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feedback control, internal model principle, active Suspension, appears (based on an extensive review of the literature) that
solutions for this important practical problem have been pro-

Abstract posed by the signal processing community and many appli-
. . . ations are reported. However these solutions (inspired by

In the context of discrete-time adaptive control of plants Su6\7idrow’s technique for adaptive noise cancellation [10]) ig-
ject to parameter variations, direct adaptive control (despﬁgre the i

. it ts: model ref trol. mini , internal model principle” and require an additional
various attempls: model reference control, minNiMum varange ,q,cer. The principle of this "signal processing solution ”
self-tuning) cannot effectively be used in practice because

) : . ?adaptive rejection of unknown disturbances is illustrated in
discrete-time plant models feature generically unstable Zeroﬁgure 1. The basic idea is that a "well located " transducer can
There is however another extremely important area for apgicovide a measurement, highly correlated with the unknown
cation of adaptive control: rejection of unknown disturbancedisturbance. This information is applied to the control input of
The paper shows that in this case it is possible to develop diréiig plant through an adaptive filter (in general a FIR) whose
adaptive control schemes, which are very effective in practigg@rameters are adapted such that the effect of the disturbance
These schemes perform better and they are simpler than upen the output is minimized. The disadvantages of this ap-
indirect adaptive control schemes. This is illustrated by thélfoach arg1)lt requires the use of an additional transducer.
application to adaptive rejection of unknown narrow band di§2)Difficult choice for the location of this transducer (it is prob-

turbances in an active suspension system. ably the main disadvantadg)It requires adaptation of many
parameters.

1 Introduction Environment

Most of the literature dedicated to adaptive control is focused Dciztl‘;gl’;‘:f o 30 )

toward the problem of high performance control of plants sub- measurement . Disturbance

. L L . N /D model

ject to (significant) plant parameters variations (or uncertainty). P

p1(!) « Disturbance
> y(®
Obj: minimization
of E{y?}

Discrete time solutions have been proposed for this problem
(for a state of the art see [1, 4]). Unfortunately the discrete
time models of the plant feature generically unstable zeros. For Adaptation
this reason, direct adaptive control schemes (model reference Algorithm
adaptive control, minimum variance stochastic self-tuning con-

trollers), which assume that the plant zeros are stable, haveigure 1: Signal processing approach to rejection of unknown
very limited use in practice (in the reported applications a ca@isturbances

ful selection of the sampling period was necessary in order to

avoid unstable zeros in the plant model). The standard solution Environment

for adaptive control in practice is to use an indirect adaptive i
control scheme (combining real-time estimation of the plant
model with on-line redesign of the controller).

Disturbance
model

. . . . . Pl P! p1(t) « Disturbance
The combination system identification and robust control al- c 9/ u 4.
X i ontyoller

lows now to tune a robust controller which in many cases as-

sures a satisfactory performance in practical situations where

the parametric variations are limited. Specs. , Disturbance

____,| Design Model
However, even in this very realistic practical context, another Method Estimation

problem can become very important, namely the rejection of

Figure 2: Indirect adaptive control scheme for rejection of un-
*Aurelian Constantinescu is currently with Ecole de Technologignown disturbances
Sugerieure, Monteal, Canada.




To achieve the rejection of the disturbances (at least asynap-active suspension using the direct adaptive control scheme
totically) without measuring it, the controller should incorpointroduced in Section 3 and which will be compared with those
rate the model of the disturbance (the internal model principdtained with an indirect adaptive control scheme. The results
[3]). Therefore the rejection of unknown disturbances raispsesented in this paper go beyond those given in [2] where only
the problem of adapting the internal model of the controll¢éhe case of auto-tuning of the controller has been considered.
and its re-design in real-time. The natural way for solving thiBection 5 will present some conclusions.

problem is to try to estimate in real time the model of the dis-
turbance and re-compute the controller, which will incorpora
the estimated model of the disturbance (as a pre-specified ele-
ment of the controller). This will lead to an indirect adaptivehe structure of a linear time invariant discrete time model of
control scheme. The principle of such a scheme is illustratgtk plant (on which is based the design of the controller) is

in figure 2. The estimation of the disturbance model can be A1

done by using standard parameter estimation algorithms (see Gz = L(Z)7

for example [6, 7]. The time consuming part is the redesign of A(z1)

the controller at each sampling time. The reason is that in magpere:

applications the plant model can be of very high dimension and

despite that this model is constant, one has to re-compute the = the plant pure time delay in number of sampling perjods
controller because a new internal model should be considered. = 1+ a;27 ' +... + A, 2~ "4

For detal_ls on an indirect adaptive control scheme for distuy _ bzl . by,

bance rejection see [2].

Problem Formulation and Basic Notations

A(z71), B(2~1) are polynomials in the complex variabie!
andny4, np represent their orders

The controller to be designed is a RS-type polynomial con-
troller (see fig. 4).

The output of the plang(t) and the input:(t) may be written

Adaptation aS .
Algorithm
_ 4 "Bla)

y() Al ut) +p(t); (1)

: . . - S(g™h)-ult) = —R(g™")-y(b), ©)
Figure 3: Direct adaptive control scheme for rejection of un- ] ] ) ]
known disturbances whereq~! is the delay (shift) operatop; (t) is the resulting

additive disturbance on the output of the system &ad=!),

. — -1 ials i —1 i i
However, by considering the Youla-Kucera parameterization'df> ) &ré polynomials I having the ordera g, ns, with
the controller (known also as the Q-parameterization) (see fige following expressions:

ure 3) itis possible_ to _insert and adjust the internal mpdel in R(z™Y) = ro+re 4.t rn,z "0

the controller by adjusting the parameters of thpolynomial.

It comes out that in the presence of unknown disturbances it

is possible to build a direct adaptive control scheme where ditsing the equations (1) and (2), we can write the output of the
rectly the parameters @) are adapted in order to have the de-

ST = 14siz7 4. sz,

sired internal model without recomputing the controller (poly- l;‘d“ib)
nomialsRy andSy in figure 3 remain unchanged). The number

of the controller parameters to be directly adapted is roughly q° C/D | Primary path
equal to the number of parameters of the disturbance model. Contoller  Secondarypath | P(®

In other words the size of the adaptation algorithm will depend w [ + oy

upon the complexity of the disturbance model. - RIS 2 9B 0T i e

The objective of the paper is to show that indeed a direct adap-
tive control scheme can be developed and implemented and this

scheme is simpler and provides better performance than an infigure 4: Block diagram of the active suspension system
direct adaptive control scheme.

. . . stem as:
The paper is organized as follows. The formulation of the proB)-/

{ \ Ws. 1 _ . _ AlgHS@™h)
lem and basic notations are given in Section 2. In Section 3, y(t) = W .
using the Youla-Kucera parameterization and the output sensi- 9
tivity function a direct adaptive control scheme will be devel- 1The complex variable ~! will be used for characterizing the system be-

oped. Section 4 will present experimental results obtained gﬁ’{iour in the frequency domain and the delay operatot will be used for
escribing the system behaviour in the time domain.

p1(t); 3)




where the disturbance models are known with a good precision, the
) ) ) 4 ) . choice of( for the disturbance rejection may be done using a
P(z77) = A(z"")S(z" ) +27“B(2”)R(=~") (4) second diophantine equation (see [9]).

represent the poles of the closed loop. 31 Q-parameterization

We define the output sensitivity function (the transfer function o . o
between the disturbange (t) and the output of the systemThe Q-parameterization for disturbance rejection has been

y()): explicitely proposed by Y. Z. Tsypkin in [9]. Let
. AETHSETY [Ro(271), So(271)] be the nominal controller (without inter-
Syp(277) = W nal model of the disturbance), verifying the diophantine equa-

. . . . tion (4) and satisfying the imposed robustness constraints. The
This sensitivity function allows to describe the performances of ol 1aw is

the system with respect to disturbances and to specify certain

parts of S(z~!) in order to obtain a satisfactory disturbance So(g™") -u(t) = =Ro(g™") - y(t).

rejection.

Using the Q-parameterization (also known as Youla-Kucera

parameterization) the RS polynomial controller is defined as:
R(z™Y) = R(z Y Hg(z™); R(z™Y = Ro(z"H+A"HQ(:); (8)
Sizh = Sz Y- -Hs(z™, (5) Sz = So(z7Y) —27IB(="HQ(=). 9)
We obtain the family of all stabilizing controllers

. o _ [R(z=1),S(2z~1)], where Q(z~') is a polynomial of de-
Suppose thap, (t) is a deterministic disturbance, so it can bgreeng,. [R(2~1), S(>~1)] corresponds to the general solution

The polynomialsk(z~1) andS(z~!) are expressed as:

whereH and Hg are fixed parts of the controller [5].

written as . of the diophantine equation (4). The polynomi(z—1) will
pi(t) = gp(q_l) -8(t), (6) be computed such as the equivalent contrdiér—1)/S(z71)
p(g™1) contains the internal model of the disturbance.

whered(t) is a Dirac impulsion. The effect of the disturbancgne controller equation becomes
p1(t) on the outpuy(t) is given by (3): ) ) )
1 ) : ) So(q™) - u(t) = —Ro(q) - y(t) — Qg ) -w(t), (10)
— — / — —

P(g~) Dy(q1)
w(t)=A(g") - yt) —q¢ " Blg™") -u). (1)
We are interested in the rejection of narrow band disturbancgge closed loop, with th€)-parameterized controller, is pre-

In this case the energy of the disturbance is essentially repsented in the figure 3.

sented byD, which will be characterized by a second ordeqc e i h _ 8 and (9). th .
polynomial with roots on the unit circle (or very close); thé we take into account the equations (8) and (9), the equation

contribution of the terms aV, is weak compared to the effect(4) defining the closed loop poles remains unchanged.

of D, so we can consider that the effect/df is negligible.  Consider the disturbangs (¢) of the form (6). With the con-
éroller parameterized as in (8) and (9), the disturbance effect on
utput of the system, (7), becomes:

y(t) =

In order to apply the Internal Model Principle (to introduc
the disturbance model into the controller) we shall consinge 0

Hs(271) = D,(z71). For details on the Internal Model Prin- Solg™1) = ¢ B¢ H)Q(¢™Y)

ciple see [3]. ’ y(t) = = Plg ) ~w(t), (12)
A(g YN, (gt . .

3 Direct Adaptive Control wherew(t) = Al Np(a) 6(t) is given in (11).

Dp(g™1)
Consider a nominal controller (without the internal model dfhe output sensitivity function is, in this case:
the disturbance) who verifies the imposed robustness con- _ 1 —d -1 1
straints and let use th@-parameterization to define the family g, (>~!) = A=) - Z71 Bz )R )].
of all stabilizing controllers who explicitly take into account P(z71)

the disturbance gctmg on the system (see [8, 9]). The useInO ! rder to reject asymptotically the effect of the disturbance
the Q-parameterization introduces a supplementary degree o -

: t) on the output of the syster@)(z~") must be chosen such
freedom into the controller, who allows to treat separately t@%s (1) — z-4B(=-1)Q(2-1) = M(:~1)D,(=~1), which
problem of disturbance rejection. Afterwards we shall use;&"° z z “ z )= e p\Z )

RS-type controller withQ-parameterization. is equivalent to solve the diophantine equation

1 -1 —dp/o—1 1y _ —1
In the RS structure, the placement of the closed loop poles M) Dp(z77) +27°B(z7)Q(z7) = So(277), (13)

obtained by solving a diophantine equation. If the plant anchere




e D,(271),d, B(z71) etSp(z1) are known; ConS|derQ(t,q =G+ at)g "+ ...+ Gug(t)g e
and letd(+ Go(t) G1(t) ... Gn, (V)] be the arameters vec-
o M(z71)etQ(z1) are unknown. )= [qo(q_q;(Bz(q_?)Q( W P
tor; notews(t) = ——————= - w(t) and considep’ (t) =

Hence we compensate the poles of the disturbance modigh(t) wq(t—1) ... wa(t — ng)]. Equation (17) becomes

D,(z71). .
Equation (13) has a unique solution fof(z 1) andQ(z 1) if e(t+1)=[0" =07 (t+ 1)) &) +v(t +1). (18)

We remark that (¢) has the structure of an adaptation error [4].
ns, < np,+np+d+1;

ny = np+d-—1;

ng = np, -1, Ot +1) = wi(t+1) — 07 (1) (t),

From equation (15) we obtain tlzepriori adaptation error:

in whichng,, np,, nar andng are the orders of the polyno-with
mials Sy, Dp,, M andQ).

wi(t+1) Pl w(t+1); (19)
3.2 Known Parameters Case (dq )
~'B*(q7")
In the case when the parametersiaf(>~") are known, we wy(t) = W ~w(t); (20)
computeQ(z~!) by solving the diophantine equation (13), the _ ds
e w(t+1) = Alg™") -yt +1) —g ‘B (g ult),

controller being obtained using the relations (8) and (9).
whereB(q ')u(t + 1) = B* (¢~ 1)u(t).

Thea posteriori adaptation error is obtained from (16):

The objective is to minimizg(¢) in the sense of a certain cri- -
terion. e(t+1)=wi(t+1) =07+ 1)p(t).

By defininge(t) = y(t) we obtain from (12):

3.3 Unknown Parameters Case

For the estimation of the parameters@{t, ¢~ ') we use the
—dB(q-1 following parametric adaptation algorithm [4]:
W q ) w(t). . A

q 0t+1) = 0@t)+Ft)p(t)e(t+1); (21)

e'(t+1)
Suppose that the structure Q> ') is known, defined as a  c(t+1) = = STOF 60 (22)
function of the nature of the disturbance. Defip&, z—1) as 0 .
the estimation of the unknow@(>~!) at instant. e(t+l) = wilt+1) -7 (1)e(); (23)
PR
t)

So(a™")

() = P(g™)

w(t) —

From equation (14) we obtain ttaepriori anda posteriori er- Ft+1) 1 F(t) -
rors: A1(t)

So(a™") ¢ "B*(¢"")
- P(g~1)

)¢
+ T (O F(t)e(

Q(t,q V) -w(t) Ai(t)andAs(t) allow to adjust the adaptation speed (for details
(15) see [4]).

and In order to implement this methodology (for the(¢) dis-
) J ) turbance rejection (see figuR?)), we suppose that the plant
So(g™") ¢ B*(¢7)

N —d —1
w(t+1) P(g™1) Q(t+1,¢7")-w(t). model %(Zl)) is known (identified) and that it exists a
(16) controller[Ry(2~1), So(2~1)] who verifies the desired specifi-
ReplacingS,(¢~!) from the last equation by (13) we obtain cations in absence of the disturbance. We also suppose that the
degreeng, of the polynomialQ(z~!) is fixed,ng = np, — 1,
~4B*(¢g~ ") when the structure of the disturbance is known.
w(t)+o(t+1),

(t+1) =

e(t+1) =

(t+1) = [Qla™ )= QU107 e 2
(17) 4 Experimental Results
where

4.1 TheActive Suspension
_ M(¢7")Dy(g™") _ p
u(t) = P(g1) w(t) = P(q 1) 0(t) The structure of the system (the active suspension) that we use
in this paper is presented in figure 5. The controller will act
is a disturbance who tends asymptotically towards zero.  upon the piston (through a power amplifier) in order to reduce




primary force (disturbance)

The identified secondary path model (closed loop identifica-
tion) has the following complexityap = 14,n4 = 16,d = 0.
There exist several vibration modes on the secondary path, the
first one being a31.8 H =z with a damping facto#.07. The sys-
+ tem contains also a double differentiator.
€= controller . . . .
The nominal controller (without the internal model of the dis-
turbance) has been designed using the pole placement method
A and the secondary path identified model. A pair of dominant
poles has been fixed at the frequency of the first vibration mode
(31.8Hz), with a damping; = 0.8, and we considered as fixed
auxiliary poles the other poles of the model. In addition a fixed
partHgr = 1+¢ ! (R = HrR') which assures the opening of
the loop a0.5 f; and10 auxiliary poles ab.7 have been intro-
duced into the controller. The resulting nominal controller has

the following complexity:ng = 14, ng = 16 and it satisfies

_ the imposed robustness constraints in low frequencies.
The system inputy(t) is the position of the piston, the output

y(t) being the residual force measured by a force sensor.In §uPrder to evaluate the performances of the direct and indirect
case (for testing purposes), the primary force is generated bjd@ptive methods in real time, we use time-varying frequency
shaker controlled by a signaj, given by the computer. sinusoidal disturbances. For the implementation of the adap-

tive loop we use the parameters of the secondary path iden-

The transfer functiong“ _) between the signal sent to theified model. We consider sinusoidal disturbances having the
shaker,u,, and the re5|dual forcg(t) is called primary path. frequencies betweeb and47H z, the first vibration mode of

the primary path being ne8gH z.
The transfer functiong?—) between the input of the system
u(t), and the residual force is called secondary path.

-\ elastomere cone
piston

residual force

Actuator
(piston
position)

inertia chamber

Figure 5: Active suspension system (scheme)

the residual force. The sampling frequency8i®)Hz. The
equivalent scheme has been presented in figure 4.

The tests done with the two methods (indirect and direct adap-
tive control) have been as follows:

4.2 Real-TimeResults 1. Start up: The system is started in open-loop. Aftsec-
onds @000 samples) a sinusoidal disturbance3af z is
applied on the shaker. The model of the disturbance is
estimated and an initial controller is computed (the same

The narrow band disturbance rejection procedure using the di-
rect adaptive methodology proposed in section 3 is illustrated

in real time for the case of the control of the active suspension
presented previously. The results will be compared with those
obtained using an indirect adaptive method, presented in [2].

In our case the disturbance will be a time-varying frequency si2.

nusoid. The goal of the control is to reject the effect of this dis-
turbance on the output of the systey(t), by adapting the con-
troller parameters as a function of the disturbance frequency.

initial controller for both direct and indirect adaptive con-
trol).

Adaptive operation: Once a first controller is applied,

the adaptation algorithms work permanently and the con-
troller is recomputed (in the indirect approach) or updated
(in the direct approach) at each sampling instant. A se-

quence of sinusoidal disturbances is then applied starting

The frequency characteristic of the identified primary path at 12000 samples (15 seconds).

model, between the signa), sent to the shaker and the residual
forcey(t), is presented in figure 6. The first vibration mode

. . 0fhmrrilfr ined is presented in figures 7
the primary path model is neazH ». e measured residual force obtained is presented gures

(direct adaptation method) respectively 8 (indirect adaptation
method). In the case of the indirect algorithm we note a bias of
the parameters.

Primary path model
T T T

We note a faster convergence of the direct algorithm compared
to the indirect one. From the point of view of performances,
the direct algorithm is better than the indirect one. The direct
algorithm has, moreover,a simpler structure than the indirect
one.

98]

Magnitude
.

Let consider now that the frequency of the sinusoidal distur-
bance varies continuously and let use a chirp disturbance sig-
nal (linear swept-frequency signal) betweEnand47H z. We
present the results obtained in real-time on the active suspen-
sion system using the direct adaptive control method, the tests
Figure 6: Frequency characteristic of the primary path modgking done as follows: Start-up in closed-loop. Afieseconds

- i ; i ; ; ; i
0 50 100 150 200 250 300 350 400
Frequency [Hz]



Direct method in adaptive operation
T

Chirp disturbance in open-loop
T

Residual force [V]
°

v

L L L L i L L L L fa L L L L f L L
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Residual force

Time [s]
Direct adaptive control-chirp disturbance in closed loop

e

Residual force [V]
°

e

25Hz(const) : 25 47Hz * a7Hz(cons)

. . . . . . 740 i ‘2 :‘«x 4‘1 Sr é ; é é 1; 1‘1 1‘2 1‘3 1‘4 1;5 1‘6 1‘7 18
Figure 7: Time domain real time results with the direct adapta- Tine [
tion method

Figure 9: Real-time results obtained with the direct adaptive
method and a chirp disturbance: (a) Open-loop; (b) Closed-
e modinaave opoion loop
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