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Abstract

This contribution is devoted to computer algebra based algo-
rithms for the analysis of systems of implicit ordinary differ-
ential equations. These systems are identified with submani-
folds in a suitable jet space. It is outlined how the accessibility
and observability test for implicit ordinary differential equa-
tions can be solved via an approach utilizing transformation
groups, which has been already published. Since this approach
requires systems in formally integrable form, an algorithm for
the derivation of this form is presented and it is shown, how
Groebner bases can be successfully applied in the case of im-
plicit systems with polynomial nonlinearities. In addition, the
algorithms for the tests on observability and accessibility ac-
cording to the proposed approach are sketched.
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1 Introduction

When modeling finite dimensional mechanical or electrical
systems the DAE (differential algebraic equations) approach
turns out to be a very natural one. Especially object oriented
modeling or the modeling via port connections lead to systems
of this form. A DAE system is a set of nx ordinary differen-
tial equations together with ns purely algebraic equations (con-
straints) of the form

ẇαx = fαx(w, v) , αx = 1, . . . , nx

0 = gαs(w, v) , αs = 1, . . . , ns ,
(1)

in the dependent variables w and v. Here ẇ denotes the deriva-
tive of w with respect to the single independent variable t. For
control purposes, the treatment of DAEs is not straightforward,
since a DAE may contain hidden constraints which lead to the
index problem (see e.g. [2]). One possible way is the cal-
culation of a corresponding explicit system. Once this step
is accomplished, one can use numerous design tools, see e.g.
[6], [5], [10]. However, to find the corresponding explicit sys-
tem to a given DAE is a task where no simple solution exists.

Therefore, we propose a different approach, investigating the
equations (1) themselves, without transforming them to an ex-
plicit system. We do this by using a geometric description of
the dynamical system, such that it is independent of the chosen
representation. With the help of this framework we consider
systems of the form

fαe(t, z, ż) = 0 , αe = 1, . . . , ne with z = (zαz ) (2)

in the nz dependent variables zαz and show how the accessi-
bility and observability problem can be solved for this system
class.

This contribution is organized as follows: In Section 2 we sum-
marize some mathematical preliminaries and notation we will
need in the sequel. We introduce jet bundles and show how one
can identify a dynamical system as a submanifold of a suitable
jet space. The key concept for all further analysis is formal in-
tegrability, which we will show in Section 2.2. An algorithm to
derive the formally integrable form is presented and in Section
2.3 the issue of equivalence to an explicit system is treated. In
Section 2.4 we consider systems (2), in which the f ie are poly-
nomials, and use the prior defined geometric correspondence
and tools from algebraic geometry to present a more efficient
algorithm for this subclass. Afterwards we will outline a test
on observability and accessibility for formally integrable im-
plicit systems in Section 3 by applying transformation groups
and give algorithms for the implementation. We apply these
algorithms in Section 4 to the planar VTOL model in order to
show their applicability. We finish this contribution with some
conclusions.

2 Preliminaries

2.1 Jet-Bundles

In the sequel we will use the notion of jet manifolds for our in-
vestigations. For an introduction into the theory and concepts
of jet manifolds the reader is referred to [8], [11]. In this Sec-
tion we mainly want to summarize the notation.

We will use (smooth) bundles as our geometric framework,
a special type of fibred manifolds given by a triple (E , π,B)
where E and B are smooth manifolds and the projection π :
E → B is a surjective submersion, which assigns each point
of the total manifold E the corresponding point in the base B.
The manifold Fp = π−1 (p) with p ∈ B is called the fibre
over p. If all fibres are diffeomorphic to a typical fibre, we call
(E , π,B) a (fibre-) bundle. However, we will write E instead of
(E , π,B), whenever the projection π and the base manifold B



follow from the context. A map σ : B → E is called a section σ
of E if π ◦ σ = idB is met, where idB denotes the identity map
on B. The set of all sections of E is denoted with Γ (E). On a
bundle, one can always, at least locally, introduce adapted co-
ordinates in the form

(

xi, uα
)

, i = 1, . . . , nx , α = 1, . . . , nu

with the independent coordinates xi on B and the uα called the
dependent ones. Given two bundles (E , π,B) and

(

Ē , π, B̄
)

, a
bundle morphism is a transformation (fB, fE) which preserves
the bundle structure, i.e. π̄◦fE = fB◦π holds. Important exam-
ples are the tangent and the cotangent bundle, which are vector
bundles, i.e. fE (x, u) is linear in u, denoted by (T B, τ ,B) and
(T ∗B, τ∗,B), respectively. Using the Einstein convention for
sums, we write v = vi∂i for v ∈ Γ (T B) and ω = ωidx

i for
ω ∈ Γ (T ∗B) with vi, ωi ∈ C∞ (B), where C∞ (B) denotes
the set of smooth functions on B. With v (f) we denote the Lie
derivative of f ∈ C∞ (B) along v ∈ Γ (T B).

Given a section σ ∈ Γ (E), its partial derivatives are denoted
by ∂iσ = ∂

∂xiσ or ∂k

∂
j1
1

···∂
jp
p

f = ∂Jf , with the ordered multi-

index J = (j1, . . . , jp), and k = #J =
∑p

i=1 ji. The special
index J = j1, . . . , jp, ji = δik will be denoted by 1k and
J + 1k is a shortcut for ji + δik with the Kronecker symbol
δik. The first jet manifold of E (see, e.g., [4], [11] and [7])
is denoted by J1E . Roughly speaking J1E is a container for
prolongations j1σ of sections σ ∈ Γ (E), which in adapted co-
ordinates take the form j1σ : x →

(

xi, σ (x) , ∂iσ (x)
)

. An
adapted coordinate system on J1E is given by

(

xi, uα, uα
1i

)

with the ninα new coordinates uα
1i

. The two natural projec-
tions of J1E are denoted by π : J1E → B and π1

0 : J1E → E
with π

(

j1σ (x)
)

= x and π1
0

(

j1σ (x)
)

= σ (x) for the sec-
tion σ ∈ Γ (E) and j1σ ∈ Γ

(

J1E
)

. Analogously, the nth-
jet manifold of E is denoted by JnE . We write u(n) = uα

J ,
α = 1, . . . , nu, #J = 0, . . . , n for all jet variables of u up
to the order n. The nth-order total derivatives with respect to
the independent coordinates xi are denoted with di. In adapted
coordinates

(

xi, uα
)

the di ∈ T Jn+1E take the form

di = ∂i + uα
J+1i

∂J
α , with ∂J

α =
∂

∂uα
J

, #J = 0, . . . , n. (3)

Given a section σ ∈ E and a smooth real valued function
f ∈ C∞

(

JkE
)

, the di connect jkσ and jk+1σ in the form
dif ◦ jk+1σ = ∂if

(

jkσ
)

. The dual objects to the fields
di ∈ T Jn+1E are the 1-forms ωα

J ∈ T ∗Jn+1E , called con-
tact forms,

ωα
J = duα

J − uα
J+1i

dxi , #J = 0, . . . , n. (4)

A bundle morphism (fB, fE) defined between bundles
(E , π,B),

(

Ē , π̄, B̄
)

, can be prolonged to a map j1fE : JE →
J Ē in the form j1fE ◦ j1σ = j1 (fE,∗σ) fB with fE,∗σ =
fE ◦ σ ◦ fB, iff fB is a diffeomorphism.

In order to use algebraic tools for the description of sub-
manifolds, let us recall the following fact. Given a
manifold M, if we find d functions f i ∈ C∞ (M)
which are functionally independent then the variety N =
{

x ∈ M, f i (x) = 0, i = 1, . . . , d
}

is regular submanifold.

Let us make some further observations. Obviously the set
C∞ (M) has the structure of a local commutative ring (with
the operations addition and multiplication). If we denote
with Sp a regular submanifold in the neighborhood of a
point p ∈ M, then the set {f ∈ C∞ (M) , f (Sp) = 0}
generates an ideal, which we denote by I (Sp). In [7]
it is shown, that any functionally independent set of func-
tions B =

{

f i|i = 1, . . . , d
}

generate an ideal denoted by
〈

f i|i = 1, . . . , d
〉

. If now f i (Sp) = 0 holds then I (Sp) =
〈

f i|i = 1, . . . , d
〉

follows. These observations lead us to a co-
ordinate independent representation of a dynamical system.

2.2 Dynamical Systems and Formal Integrability

In the sequel we restrict our attention to systems of ordinary
differential and algebraic equations of the form

0 = fαe(t, zαz , zαz

1 ) , αe = 1, . . . , ne (5)

in the single independent variable t ∈ T ⊂ R which involves
jet coordinates z(1) of the dependent variables z up to order 1
with z ∈ Z ⊂ R

nz . T and Z are smooth manifolds. The total
manifold is given by E = T ×Z where we use the coordinates
(t, z) locally. Within the jet bundle formalism, introduced in
the last section, z1 is just the name of a coordinate and (5) is
an equation on J1E and we assume that (5) defines a regular
submanifold S1 of J1E , at least locally. Additionally, if the
jacobian of f has full rank on the solution set S1 of (5) then S1

defines a regular submanifold of J1E .

For a system like (5) there exist two natural operations, its pro-
longation and its projection [7]. The projection πn

m allows us
to transfer objects defined on JnE to objects on JmE . The
projection πn

m (Sn) with n > m of Sn is simply obtained by
elimination of all variables uα

J , m < #J ≤ n. The geomet-
ric picture of this operation is straightforward due to the bun-
dle structure of JnE , which incorporates the natural projection
πn

m : JnE → JmE . The prolongation of an object allows us
to transfer an object of JmE to JnE with n ≥ m. Given the
submanifold Sm ⊂ Jm (E), then the s-order prolongation of
Sm is given by Sm+s = (πm+s

m )
−1

(Sm) ∩ Jm+s (E). With
the total derivative d1 from (3) the first prolongation S1+1 =
S2 ⊂ J2E of the submanifold S1 is given by

{

f ie , d1f
ie

}

. In a
straightforward manner we can define the r-th prolongations of
Sn, which is denoted by Sn+r. Repeated prolongation and pro-
jection of a system like (5) generate new systems such that the
inclusion πn+r+s

n+r (Sn+r+s) ⊂ Sn+r is met. Iff Sn+r are reg-
ular submanifolds of Jn+rE and πn+r+s

n+r (Sn+r+s) = Sn+r

is met for all r, s ≥ 0, then we call the system Sn+r for-
mally integrable. In general, the projection task can be very
difficult, if the equations (5) incorporate nonlinearities in the
highest derivatives. However, especially if the projection step
follows a prolongation, the prolonged equations are affine in
the highest order derivatives and only linear algebra is needed
for the elimination process.

In contrast to systems involving more independent variables,
i.e. PDEs, for (5) we can state an algorithm, that terminates



after a finite number of steps, and computes its formally inte-
grable system. To do this, let us assume that the functions fαe

are linearly independent with respect to z(1). Taking the first
prolongation S1+1 leads to the new equations

d1f
αe = ∂1

αz
fαe zαz

2 + ∂αz
fαe zαz

1 + ∂tf
αe = 0 . (6)

Now, if linear combinations of the form λαe
∂1

αz
fαe zαz

2 = 0
can be found, then it is obvious that the system

λαe
(∂αx

fαe xαx

1 + ∂αu
fαe uαu

1 + ∂tf
αe)

S1

= 0 (7)

is independent of z2 on S1. Thus, the system (7) defines an
additional constraint λαe

fαe . This can be seen by looking at
the equation

∂1
αz

(λαe
fαe) = ∂1

αz
(λαe

) fαe + λαe
∂1

αz
(fαe)

S1

= 0 . (8)

The first term vanishes on the solution set of fαe and the second
term due to the condition for λαe

. It is worth mentioning here,
that in general it is not straightforward to symbolically elimi-
nate the variables zαz

1 from the equations λαe
fαe , although we

know the elimination is possible in principle, see also Remark
2. In order to state the algorithm, let us rewrite the system (5)
in the form

0 = fαx (t, zαz , zαz

1 ) , αx = 1, ..., nx (9a)
0 = fαs (t, zαz ) , αs = nx + 1, ..., nx + ns (9b)

such that the sets of functions {fαs} and {d1f
αs , fαx} are

functionally independent on S1 with respect to z(1). We say
a system is well-posed, if it is formally integrable, i.e., no con-
straints of the form (7) exist. With the following algorithm
every system of this form (9a)-(9b) can be transformed to a
well-posed one.

Algorithm 1 [wellpose] Formal Integrability
Input: {fαx} , {fαs} , [t, zαz ]

Initialization: F1 = {fαx} , F0 = {fαs} =
{

fα0
s

}

Eliminate a minimal number of equations of F0, s.t. the fα0
s

are functionally independent.
Iteration (k):

(1) Prolong F1 and F0,k in the form F
(1)
1 = d1 (F1) and

F
(2)
0,k = (d1)

2
(F0,k) . Find the set of all constraints Ck =

π2
1

(

F
(1)
1 ∪ F

(2)
0,k

)

, with π2
1 : J2E → J1E , as described above,

and derive F0,k+1 = F0,k ∪ Ck.
(2) Eliminate a minimal number of functions from F0,k+1 =
{

fαk+1
s

}

, such that the remaining are functionally indepen-

dent. If dim (F0,k) < dim (F0,k+1) then set k = k + 1 and
goto (1).
(3) Eliminate a minimal number of equations of F1, such that
no more linear combinations of the form (8) exist (F1,end ⊂
F1).
Result: [F1,end, F0,k]

Remark 2 For systems, linear in the highest order derivatives,
the projection π2

1 in step (1) just needs linear algebra in order
to carry out the required elimination. For general implicit sys-
tems, symbolic simplifiers provided by the user can help in this
step, however, it may occur, that we know an additional in-
variant exists, but we cannot derive the symbolic expression, in
which the variables z1 disappear. In Section 2.4 we show how
π2

1 can be implemented in the case of polynomial nonlineari-
ties.

2.3 Equivalence to Explicit System

In [13] it has been shown, that for a formally integrable system
in the form (9a) and (9b), there exists a coordinate transforma-
tion (10)

z̄αx = ϕαx (t, z) , z̄αs = ϕαs (t, z) , (10)
z̄αu = ϕαu (t, z) ,

αx = 1, ..., nx, αs = nx +1, ..., ne, αu = ne +1, ..., nz , with
ϕαs (t, z) = fαs (t, z) from (9b) and zαz = ψαz (t, z̄), such
that in the new coordinates z̄ the system takes the form

z̄αx

1 = f̄αx (t, z̄αx , z̄αx , z̄αu , z̄αu

1 , z̄αs) , (11)
z̄αs

1 = 0, z̄αs = 0, (12)

which is an explicit system in the variables z̄αx and z̄αs . Here
the nx variables z̄αx denote the state of the system and the
variables z̄αu the input, i.e. the functions that can be chosen
freely. By substituting z̄αs = 0 we obtain an explicit differ-
ential equation in the coordinates z̄αx . However we can do
more and ask whether also the input derivatives z̄αu

1 can be
eliminated in (11), i.e. a classic state space representation is
possible, by considering the ideal generated by the functions
fαx , fαs in (9). If we state the test for equivalence as an ideal
membership test (see [13] for details) we get the compatibility
condition

∧

αs

dϕαs ∧
∧

βz

∂1
αz
fβxdzαz ∧d

(

∂1
αz
fβxdzαz

)

∧dt
S1

= 0 (13)

which can be checked via computer algebra in a straightfor-
ward way.

2.4 Algebraic Geometry

We have seen in Section 2.1 that by introducing jet coordinates,
we are able to use algebraic tools for the analysis. The field of
algebraic geometry provides very efficient algorithms for the
investigation into ideals generated by polynomials. In order to
state an improved Algorithm 1 for this subclass, we first in-
troduce some terminology. We refer to e.g. [3] or [1] for an
introduction and further issues of algebraic geometry. A poly-
nomial f in the coordinates xi with coefficients in k is a fi-
nite linear combination of monomials of the form f = aJx

J ,
x = (x1, . . . , xn), J = (j1, . . . , jn), ji ∈ N0, aJ ∈ k.

We denote the set of polynomials with coefficients aJ ∈ k



with k
[

x1, . . . , xn
]

, which has the structure of a commuta-
tive ring. The submanifold given by the set of solutions for
the polynomial system fα (x) = 0, α = 1, . . . , s, is called
the variety generated by the functions fα. We denote it with
V (fα, α = 1, . . . , s). Again here, in order to link the algebraic
description and its geometric picture we consider ideals, gener-
ated by polynomial functions, in our notation

〈

f1, . . . , fs
〉

=
〈fα〉, and ideals corresponding to a given variety, denoted by
I (V ). In the sequel we will deal with regular varieties only,
i.e., we require rank (∂if

α
rad) to be constant, with 〈fα

rad〉 =
√

〈fα〉 being the radical ideal of 〈fα〉. The Hilbert basis the-
orem now states, that any ideal in k

[

x1, . . . , xn
]

, with k al-
gebraically closed, can be represented by a finite basis. One
possible basis for a given polynomial ideal is the Groebner ba-
sis. Given a monomial (well-)ordering >, the Groebner ba-
sis G corresponding to 〈fα〉 is unique. One example for a
monomial ordering is the lexicographic ordering >lex, which
we will need later on. A Groebner basis has some very pleas-
ing properties. Let us just mention the elimination property
here, which is important for our applications. Given a Groeb-
ner basis with respect to >lex-order G = {gα, j = 1, . . . , s}
of a polynomial ideal I , the k-th elimination ideal Ik is defined
as Ik = I ∩ k

[

xk+1, . . . , xn
]

. Now, the Groebner basis Gk

for Ik is given by Gk = G ∩ k
[

xk+1, . . . , xn
]

and there ex-
ists a subset of G in the form

{

gjk , jk = 1, . . . , sk ≤ s
}

such
that Gk = {gαk} holds. This property tells us, that once we
have computed the Groebner basis for I , we also have found
the Groebner basis Gk for Ik by just taking the corresponding
subset of G.

With this notation set up, we can state an improved algorithm
for systems (9a, 9b) with fαx , fαs ∈ R [t, zαz , zαz

1 ].

Algorithm 3 [wellpose] Formal Integrability for functions
fαx , fαs ∈ R [t, zαz , zαz

1 ]
Input: {fαx} , {fαs} , [t, zαz ]

Initialization: F1 = {fαx} , F0,0 = {fαs} =
{

fα0
s

}

Eliminate a minimal number of equations of F0,0, s.t. the fα0
s

are functionally independent.
Define >lex on

(

t, z(1)
)

in the form zαz

1 > zαz > t .
Iteration (k):
(1) Use >lex to calculate the Groebner basis cor-
responding to

{

fαx (t, z, z1) = 0, d1f
α0

s (t, z) = 0
}

.
This results in an equation system of the form
{

gi1 (t, z, z1) = 0, gi0 (t, z) = 0
}

, with n1 equations gi1 of
order one and n0 equations gi0 of order zero. Add these equa-
tions to the set of restrictions, i.e. set F0,k+1 = F0,k ∪

{

gi0
}

.
(2) Eliminate a minimal number of equations from
F0,k+1 =

{

fαk+1
s

}

, such that the fαk+1
s are function-

ally independent. If dim (F0,k) < dim (F0,k+1) then set
k = k + 1 and goto (1).
(3) Eliminate a minimal number of equations of F1, such
that no more linear combinations of the form (7) exist
(F1,end ⊂ F1).
Result: [F1,end, F0,k]

Remark 4 The equations gi0 of step (1) constitute a basis
(namely a Groebner basis) for the elimination ideal Inz

=
I ∩ R [t, zαz ].

Remark 5 The efficiency of the algorithm can be improved by
using a different ordering for

(

t, z(1)
)

, however, no investiga-
tions were made into this direction so far.

3 Applications

In the following we want to show, how the observability and
accessibility analysis for formally integrable systems (9a), (9b)
with output y ∈ Y ⊆ Rny

yαy = cαy (t, z) , αy = 1, . . . , ny (14)

can be approached with the tools set up in the foregoing. We
again assume, that equation (14) defines a regular submanifold
S1 ⊂ J1E . Since we want to focus on the computational im-
plementation, we mainly summarize the results here and refer
for more details on this approach via Lie groups to [12].

3.1 The Observability Test for Implicit Systems

Let us consider a 1-parameter transformation (Lie) group Φε :
(t, z) → (t, z̄) that acts on the solutions of (9). Its infinitesimal
generator v and first prolongation j (v) (see e.g. [7] or [9]) has
the form

v = Zαz∂αz
, j (v) = v + d1 (Zαz ) ∂1

αz
. (15)

If such a Lie group exists, that transforms solutions of (9) to
other solutions, and leaves the output (14) invariant, i.e., j (v)
of (15) satisfys the conditions

j (v) (fαx) = 0 , v (cαy ) = 0 , (16a)
v (ϕαs) = 0 , v (ϕαu) = 0 , (16b)

with the functions ϕαs , ϕαu from (10), then we say the system
is not observable. To test, whether non trivial solutions for v
exist we have to calculate the formally integrable system of
(16) and (9) according to Algorithm 1. With this approach the
check for observability is reduced to a matrix rank condition.
For explicit systems of the form

xαx

1 = fαx (x, u) , αx = 1, . . . , nx (17)
yαy = cαy (x, u) , αy = 1, . . . , ny (18)

test is equivalent to the well known criteria for observability
one can find in text books like [5] and [6].

Algorithm 6 Observability test for system (14).
Input:

{

f̄αx
}

,
{

f̄αs
}

, [t, zαz ] , cαy , ϕαu

(1) Calculate the system in formal integrable form
[{fαx} , {fαs}] = wellpose

({

f̄αx
}

,
{

f̄αs
}

, [t, zαz ]
)

.
(2) Set up the vector field j (v) = Zαz∂αz

+ Zαz

1 ∂1
αz

.
(3) Calculate F1 = {〈j (v) ,dfαx (t, z, z1)〉},



F0,0 =
{

〈dcαy , j (v)〉 ,
〈

df is , j (v)
〉

, 〈dϕαu , j (v)〉
}

.
(4) Set f1 = {fαx , d1 (fαs)}.
(5) Define the projection pr2 : J T E → T E of the form
(t, z, Z, z1, Z1) → (t, z, Z) given by elimination via the
functions F1 and f1.
Iteration (k):

(1) Calculate the prolongation F
(1)
0,k = d1 (F0,k). Find the

set of all constraints Ck via the projection π1
0 according to

Ck = π1
0

(

F1 ∪ F
(1)
0,k

)

, and add them to F0,k to dervive
F0,k+1 = F0,k ∪ Ck.
(2) Eliminate a minimal number of equations F0,k+1 =

{

gj
}

,
such that the gj are functionally independent.
If dim (F0,k) < dim (F0,k+1) then set k = k+ 1 and goto (1).
Result:
If dim (F0,k) = nx then the system is observable.
Else the system is not observable.

Remark 7 Again we can improve this algorithm for systems,
where the functions fαx and fαs are polynomials in

(

t, z(1)
)

.
The following algorithm shows, how π1

0 of step (1) can be im-
plemented with the help of Groebner bases.

Algorithm 8 Observability test for system (14) with
f̄αx , f̄αs ∈ R [t, zαz , zαz

1 ].
Input:

{

f̄αx
}

,
{

f̄αs
}

, [t, zαz ] , cαy , ϕαu

(1)-(4) like in Algorithm 6.
(5) Define a lexicographic ordering >lex in the form
zαz

1 > Zαz

1 > zαz > Zαz > t.
Iteration (k):
(1) Use >lex of step (5) to calculate the Groeb-
ner basis corresponding to the set {F1, F0,k, f1}.
This results in an equation system of the form
{

gi1 (t, Z, z, Z1, z1) = 0, gi0 (t, Z, z) = 0
}

, with the n1

equations gi1 of order one and n0 equations gi0 of order
zero. Add these equations to the set of restrictions, i.e. set
F0,k+1 = F0,k ∪

{

gi0
}

.

(2) Eliminate a minimal number of equations F0,k+1 =
{

gj
}

,
such that the gj are functionally independent. If
dim (F0,k) < dim (F0,k+1) then set k = k + 1 and
goto (1).
Result:
If dim (F0,k) = nx then the system is observable.
Else the system is not observable.

3.2 The Accessibility Test for Implicit Systems

For the accessibility analysis we consider transformation
groups Φε : (t, z) → (t, z̄) acting on the variables z, their in-
finitesimal generators v having the form (15), and ask whether
there exist common invariants I of all possible v satisfying

v (I) = 〈ω, v〉 = 0 , dI = ω + ∂1Idt , (19)
ω = ωβz

dzβz . (20)

Like in the last section, we have to formulate appropriate con-
ditions for v. Of course, the group action has to leave the sys-
tem equations of the formally integrable system (9) invariant,

which can be stated in the form

0 = j (v) (fαx) , (21a)
0 = v (fαs) = v (ϕαs) = j (v) (d1ϕ

αs) . (21b)

If non trivial invariants I of the form (19) exist for all solu-
tions v satisfying (21), we say the system is not accessible.
By rearranging the (Zαz ) of v into (Zαx , Zαs , Zαu) such that
we can solve the linear equation (21b) for Zαs in the form
Zαs = cαs

αx
Zαx + cαs

αu
Zαu and eliminate the variables Zαs ,

d1Z
αs in the equations (21a) and (19) we get

j (v) (fαx) = aαx
γx
d1Z

γx + aαx
γu
d1Z

γu (22)
+bαx

γx
Zγx + bαx

γu
Zγu

0 = d1 (v (I)) = d1ω̄γx
Zγx + d1ω̄γu

Zγu (23)
+ω̄γx

d1Z
γx + ω̄γu

d1Z
γu

with ω̄γi
= ωγi

+ cαs
γi
ωαs

, i ∈ {x, s}. Due to the formal
integrability of (9) we can solve (22) for d1Z

γx and eliminate
these variables from (23), which has to vanish independently
from the choice of Zγx , Zγu and d1Z

γu . From this claim, we
directly get (with âγx

αxa
αx

βx
= δ

γx

βx
)

d1ω̄γx
= ω̄γx

âγx
αx
bαx
γx
, (24a)

d1ω̄γu
= ω̄γx

âγx
αx
bαx
γu
, ω̄γu

= ω̄γx
âγx

αx
, (24b)

the partial differential equations (24) defining the solution
space for ω. Now, we have to check by calculating the formally
integrable form for (24a, 24b, 9) whether this solution space is
non trivial. Again, for explicit systems of the form (17) this
result coincides with the well known criteria one can find in
textbooks like [5], [6].

Remark 9 It is worth mentioning, that the invariants I in (19)
may depend on the input. This might sound a bit strange, how-
ever, one can easily state even very simple examples of explicit
systems of the form (11) which admit such invariants. We just
mention the system ẋ = u̇ here. If we are not interested in this
type of invariants, only slight modifications to the presented
algorithms are necessary (see also [12]).

For the accessibility test algorithms, analogous to Algorithms
6 and 8 for the test on observability can be stated, however, due
to lack of space we confine ourselves with the provided sketch
of an implementation for the accessibility test in this section.

4 An example: The PVTOL-Aircraft

According to [10] a mathematical model for a planar vertical
take-off and landing aircraft (PVTOL) has the form

0 = z1
1 − z2 (25a)

0 = z2
1 − (−z7 sin

(

z5
)

+ εz8 cos
(

z5
)

) (25b)

0 = z3
1 − z4 (25c)

0 = z4
1 −

(

z7 cos
(

z5
)

+ εz8 cos
(

z5
)

− 1
)

(25d)

0 = z5
1 − z6 (25e)

0 = z6
1 − z8 (25f)

0 = f (t) −
(

z1 − ε sin
(

z5
))

. (25g)



We added the equation (25g), which represents a trajectory pro-
file, the airplane is intended to follow. In order to test the re-
stricted mathematical model (25) on accessibility and observ-
ability and to show, how Groebner bases can be successfully
applied, we substitute cos

(

z5
)

= cz5, sin
(

z5
)

= sz5 and add
the equation

(

sz5
)2

+
(

cs5
)2

= 1. The formally integrable
form for (25) is given by the equations

0 = z3
1 − z4 (26a)

0 = z4
1 −

(

z7cz5 + εz8cz5 − 1
)

(26b)

0 = z5
1 − z6 (26c)

0 = z6
1 − z8 (26d)

and the algebraic restrictions

0 =
(

sz5
)2

+
(

cs5
)2

− 1 (27a)

0 = f (t) −
(

z1 − εsz5
)

(27b)

0 = −z2 + εcz5z6 + f1(t), (27c)

0 = z7sz5 − εsz5
(

z6
)2

+ f2(t) . (27d)

So we see that, by adding the restriction (25g), two more hid-
den constraints confine the system dynamics and the state di-
mension reduces to 4. For the accessibility test we set up the
partial differential equations in the components ω̄ according to
(24) and derive a formally integrable form with 4 (functionally
independent) algebraic restrictions in addition to the 4 restric-
tions implied by (27). This means, there is no non trivial so-
lution for ω, no invariant I according to (19) exists, and the
equations (25) are accessible. For the observability test with
respect to the output y = z3 we derive for the formally inte-
grable form of (16) 4 additional restrictions in addition to the
4 implied by (27), thus the system is observable from the out-
put y = z3. The choise y = z1 leads to a formally integrable
form of (16) with a total of 6 algebraic restrictions and 2 partial
differential equations in the components of v in the form

{

d1Z
3 − Z4, d1Z

4 − Z7cz5 +
(

z7sz5 − εz8cz5
)

Z5
}

.

These equations admit a non trivial solution for Z3 and Z4

and we conclude, that system (25) is non observable from the
output y = z1.

5 Conclusions

This contribution deals with the application of computer alge-
bra methods in the analysis of systems of implicit ordinary dif-
ferential equations. A system description, independent of the
chosen coordinate system and representation in form of equa-
tions is set up, by identification of the system with its corre-
sponding submanifold in a suitable jet space. To do this, a
corresponding system in formally integrable form has to be de-
rived and an algorithm which performs the required steps has
been presented.

For systems non-linear in the highest order derivatives the elim-
ination tasks, which have to be performed, are not straight-
forward symbolically. However, if the nonlinearities in fαx

are polynomials we can use Algorithm 3 for the computa-
tion, which utilizes Groebner bases to perform the elimination.
As applications of this approach, algorithms to solve the ob-
servability and accessibility problem for formally integrable
implicit systems, based on transformation groups, have been
sketched. The presented algorithms are implemented in a pack-
age DAEEXTALG for the computer algebra system MAPLE.
An example namely the application of the package to the pla-
nar VTOL model has been shown.
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