definitions of set invariance theory
are presented. Section 3 is dedicated to the interval arithmetic.

Section 4 contains the one-step set approximation algorithm
and an extension to polytopes is considered in section 5. Fi-
nally an example is shown in section 6.

2 Definitions and problem statement

Consider a system described by a nonlinear discrete model:

xk+1 = f (xk,uk) (1)

where xk ∈ IRn is the system state and uk ∈ IRm is the control
signal at sample time k. The system can be subject to control
and state constraints:

xk ∈ X , uk ∈U (2)

where X and U are compact sets, both of them containing the
origin.

In the sequel, some concepts and results related to invariant sets
theory and computation are presented.

Definition 1 (Control invariant set). The set Ω ∈ IRn is a con-
trol invariant set for the system (1) if and only if ∀xk ∈ Ω then
∃uk ∈U such that f (xk,uk) ∈ Ω.

Definition 2 (One-step set Q(·)). Consider a target set Ω, then
the one-step set to Ω, denoted as Q(Ω) is the set of states in
IRn for which an admissible control signal exits, which will
guarantee that the system will be driven to Ω in one step, i.e.
Q(·) = {x ∈ IRn|∃u ∈U : f (x,u) ∈ Ω}.

The computation of this set is a geometric problem and it al-
lows us to establish a geometric condition for control invari-
ance [3, 10].

Theorem 1 (Geometric condition for invariance). A set Ω is a
control invariant set if and only if Ω ⊆ Q(Ω).

The determination of the stabilizable set is quite useful in the
design of controllers. For instance in [2, 13] these sets are used



to design robust time-optimal controllers, in [10, 5] a robust
control invariant set is used to guarantee robust feasibility of a
predictive controller and in [11] a sequence of control invariant
sets is used to enlarge the domain of attraction of a predictive
controller. The computation of the stabilizable sets is based
on the calculation of the one-step set. There exists well estab-
lished techniques to compute them when the system is linear,
the constraints are polyhedra and the target set is a polytope. In
this case the stabilizable sets are polyhedra [3, 10].

If the system is nonlinear, then the computation of the one-step
set is very difficult. This fact converted the invariant sets into a
theoretical tool to design controllers for nonlinear systems.

This paper shows that this drawback may be overcome by us-
ing approximate procedures to compute the one-step set. These
procedures are much simpler to compute. Furthermore, an al-
gorithm based on interval arithmetic is given in the paper. The
proposed algorithm is based on the following lemma.

Lemma 1 Let Ω be a (control) invariant set and let Φ be any
set contained in Q(Ω), then the set Γ = Φ∪Ω is a control in-
variant set.

Proof:

Γ = Φ∪Ω is a control invariant set if and only if Γ ⊆ Q(Γ).
Since Ω⊆ Γ then Q(Ω)⊆Q(Γ). Given that Φ⊆Q(Ω) and that
Ω ⊆Q(Ω), then Γ = Φ∪Ω ⊆Q(Ω), which yields to Γ ⊆Q(Γ).

Note that if Ω ⊆ Φ, then Γ = Φ, and hence Φ is a control in-
variant set.

The main result that can be derived from this lemma is that
it is not necessary to compute the exact one-step set to obtain
a control invariant, and hence, a inner set can be used. This
result is very interesting for nonlinear systems, for which the
computation of the one-step set is very difficult.

Then, in order to make tractable the computation of control
invariant sets for nonlinear system, an approximate procedure
Qap(Ω) can be used. This one should provide an inner ap-
proach to the one step set, that is, Qap(Ω) ⊆ Q(Ω). By using
this idea a sequence of control invariant sets can be derived.

Theorem 2 Let Ω be an invariant set for the nonlinear system
(1). Consider the sequence of sets given by Φi = Qap(Φi−1)∩X
where Φ0 = Ω. Then the set given by Ωi = ∪i

j=0Φ j is a control
invariant set for all i ≥ 0.

Proof:

It is proved by induction. For j = 1, Ω1 = Φ1 ∪Ω. Since Φ1 ⊆
Q(Ω), then from lemma 1 it is inferred that Ω1 is a control
invariant set. Suppose that Ω j−1 is a control invariant set. Note

that Φ j ⊆ Q(Φ j−1) ⊆ Q(Ω j−1). Since Ωi = Φ j ∪Ω j−1, from
lemma (1) it is deduced that Ω j is a control invariant set.

A method to compute control invariant sets for a general class
of nonlinear systems is presented in this paper. The method is
based on computing an approximate one-step set using interval
arithmetic. The proposed algorithm can approximate the exact
set with a given bound on the error. It is clear that lower bounds
on the error yield to bigger computational burden, however, the
computation is done off-line. A trade-off between computation
time and error can be reached. In order to obtain an easy-to-use
sequence of control invariant set, a polytopic approximation is
presented. It is based on the approximation of the previous
control invariant sets by an inner polytope.

3 Interval arithmetic

An interval number X = [a,b] is the set { x : a≤ x ≤ b } of real
numbers between and including the endpoints a and b. Interval
arithmetic is an arithmetic defined on sets of intervals, rather
than sets of real numbers. The interval arithmetic is based on
operations applied to sets of intervals.

Let II be the set of real compact intervals [a,b] with a,b ∈ IR .
Operations in II satisfy the expression:

A op B = { a op b : a ∈ A,b ∈ B } f or A,B ∈ II (3)

In this way, the four basic interval operations [14] are:

[a,b]+ [c,d] = [a+ c,b+d] (4)

[a,b]− [c,d] = [a−d,b− c]

[a,b]∗ [c,d] = [min(ac,ad,bc,bd),max(ac,ad,bc,bd)]

[a,b]/[c,d] = [a,b]∗ [1/d,1/c], if 0 /∈ [c,d]

An extension of the interval arithmetic to include 0 in divi-
sion can be found in [7]. The interval extension of standard
functions {sin,cos, tan,arctan,exp, ln,abs,sqr,sqrt} is possi-
ble too.

Definition 3 (Box) A box is an interval vector (vector whose
components are intervals). An interval hull of a set X ⊆ IRn ,
denoted by �X , is a box that satisfies X ⊆ �X. Given a box
�X = ([a1,b1], . . . , [an,bn])
, mid(�X) denotes its center and
diam(�X) = (b1 −a1, . . . ,bn −an)
.

Definition 4 (Range) The range of a continuous function f :
IRn −→ IR over a set X ⊂ IRn is defined as f (X) = { f (x)|x ∈
X}.

Definition 5 (Natural interval extension) If f : IRn → IR is a
function computable as an expression, algorithm or computer
program involving the four elementary arithmetic operations
interspersed with evaluations of standard functions then, a nat-
ural interval extension of f , denoted � f , is obtained replacing



each occurrence of each variable by the corresponding interval
variable, by executing all operations according to formulas (4)
and by computing ranges of the standard functions.[9]

Theorem 3 [Inclusion] A natural interval extension � f of a
continuous function f : IRn → IR over a box X ⊆ IRn satisfies
that f (X) ⊆ � f (X) . That is the fundamental theorem of the
interval arithmetic [14].

Theorem 4 [Inclusion Monotonic] A natural interval exten-
sion � f of a continuous function f : IRn → IR over two boxes
Y,X ⊆ IRn satisfies that if Y ⊆ X then � f (Y ) ⊆ � f (X) [9].

A consequent of Theorem 4 is that if a sequence of boxes
Xk converges to a real vector x, then the sequence of interval
bounds � f (Xk) converges to the real vector f (x) . This is an
important property of natural interval extension is that [14].

4 One-step set approximation algorithm

Interval algorithms have been used successfully in the resolu-
tion of several problems. These algorithms are basically branch
and bound [7] algorithms where the ranges of functions are
bounded by interval arithmetic.

Let A,B be two sets defined by finite sets of inequalities. In-
terval branch and bounds algorithms can prove set inclusion
A ⊂ B and solve the set inversion problem A = f−1(B), see [8].

In this paper the application of interval branch and bound al-
gorithm to invariant set theory is considered. Given a target
set Ω, the interval algorithm computes a set denoted B(Ω) with
B(Ω) ⊆ Q(Ω). By using the result presented in section 2, this
approach can be used to compute a sequence of control invari-
ant sets making Qap(Ω)≡B(Ω). B(Ω) is compound by a list of
boxes and Bc(Ω) represents the complement set of B(Ω) in X .
The input parameters of Algorithm 1 are the non linear system
(1), the sets X and U that represent the states and inputs al-
lowed, the target set Ω and two tolerances εA1,εA2, that bound
the level of division accomplished by the interval branch and
bound algorithms. The algorithm returns three lists of boxes:

1. The one-step set approximation B(Ω).

2. Ln that represents the states that can not be driven to Ω, so
∀xk ∈ Ln � ∃uk ∈U | f (xk,uk) ∈ Ω.

3. Lu that includes the undetermined boxes with εA1,εA2 se-
lected.

The complement of B(Ω) is the union of Ln and Lu, Bc(Ω) =
Lu ∪Ln.

The algorithm gets a box Xi and for that box computes a
control action ui = select(U). The operator select() can be
chosen select(U) = mid(U) or the ’best’ ui such that Xi is
driven to set Ω. The algorithm checks if the interval extension
� f (Xi,select(u)) belongs to Ω. When the result is positive, Xi

is inserted in B(Ω). If � f (Xi,U)∩Ω = Ø then Xi is inserted
in Ln. In the other case, Xi is split to be processed again if the
width of Xi is greater than εA1. If none of the previous con-
ditions is satisfied then Algorithm 2 is invoked. Algorithm 2
produces a similar search, but in U .

Algorithm 1

(B(Ω),Ln,Lu)=OneStepSetApproximation(Ω, f ,X ,U,εA1,εA2)
Alg

L = X
while L �= /0

Xi=first(L)
XF = � f (Xi,U);XmF = � f (Xi,select(U))
Select one of:
(1) if XF ∩Ω = /0 insert Xi in Ln endif
(2) if XmF ⊆ Ω insert Xi in B(Ω) endif
(3) if diam(XF) < εA1

Reachable=ProcU(Ω,Xi,F,U,εA2)
if Reachable=’NO’ insert Xi in Ln endif
if Reachable=’YES’ insert Xi in B(Ω) endif
if Reachable=’UNCERTAIN’ insert Xi in Lu

endif
endif
(4) bisect Xi and insert in L

endwhile
return Ln,B(Ω),Lu

End

The Algorithm 2 is similar to Algorithm 1. With a fixed state
box Xi given, a search in U is achieved. The algorithm returns
three possibilities: that a control signal exists that drives the
box Xi to Ω; that such a control signal does not exist or it is not
possible to assure any answer with the division level εA2.

Algorithm 2

Reachable=ProcU(Ω,Xi, f ,U,εA2)
Alg

L̃ = U
while L̃ �= /0

Ua=first(L̃)
XU = � f (Xi,Ua);mXU = � f (Xi,select(Ua))
select one of:
(1)if mXU ⊆ Ω Return ’YES’ endif
(2)if mXU ∩Ω �= /0

if diam(Ua) > εA2

bisect Ua and insert in L̃
else

insert Ua in L̃u

endif
endif
(3)Reject Ua

endwhile
if Lu = /0 return ’NO’
else return ’UNCERTAIN’



endif
End

Theorem 5 . Let Ω,X ,U compact (closed and bounded) sets,
Ω̆ the interior of Ω and a system (1) where f is continuous in Ω.
Consider the proposed algorithm in which max{εA1,εA2} < ε:

(i)∀xk ∈ B(Ω) then ∃uk ∈U | f (xk,uk) ∈ Ω
(ii)There is a real positive number ε > 0 such that:

(ii).1 if ∃xk ∈ X |∀uk ∈U f (xk,uk) /∈ Ω then
xk /∈ B(Ω)∪Lu

(ii).2 if ∀xk ∈ X , ∃uk ∈U | f (xk,uk) ∈ Ω̆ then
xk ∈ B(Ω)

Proof:

(i) The first part is easy to prove. A box Xi is inserted in B(Ω)
only when ∃uk ∈ U such � f (Xi,uk) ⊆ Ω so, by Theorem 3
∀xk ∈ Xi |∃uk ∈U f (xk,uk) ∈ Ω then xk ∈ B(Ω).

As a consequence of this result, it follows that B(Ω) ⊆ Q(Ω)
so the algorithm returns a correct Qap(Ω).

(ii) To prove the second part is considered that zk denotes the
vector (xk,uk) and Ball(zk,r) denotes the sphere of radius r and
center zk.

(ii).1 If ∃xk ∈ X | ∀uk ∈ U f (zk) /∈ Ω then ∃Ball(zk,ε) such
that f (Ball(zk,ε) ∩ Ω = /0. By interval monotonic inclu-
sion ∃Zk ⊂ Ball(zk,ε) with zk = mid(Zk) such that � f (Zk) ⊆
f (Ball(zk,ε)) where Zk is a box. So, � f (Zk)∩Ω = /0 . Then,
any box Ẑk ⊆ Zk fulfills � f (Ẑk)∩Ω = /0. So with appropriate
εA1 and εA2, Algorithm 1 inserts xk in Ln.

(ii).2 If ∀xk ∈ X | ∃uk ∈ U f (zk) ∈ Ω̆ then ∃Ball(zk,ε) such
that f (Ball(zk,ε) ⊆ Ω̆. By interval monotonic inclusion
∃Zk ⊂ Ball(zk,ε) with zk = mid(Zk) such that � f (Zk) ⊆
f (Ball(zk,ε)) where Zk is a box. So, � f (Zk) ⊆ Ω̆ . Then,
any box Ẑk ⊆ Zk fulfills � f (Ẑk) ⊆ Ω̆. So with appropriate εA1

and εA2, Algorithm 1 inserts xk in B(Ω).

A first consequence of theorem 5 is that if εA1,εA2 −→ 0 then
B(Ω) −→ Q(Ω), so B(Ω) can be a reliable approximation of
the exact set Q(Ω) and because X ,U are the search space of
Algorithms 1-4, state and control constraints are fulfilled.

5 One-step set polytopic approximation

An approximate one-step set can be obtained by means of Al-
gorithms 1-2. This set is represented by a list of boxes. In
order to obtain a simpler representation, polytopes are pro-
posed. Given a target set Ω and the B(Ω) set obtained by Al-
gorithms 1-2, Algorithms 3-4 returns a polytope denoted P(Ω)
with P(Ω) ⊆ B(Ω) ⊆ Q(Ω). A new sequence of control invari-
ant sets can be obtained by Qap(Ω) ≡ P(B(Ω)).

The input parameters of Algorithm 3 are: B(Ω), the number
of facets of the polyhedral n and a tolerance δ . The algorithm
returns a polytope P(Ω). Each facet of the polyhedral is of the
form bmin ≤ ctx ≤ bmax where c fulfills ‖c‖ = 1 and the scalars
bmax and bmin are calculated by the optimization problems:

bmax = max
x∈B(Ω)

ctx

bmin = min
x∈B(Ω)

ctx

The solutions of these optimization problems are obtained go-
ing through the list of boxes B(Ω). When bmax and bmin are
known the constraints ctx ≤ bmax − δ and −ctx ≤ −(bmix + δ)
are added to the polytope P(Ω). This process is repeated n
times.

Algorithm 3

P(Ω) = InsidePolytope(B(Ω),n,δ)
Alg

P(Ω) = /0
for 1 to n

c = Select a slope vector
bmax = Maximun value of ctx with x ∈ B(Ω)
bmin = Minimum value of ctx with x ∈ B(Ω)
Add to P(Ω) the constraints

ctx ≤ bmax −δ and −ctx ≤−(bmin +δ)
endfor
P(Ω)=Delete unnecessary constraints to P(Ω)
return P(Ω)

Alg

Algorithm 3 provides a polytopic approximation of B(Ω), but
does not guarantee the absence of states that belongs to Bc(Ω)
in P(Ω). Thus, it is needed to erase the states that belong to the
resulting P(Ω)∩Bc(Ω). The Algorithm 4 is proposed to obtain
an inner polytope. The input parameters of Algorithm 4 are:
Bc(Ω) and P(Ω).

Algorithm 4 discards boxes Bi of Bc(Ω) that does not belong to
P(Ω). If Bi∩P(Ω) �=� the nearest face of the polytope P(Ω)is
moved until the box is out of P(Ω) (Compact P(Ω)).

Algorithm 4

P(Ω) = EraseStatesNotInside(P(Ω),Bc(Ω))
Alg

while Bc(Ω) �= /0
Bi = First element of Bc(Ω)
if Bi ∩P(Ω) �= � Compact P(Ω)
else Reject Bi

endif
endwhile
P(Ω)=Delete unnecessary constraints to P(Ω)
return P(Ω)

End



Figure 1.a: B(Ω) with εA1=0.03 and εA2=0.1

Figure 1.b: B(Ω) with εA1=0.01 and εA2=0.1

Theorem 6 Let B(Ω) a set represented by a list of boxes, and
P(Ω) a polytope calculated by Algorithms 3-4 then P(Ω) ⊆
B(Ω) and P(Ω)∩Bc(Ω) = /0.

The proof of this theorem follows from the previous discussion
and it is omitted because of lack of space.

6 Example

As illustrative example of the proposed controller, the tech-
nique is applied to a system used in [5] and described by the
following ODEs:

ẋ1 = x2 +u(µ+(1−µ)x1)

ẋ2 = x1 +u(µ+4(1−µ)x2)

where the parameter µ = 0.5 and the input constraint is |u| ≤ 2.
The system is discretized with a sampling time of 0.1 time-
units using a fourth order RK. A linear locally stabilizing state
feedback gain K = [2.118 2.118] is used to derive the initial
control invariant set Ω = {x ∈ IR2|xtPx ≤ 0.7} where:

P =
[

16.5926 11.5926
11.5926 16.5926

]

Fig. 1.a shows the one step approximation B(Ω) and Ω. B(Ω)
has been computed using Algorithm 1 and 2 with εA1 = 0.03
and εA2 = 0.1.

A better approximation to the one step set can be obtained using
a smaller error bound as shown in Fig. 1.b where εA1 = 0.01
and εA2 = 0.1 have been choosen.

Figure 2: Bi(Ω) with i=0..9

Fig. 2 shows a sequence Bi(Ω) with i = 1..9 using εA1 = 0.01,
εA2 = 0.1 and Algorithms 1-2.

Figure 3: P(B1(Ω))

The inner polytope P(B1(Ω)) is shown in Fig. 3. The polytope
has been obtained using Algorithms 3-4.

A sequence Pi(Ω) with i = 0..9 obtained by applying Algo-
rithms 1-2-3-4 can be seen in Fig. 4.



Figure 4: Pi(Ω) with i=0..9

7 Conclusion

A solution to the problem of determining the reachability of a
target set is proposed. The paper shows how given an initial
control invariant set, a sequence of control invariant sets can
be computed recursively. Two possibilities are considered to
define the control invariant sets: boxes and polytopes. A list of
boxes provides a reliable approximation to the exact one-step
set while polytopes provide a simpler definition but a worse
approximation. The sequences of controlled sets can be used
to design controllers and to guarantee stability because state
and control constrains are fulfilled.
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cho. Stability analysis and synthesis of fuzzy systems. In
Proceedings of the 15th IFAC World Congress, Barcelona,
Spain, 2002.

[5] L. Chisci and G. Zappa. Robustifying a predictive con-
troller against persistent disturbances. In Proceedings of
ECC, 1999.

[6] J.D. Glover and F.C. Schweppe. Control of lin-
ear dynamic systems with set constrained disturbances.
IEEE Transactions on Automatic Control, 16(5):411–
423, 1971.

[7] E. Hansen. Global optimization using interval analysis.
Marcel Dekker, Inc., 1992.

[8] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied In-
terval Analysis with Examples in Parameter and State Es-
timation, Robust Control and Robotics. Springer-Verlag,
2001.

[9] R.B. Kearfott. Rigorous Global Search: Continous Prob-
lems. Kluwer, Dordrecht, Netherlands, 1996.

[10] E. C. Kerrigan. Robust Constraint Satisfaction: Invariant
Sets and Predictive Control. PhD thesis, University of
Cambridge, 2000.

[11] D. Limón Marruedo, T. Álamo, and E.F. Camacho. En-
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