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Abstract

In the context of discrete-time adaptive control of plants sub-
ject to parameter variations, direct adaptive control (despite
various attempts: model reference control, minimum variance
self-tuning) cannot effectively be used in practice because the
discrete-time plant models feature generically unstable zeros.

There is however another extremely important area for appli-
cation of adaptive control: rejection of unknown disturbances.
The paper shows that in this case it is possible to develop direct
adaptive control schemes, which are very effective in practice.
These schemes perform better and they are simpler than the
indirect adaptive control schemes. This is illustrated by their
application to adaptive rejection of unknown narrow band dis-
turbances in an active suspension system.

1 Introduction

Most of the literature dedicated to adaptive control is focused
toward the problem of high performance control of plants sub-
ject to (significant) plant parameters variations (or uncertainty).

Discrete time solutions have been proposed for this problem
(for a state of the art see [1, 4]). Unfortunately the discrete
time models of the plant feature generically unstable zeros. For
this reason, direct adaptive control schemes (model reference
adaptive control, minimum variance stochastic self-tuning con-
trollers), which assume that the plant zeros are stable, have a
very limited use in practice (in the reported applications a care-
ful selection of the sampling period was necessary in order to
avoid unstable zeros in the plant model). The standard solution
for adaptive control in practice is to use an indirect adaptive
control scheme (combining real-time estimation of the plant
model with on-line redesign of the controller).

The combination system identification and robust control al-
lows now to tune a robust controller which in many cases as-
sures a satisfactory performance in practical situations where
the parametric variations are limited.

However, even in this very realistic practical context, another
problem can become very important, namely the rejection of
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unknown disturbances.

It appears (based on an extensive review of the literature) that
solutions for this important practical problem have been pro-
posed by the signal processing community and many appli-
cations are reported. However these solutions (inspired by
Widrow’s technique for adaptive noise cancellation [10]) ig-
nore the ”internal model principle” and require an additional
transducer. The principle of this ”signal processing solution ”
for adaptive rejection of unknown disturbances is illustrated in
figure 1. The basic idea is that a ”well located ” transducer can
provide a measurement, highly correlated with the unknown
disturbance. This information is applied to the control input of
the plant through an adaptive filter (in general a FIR) whose
parameters are adapted such that the effect of the disturbance
upon the output is minimized. The disadvantages of this ap-
proach are:(1)It requires the use of an additional transducer.
(2)Difficult choice for the location of this transducer (it is prob-
ably the main disadvantage.(3)It requires adaptation of many
parameters.

Figure 1: Signal processing approach to rejection of unknown
disturbances

Figure 2: Indirect adaptive control scheme for rejection of un-
known disturbances



To achieve the rejection of the disturbances (at least asymp-
totically) without measuring it, the controller should incorpo-
rate the model of the disturbance (the internal model principle
[3]). Therefore the rejection of unknown disturbances raises
the problem of adapting the internal model of the controller
and its re-design in real-time. The natural way for solving this
problem is to try to estimate in real time the model of the dis-
turbance and re-compute the controller, which will incorporate
the estimated model of the disturbance (as a pre-specified ele-
ment of the controller). This will lead to an indirect adaptive
control scheme. The principle of such a scheme is illustrated
in figure 2. The estimation of the disturbance model can be
done by using standard parameter estimation algorithms (see
for example [6, 7]. The time consuming part is the redesign of
the controller at each sampling time. The reason is that in many
applications the plant model can be of very high dimension and
despite that this model is constant, one has to re-compute the
controller because a new internal model should be considered.
For details on an indirect adaptive control scheme for distur-
bance rejection see [2].

Figure 3: Direct adaptive control scheme for rejection of un-
known disturbances

However, by considering the Youla-Kucera parameterization of
the controller (known also as the Q-parameterization) (see fig-
ure 3) it is possible to insert and adjust the internal model in
the controller by adjusting the parameters of theQ polynomial.
It comes out that in the presence of unknown disturbances it
is possible to build a direct adaptive control scheme where di-
rectly the parameters ofQ are adapted in order to have the de-
sired internal model without recomputing the controller (poly-
nomialsR0 andS0 in figure 3 remain unchanged). The number
of the controller parameters to be directly adapted is roughly
equal to the number of parameters of the disturbance model.
In other words the size of the adaptation algorithm will depend
upon the complexity of the disturbance model.

The objective of the paper is to show that indeed a direct adap-
tive control scheme can be developed and implemented and this
scheme is simpler and provides better performance than an in-
direct adaptive control scheme.

The paper is organized as follows. The formulation of the prob-
lem and basic notations are given in Section 2. In Section 3,
using the Youla-Kucera parameterization and the output sensi-
tivity function a direct adaptive control scheme will be devel-
oped. Section 4 will present experimental results obtained on

an active suspension using the direct adaptive control scheme
introduced in Section 3 and which will be compared with those
obtained with an indirect adaptive control scheme. The results
presented in this paper go beyond those given in [2] where only
the case of auto-tuning of the controller has been considered.
Section 5 will present some conclusions.

2 Problem Formulation and Basic Notations

The structure of a linear time invariant discrete time model of
the plant (on which is based the design of the controller) is

G(z−1) =
z−dB(z−1)

A(z−1)
,

where:

d = the plant pure time delay in number of sampling periods;
A = 1 + a1z

−1 + . . . + anA
z−nA ;

B = b1z
−1 + . . . + bnB

z−nB .

A(z−1), B(z−1) are polynomials in the complex variablez−1

andnA, nB represent their orders1.

The controller to be designed is a RS-type polynomial con-
troller (see fig. 4).

The output of the planty(t) and the inputu(t) may be written
as:

y(t) =
q−dB(q−1)

A(q−1)
· u(t) + p1(t); (1)

S(q−1) · u(t) = −R(q−1) · y(t), (2)

whereq−1 is the delay (shift) operator,p1(t) is the resulting
additive disturbance on the output of the system andR(z−1),
S(z−1) are polynomials inz−1 having the ordersnR, nS , with
the following expressions:

R(z−1) = r0 + r1z
−1 + . . . + rnR

z−nR ;
S(z−1) = 1 + s1z

−1 + . . . + snS
z−nS .

Using the equations (1) and (2), we can write the output of the
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Figure 4: Block diagram of the active suspension system

system as:

y(t) =
A(q−1)S(q−1)

P (q−1)
· p1(t); (3)

1The complex variablez−1 will be used for characterizing the system be-
haviour in the frequency domain and the delay operatorq−1 will be used for
describing the system behaviour in the time domain.



where

P (z−1) = A(z−1)S(z−1) + z−dB(z−1)R(z−1) (4)

represent the poles of the closed loop.

We define the output sensitivity function (the transfer function
between the disturbancep1(t) and the output of the system
y(t)):

Syp(z−1) =
A(z−1)S(z−1)

P (z−1)
.

This sensitivity function allows to describe the performances of
the system with respect to disturbances and to specify certain
parts ofS(z−1) in order to obtain a satisfactory disturbance
rejection.

The polynomialsR(z−1) andS(z−1) are expressed as:

R(z−1) = R′(z−1) · HR(z−1);
S(z−1) = S′(z−1) · HS(z−1), (5)

whereHR andHS are fixed parts of the controller [5].

Suppose thatp1(t) is a deterministic disturbance, so it can be
written as

p1(t) =
Np(q−1)
Dp(q−1)

· δ(t), (6)

whereδ(t) is a Dirac impulsion. The effect of the disturbance
p1(t) on the outputy(t) is given by (3):

y(t) =
A(q−1)HS(q−1)S′(q−1)

P (q−1)
· Np(q−1)
Dp(q−1)

· δ(t). (7)

We are interested in the rejection of narrow band disturbances.
In this case the energy of the disturbance is essentially repre-
sented byDp which will be characterized by a second order
polynomial with roots on the unit circle (or very close); the
contribution of the terms ofNp is weak compared to the effect
of Dp, so we can consider that the effect ofNp is negligible.

In order to apply the Internal Model Principle (to introduce
the disturbance model into the controller) we shall consider
HS(z−1) = Dp(z−1). For details on the Internal Model Prin-
ciple see [3].

3 Direct Adaptive Control

Consider a nominal controller (without the internal model of
the disturbance) who verifies the imposed robustness con-
straints and let use theQ-parameterization to define the family
of all stabilizing controllers who explicitly take into account
the disturbance acting on the system (see [8, 9]). The use of
the Q-parameterization introduces a supplementary degree of
freedom into the controller, who allows to treat separately the
problem of disturbance rejection. Afterwards we shall use a
RS-type controller withQ-parameterization.

In the RS structure, the placement of the closed loop poles is
obtained by solving a diophantine equation. If the plant and

the disturbance models are known with a good precision, the
choice ofQ for the disturbance rejection may be done using a
second diophantine equation (see [9]).

3.1 Q-parameterization

The Q-parameterization for disturbance rejection has been
explicitely proposed by Y. Z. Tsypkin in [9]. Let
[R0(z−1), S0(z−1)] be the nominal controller (without inter-
nal model of the disturbance), verifying the diophantine equa-
tion (4) and satisfying the imposed robustness constraints. The
control law is

S0(q−1) · u(t) = −R0(q−1) · y(t).

Using theQ-parameterization (also known as Youla-Kucera
parameterization) the RS polynomial controller is defined as:

R(z−1) = R0(z−1) + A(z−1)Q(z−1); (8)

S(z−1) = S0(z−1) − z−dB(z−1)Q(z−1). (9)

We obtain the family of all stabilizing controllers
[R(z−1), S(z−1)], where Q(z−1) is a polynomial of de-
greenQ. [R(z−1), S(z−1)] corresponds to the general solution
of the diophantine equation (4). The polynomialQ(z−1) will
be computed such as the equivalent controllerR(z−1)/S(z−1)
contains the internal model of the disturbance.

The controller equation becomes

S0(q−1) · u(t) = −R0(q−1) · y(t) − Q(q−1) · w(t), (10)

where

w(t) = A(q−1) · y(t) − q−d · B(q−1) · u(t). (11)

The closed loop, with theQ-parameterized controller, is pre-
sented in the figure 3.

If we take into account the equations (8) and (9), the equation
(4) defining the closed loop poles remains unchanged.

Consider the disturbancep1(t) of the form (6). With the con-
troller parameterized as in (8) and (9), the disturbance effect on
the output of the system, (7), becomes:

y(t) =
S0(q−1) − q−dB(q−1)Q(q−1)

P (q−1)
· w(t), (12)

wherew(t) =
A(q−1)Np(q−1)

Dp(q−1)
· δ(t) is given in (11).

The output sensitivity function is, in this case:

Syp(z−1) =
A(z−1)[S0(z−1) − z−dB(z−1)Q(z−1)]

P (z−1)
.

In order to reject asymptotically the effect of the disturbance
p1(t) on the output of the system,Q(z−1) must be chosen such
asS0(z−1) − z−dB(z−1)Q(z−1) = M(z−1)Dp(z−1), which
is equivalent to solve the diophantine equation

M(z−1)Dp(z−1) + z−dB(z−1)Q(z−1) = S0(z−1), (13)

where



• Dp(z−1), d, B(z−1) etS0(z−1) are known;

• M(z−1) etQ(z−1) are unknown.

Hence we compensate the poles of the disturbance model,
Dp(z−1).

Equation (13) has a unique solution forM(z−1) andQ(z−1) if

nS0 ≤ nDp
+ nB + d + 1;

nM = nB + d − 1;
nQ = nDp

− 1,

in which nS0 , nDp
, nM andnQ are the orders of the polyno-

mialsS0, Dp, M andQ.

3.2 Known Parameters Case

In the case when the parameters ofDp(z−1) are known, we
computeQ(z−1) by solving the diophantine equation (13), the
controller being obtained using the relations (8) and (9).

3.3 Unknown Parameters Case

The objective is to minimizey(t) in the sense of a certain cri-
terion.

By definingε(t) = y(t) we obtain from (12):

ε(t) =
S0(q−1)
P (q−1)

· w(t) − q−dB(q−1)
P (q−1)

Q(q−1) · w(t). (14)

Suppose that the structure ofQ(z−1) is known, defined as a
function of the nature of the disturbance. DefineQ̂(t, z−1) as
the estimation of the unknownQ(z−1) at instantt.

From equation (14) we obtain thea priori anda posteriori er-
rors:

ε0(t+1) =
S0(q−1)
P (q−1)

·w(t+1)− q−dB∗(q−1)
P (q−1)

Q̂(t, q−1) ·w(t)

(15)
and

ε(t+1) =
S0(q−1)
P (q−1)

·w(t+1)−q−dB∗(q−1)
P (q−1)

Q̂(t+1, q−1)·w(t).

(16)

ReplacingS0(q−1) from the last equation by (13) we obtain

ε(t+1) = [Q(q−1)−Q̂(t+1, q−1)]·q
−dB∗(q−1)
P (q−1)

·w(t)+v(t+1),

(17)
where

v(t) =
M(q−1)Dp(q−1)

P (q−1)
·w(t) =

M(q−1)A(q−1)Np(q−1)
P (q−1)

·δ(t)

is a disturbance who tends asymptotically towards zero.

ConsiderQ̂(t, q−1) = q̂0(t) + q̂1(t)q−1 + . . . + q̂nQ
(t)q−nQ

and letθ̂(t) = [q̂0(t) q̂1(t) . . . q̂nQ
(t)]T be the parameters vec-

tor; notew2(t) =
q−dB∗(q−1)

P (q−1)
· w(t) and considerφT (t) =

[w2(t) w2(t − 1) . . . w2(t − nQ)]. Equation (17) becomes

ε(t + 1) = [θT − θ̂T (t + 1)] · φ(t) + v(t + 1). (18)

We remark thatε(t) has the structure of an adaptation error [4].

From equation (15) we obtain thea priori adaptation error:

ε0(t + 1) = w1(t + 1) − θ̂T (t)φ(t),

with

w1(t + 1) =
S0(q−1)
P (q−1)

· w(t + 1) ; (19)

w2(t) =
q−dB∗(q−1)

P (q−1)
· w(t) ; (20)

w(t + 1) = A(q−1) · y(t + 1) − q−dB∗(q−1) · u(t),

whereB(q−1)u(t + 1) = B∗(q−1)u(t).

Thea posteriori adaptation error is obtained from (16):

ε(t + 1) = w1(t + 1) − θ̂T (t + 1)φ(t).

For the estimation of the parameters ofQ̂(t, q−1) we use the
following parametric adaptation algorithm [4]:

θ̂(t + 1) = θ̂(t) + F (t)φ(t)ε(t + 1) ; (21)

ε(t + 1) =
ε0(t + 1)

1 + φT (t)F (t)φ(t)
; (22)

ε0(t + 1) = w1(t + 1) − θ̂T (t)φ(t) ; (23)

F (t + 1) =
1

λ1(t)


F (t) − F (t)φ(t)φT (t)F (t)

λ1(t)
λ2(t)

+ φT (t)F (t)φ(t)


 .(24)

λ1(t) andλ2(t) allow to adjust the adaptation speed (for details
see [4]).

In order to implement this methodology (for thep1(t) dis-
turbance rejection (see figure??)), we suppose that the plant

model
z−dB(z−1)

A(z−1)
is known (identified) and that it exists a

controller[R0(z−1), S0(z−1)] who verifies the desired specifi-
cations in absence of the disturbance. We also suppose that the
degreenQ of the polynomialQ(z−1) is fixed,nQ = nDp

− 1,
when the structure of the disturbance is known.

4 Experimental Results

4.1 The Active Suspension

The structure of the system (the active suspension) that we use
in this paper is presented in figure 5. The controller will act
upon the piston (through a power amplifier) in order to reduce
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Figure 5: Active suspension system (scheme)

the residual force. The sampling frequency is800Hz. The
equivalent scheme has been presented in figure 4.

The system input,u(t) is the position of the piston, the output
y(t) being the residual force measured by a force sensor.In our
case (for testing purposes), the primary force is generated by a
shaker controlled by a signalup given by the computer.

The transfer function (q−d1
C

D
), between the signal sent to the

shaker,up, and the residual forcey(t) is called primary path.

The transfer function (q−d B

A
) between the input of the system,

u(t), and the residual force is called secondary path.

4.2 Real-Time Results

The narrow band disturbance rejection procedure using the di-
rect adaptive methodology proposed in section 3 is illustrated
in real time for the case of the control of the active suspension
presented previously. The results will be compared with those
obtained using an indirect adaptive method, presented in [2].
In our case the disturbance will be a time-varying frequency si-
nusoid. The goal of the control is to reject the effect of this dis-
turbance on the output of the system,y(t), by adapting the con-
troller parameters as a function of the disturbance frequency.

The frequency characteristic of the identified primary path
model, between the signalup sent to the shaker and the residual
forcey(t), is presented in figure 6. The first vibration mode of
the primary path model is near32Hz.
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Figure 6: Frequency characteristic of the primary path model

The identified secondary path model (closed loop identifica-
tion) has the following complexity:nB = 14, nA = 16, d = 0.
There exist several vibration modes on the secondary path, the
first one being at31.8Hz with a damping factor0.07. The sys-
tem contains also a double differentiator.

The nominal controller (without the internal model of the dis-
turbance) has been designed using the pole placement method
and the secondary path identified model. A pair of dominant
poles has been fixed at the frequency of the first vibration mode
(31.8Hz), with a dampingξ = 0.8, and we considered as fixed
auxiliary poles the other poles of the model. In addition a fixed
partHR = 1+q−1 (R = HRR′) which assures the opening of
the loop at0.5fs and10 auxiliary poles at0.7 have been intro-
duced into the controller. The resulting nominal controller has
the following complexity:nR = 14, nS = 16 and it satisfies
the imposed robustness constraints in low frequencies.

In order to evaluate the performances of the direct and indirect
adaptive methods in real time, we use time-varying frequency
sinusoidal disturbances. For the implementation of the adap-
tive loop we use the parameters of the secondary path iden-
tified model. We consider sinusoidal disturbances having the
frequencies between25 and47Hz, the first vibration mode of
the primary path being near32Hz.

The tests done with the two methods (indirect and direct adap-
tive control) have been as follows:

1. Start up: The system is started in open-loop. After5 sec-
onds (4000 samples) a sinusoidal disturbance of32Hz is
applied on the shaker. The model of the disturbance is
estimated and an initial controller is computed (the same
initial controller for both direct and indirect adaptive con-
trol).

2. Adaptive operation: Once a first controller is applied,
the adaptation algorithms work permanently and the con-
troller is recomputed (in the indirect approach) or updated
(in the direct approach) at each sampling instant. A se-
quence of sinusoidal disturbances is then applied starting
at 12000 samples (15 seconds).

The measured residual force obtained is presented in figures 7
(direct adaptation method) respectively 8 (indirect adaptation
method). In the case of the indirect algorithm we note a bias of
the parameters.

We note a faster convergence of the direct algorithm compared
to the indirect one. From the point of view of performances,
the direct algorithm is better than the indirect one. The direct
algorithm has, moreover,a simpler structure than the indirect
one.

Let consider now that the frequency of the sinusoidal distur-
bance varies continuously and let use a chirp disturbance sig-
nal (linear swept-frequency signal) between25 and47Hz. We
present the results obtained in real-time on the active suspen-
sion system using the direct adaptive control method, the tests
being done as follows: Start-up in closed-loop. After5 seconds
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Figure 7: Time domain real time results with the direct adapta-
tion method
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Figure 8: Time domain real time results with the indirect adap-
tation method

(4000 samples) a sinusoidal disturbance of25Hz (constant fre-
quency) is applied on the shaker. Once the controller is applied,
the adaptation algorithm works permanently and the controller
is updated (direct approach) at each sampling instant. From10
to 15 seconds we apply a chirp between25 and47Hz (linear-
swept frequency). After15 seconds we apply a47Hz (constant
frequency) sinusoidal disturbance and we stop the tests after20
seconds (16000 samples). The time-domain results obtained in
open and in closed-loop are presented in figure 9, where we
represented the residual force as a function of time. We can
remark that the performances obtained are very good.

5 Conclusions

It has been shown in this paper that indeed direct adaptive con-
trol has a very promising feature for adaptive rejection of un-
known disturbances. However a number of theoretical issues
remain to be studied. In particular, despite good simulation
and real time results, the robustness of the performance with
respect to variations of the plant model (which are not taken
into account by the adaptation loop) should be studied in de-
tail.
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Figure 9: Real-time results obtained with the direct adaptive
method and a chirp disturbance: (a) Open-loop; (b) Closed-
loop
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de mod́elisation ŕecursives pour l’analyse spectrale
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