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formance, finite-form algorithms ory is nonconvex parameterization of the plant model. Un-
fortunately, the available approaches encourage the designer
Abstract to compensate for the nonlinearity (at least, in part) by using

an additional damping term, or high-gain feedback [6, 10, 7].
We suggest a new method to design adaptation algorithms tWeiy recent results on nonparametric adaptation [17] can also
guarantee improved performance and are applicable for a clagsapplied to nonlinearly parameterized systems. Neverthe-
of plants with nonconvex parameterization. The main idea s, all these approaches merely can provide integrability of
the method is, first, to augment the tuning error (possibly usitite squared error.

gncertainty—dependent signgls) of the k”O.W”. adaptive sche% impediment to further progress, we believe, is due to
in such a way that thedd(?rsr:red characterr:sftlcs ofllthe_adapf)tﬂ & lack of sufficient information in the conventional adaptive
system are guarant_ee - 'hen we search for rea |_za_t|on O ffiemes to improve the performance and deal with nonconvex
proposed s_chem_es in an integral-differential for_m similar to ﬂi.li?irameterization. One way to provide the algorithms with ex-
F: (proportlonal-ﬂt%grag) ru_Ies. ISU(T‘T] a(;cz_a_ptaufon schﬁmesnlg information is to augment the tuning errors. Many adaptive
thg pape:j are cafled a gﬁtlvzagorét msiimte Ormsd OF control schemes use the error augmentation to make the estima-
this nel\(/v escription, neither ep_end egct:ro.n state dg_rlvatnfﬁe&,l error be dependent on the controller parameters. This idea
nor unknown pargmeters IS required. Su |C|ent.con |t|ops inherent to both Morse’s adaptive controllers [14] and those
existence of new finite form realizations of adaptive algorithms, <. 4 o1y Kreisselmeier’s observers [16] when dealing with the

are proposed. plants with relative degree grater than one. These augmented
errors then are used in conventional gradient schemes

1 Introduction : . R
0 = -TyY(x,t)A(x,0,t), (1)

Despite significant progress in adaptive control theory of lin- )

ear and nonlinear plants [3, 5, 4, 9], plants with relative degrééerex € R" is a state (or output) vectat,e R4 is avector of

greater than one [16, 14, 15], and systems with nonconvex {2e controller parametersi(x, 6) is an operator that depends

rameterization [6, 10], there is still a room for further studie§n particular problem, and galn > 0.

especially when striving for improyed performance in the Pre$he existing performance limitations that have been pointed

ence of nonconvex parameterization. out motivate the following challenging question: is there an

Most of the available results in direct adaptive control whexigmentation that can create new properties in the system if ap-

considering some different performance measures, for instapded to it (in addition to readily achievable finiteness/gfand

LQ performance, deal only with convergence analysis of diffef. norm bounds). Furthermore, are algorithms with such an

ent adaptive schemes without concern for improving their p@ugmentation physically realizable, i.e., the controller parame-

formance [12, 13]. When they do suggest improvements likers¢ can be computed at any time instant without measuring

those in [11], they do not provide any exact performance mghe unknown signals or parameters?

sure that can explicitly be computedpriori except probably

Instead of searching for the desired adaptive algorithm in the
the bounds oL, and L., normég for the tracking errors. 9 P 9

conventional form defined by (1), we suggest to extend this
class as follows (as in [1, 17, 18]):

Functonv : Ry — R is said to belong toLs iff La(v) =

P00 o ~ ~ ~ ~ ~
Jo v¥(tT)dr < oo. The valuey/La(v) stands for theLs norm of v(t). 0(x(t),t) = Op(x,t)+07(t); 0; = Ax(x,0,1),
Functionv : Ry — R belongs to and.« iff Loo (v) = sup,>q |[v(¥)| <
0, where|| - || is the Euclidean norm. The value bf. (v) stands for thelo,  norm ofuv(¢).




Op(x,t) = Ai(x,t). (2) field f(x). It will be useful also to think of the state vector

x € L C R" as follows
Itis obvious that algorithms (1) belong to the class (2). Further-

more, function®(x, t) when written in the differential form (1) X = X DX,
may depend on the unknown parameters and unmeasured sig-
nal. These simple observations lead to quite unexpected con-
clusions. Instead of restricting the design procedure to those\ghere symboks denotes concatenation of two vectors €
gorithms that can be realizable in the form of equation (1), ong ¢ p™ x, € £, C R"™, and L, £,, Lo are linear
may design the adaptation algorithms in two steps. First, seaggfaces. Notice that time-derivative =f is independent on
for the desired augmentation, possibly uncertainty-dependentyhereas time-derivative of vectsr, depends on unknown

to obtain the requested properties of the adaptive cntB®lc- parameter® explicitly. We refer to the space8, and £, as

ond once a suitable tuning error is Chosen, find a realizationl_mcertainty_independemnd uncertainty_dependent partitions
the algorithm in the form of integral-algebraic equations of thef system (3), respectively. To denote the right-hand sides of
type (2), what is termed bgigorithms in finite forr. the partitioned system we use the following notatiofis:=

The current paper is devoted to solution of the following protgflv o fn)T B = (fngts f")T_' g1 = (9_17_'_- : 79"L_)T'

lem: given the desired augmentation (possibly, derivativ82 = (gm+1;- - ,9)" In analogy with the definition of inde-

dependent) that guarantees improved performance and abfgrdence of a function on the componenisf its argumenk

to deal with nonconvex parameterization for a class of nonlif€ Would like to define a notion of independence of the func-

ear systems, find functiond; (x, ¢), As(x, 4, t) that guarantee tion vylth respect to partition. G!ven thgte L=L®Lyand

the desired realization. The layout of the paper is as follownctionw(x) : ™ — R" be differentiable for any € R".

In Section 2 we specify a class of nonlinear dynamical systefidnctionw(x) is said to beindependent on partitiorC, iff

under consideration and select the desired augmentation. Shx1 O x2)/0x3 = 0.

tion 3 contains the main results of the paper. We show that t8gnilarly to [1, 2], we define the control goal as reaching a tar-

realization problem is solvable for a class of nonlinear systegst manifold asymptotically. We assume that the target mani-

and provide the sufficient conditions which guarantee existerfgi can be given by the following equaliiy(x, t) = 0, where

of solutions. Section 4 concludes the paper. Y : R" x R — R,(x,t) € Cl. Additional restrictions on
the functiom)(x, t) are formulated in Assumptions 1, 2.

(1’1,...,$m)T, Xg = (x7n+17'~-;xn)T (5)

2 Problem Formulation

Assumption 1 Function ¢ (x,t) is such that for anyy > 0
there exists a function: Ry — Ry: [9(x,t)] <= x| <
¢(9) along system (4) solutions.

Let the plant model be given as

= fix)+gxu, i=1,....,m 3)
i = fi(x) +vjom(x,0) +gi(x)u, j=m+1....n,

! ! ! ! Assumption 2 Functionsiy(x, t) andg(z) satisfy the follow-
wherex € R™ is a state vectorf;, g; : R* — R, fi,g; € C', inginequality:Vx € R" = |Lgt)(x,t))| > 61 >0, 61 € Ry.
6 € Qg C R is a vector of unknown parameters, : R" x

d _ 1o i i
R = R vi € O ’.”“ is a control input. dFor t_he_ nc’ta}t'onalAssumption 2 ensures existence of the feedback that transforms
cor.1ven|ence, we will use more compact description of systqp, original system into that of the error model with respect to
®): the variable)(x, t). We consider

X = f(X) + 79(X7 9) + g(X)U, (4) "/} — Lﬂﬁ(X, t) + Lﬁ(x,0)¢(xy t) + (Lgi/J(X7 t)) u—+
where x € R" is a state vector,d € Qp C R? oY (x,t)/ot. (6)

is a vector of unknown parametersy <€ R is a _ . _
control input, functions f(:), g(-), 9J(-,-) are speci- IfAssumption 2 holds, there exists the control input

fied foll D flx) = 1(x), fa(x), ..., fo(x))T, . 1
g0 OWS(m(x(),Lg(xm ,ffgi&;’)}( )w<x,g>( V2 ) = (gt o) — Lot ) -
0,...,0,01(x,0),...,Un_m(x,0))T. For the sake of com- Lyx,a)¥(x,1) — 0¢(x,1)/0t), (1)

pactness when dealing with the partial derivatives of a function
we will use the following notation:L¢y(x) = 0v/0x f(x) whered € Q; C R4 is a vector of controller parameters, such
to denote the Lie derivative of function(x) along the vector that it transforms (6) into

2|t has been reported, for instance, in [2, 1] that the derivative-dependent P A
algorithms written in differential form (1) are able to deal with a class noncon- b= 790(1/}) + Z(X’ 0, t) o Z(X’ 0, t) (8)
vexly parameterized plant.

3To the best of our knowledge, such terminology in adaptive control IWherez(x, 0,t) = Ly o) (X, t).
erature has been proposed first by A. Fradkov in [8] in order to denote the . . "
speed-gradient based adaptive control schemes given by integral-algebraicLdtthe closed-loop system satisfy the following additional re-

differential equations. quirements



Assumption 3 For anyd € Qy there existg)* € Q C R?, where functiore : R, — R, e € C° ¢ € L, models unknown
such that for allk € R", t € R the following holds disturbances due to the unmodeled dynamics or the measure-

. - ) ment errors. The properties of algorithm (10) in this case are
V4 o) +2(x,0,t) —2(x,0%t) =Y+ 9(¥) =0 (9 formulated in the next theorem:

Assumption 4 Functiony (1)) in (9) satisfies Theorem 1 Let the error model be given by equation (12) and
" Assumptions 1, 3-6 hold. Therx, t) is bounded and further-
() € CO () > 0V #0, wlim / ©(€)dE = . more(z,t) € Lo, ¢ € La, 2(x,0,t) — 2(x,0,t) € Lo.
— 00 0

If function (t) is bounded and function(x, 6, t) be locally
bounded with respect t®, 6, uniformly bounded with respect

Assumption 5 There exists functiom(x,t) : R x R — to ¢ thend(x, ) — 0 ast — oo.

R? such that(z(x,0,t) — z(x,0%,t))(a(x,t)T(0 — 6%))

>
0V 2(x,0%1) # 2(x0,t); [2(x,0,t) — 2(x,6", )| < ts proof follows from analysis of time-derivative of the follow-
Dla(x,t)"(0 —6*)||, D € Ry, D> 0. ing function:

Y 0
Assumption 6 There exists such positive constant > Othat = 2(p — D) / 0(&)dE + V, +26%(D — D1)/ 2(r)dr,
for anyx, 0, 0%, t > 0 the following inequality holds 0 t

12(x, 8, 8) — 2(x, 6%, )] > Dila(x, ) (8 — 6°)]. wheref € R, 5> 1, and

: o . : _ Vy=Dy/4 2(7)dr 4+ 0.5(6 — 0*)TT~1(0 — 6"
Assumption 3 is a kind of certainty equivalence or matching ¢ v/ /t e (r)dr +0.5( ) ( )
condition. It simply states that for every unknowh € g

. P Hence the question is how to realize this algorithm in a form
there exists such vector of the controller parame#é(8*) < d g

Q; that the system dynamics with this control function sati'g-]at depen_ds_ on neither tlme_-denvatw_enor its filtered es-
4 imate explicitly, nor on anything implying knowledge of un-

fies the following equation’ = —p(¢)). Assumption 4 speci- \nown parameterg. As mentioned in Section 1, we propose

fies the properties of functiop(v), thus stipulating asymptotic 4 se finite form (2) of the adaptive algorithms instead of the
stability of manifoldi(x, ¢) = 0 for § = 6 and ensuring un- gjtferential form (10). In the next section we study under what
bounded growth of integrqiow p(&)d€ asy) — oo. conditions one can represent algorithms (10) in finite forms.

Assumption 5 is given to specify an admissible nonlinear _ . o
parameterization of the controller. Notice that for linearl3 Adaptive Algorithms in Finite Forms

parameterized plants this assumption is automatically satis- ) .
fied. Throughout the paper we will also assume that funEirst, we consider rather general case and formulate the condi-

tions a(x, t) andu(x ) t) both are bounded ihand function tions ensuring realization of algorithm (10) in the finite form
a(x, ) c . o explicitly, i.e., without any additional filters and further trans-

- formations of the closed loop system. Being nontrivial to solve
As a candidate for the augmented ertgx, t) we select the for any admissible model of the plant given by equations (3),
following ¢ (x,t) = ¥ + ¢(¥(x,t)). It has been proven in these conditions are satisfied for some special combinations of
[2, 1] that the algorithm the plant models and goal functioni$x, ¢).

é = D(p(¥) + ¥)a(x, b), (10) Second, we suggest to embed the plant dynamics into these ex-
tended systems for which the conditions sufficient for the finite-
with positive-definite matrixX" > 0 guarantee®(x(t),t) — 0 form realizations are always met. By doing so we no longer
ast — oo for the closed loop system need to find a solution of the partial differential equations to
realize the adaptation algorithms.

T; = fi(X)+gi(X)U, 1=1,...,m

& = [ix) +0jm(x,0) +g;(x)u, j=m+1....on 371 Explicit realization
b= —p() + 2(x,0,t) — 2(x,0,t o _

1{ #(¥) Z,(X ) = 2% 6,1) Let us assume that in addition to the Assumptions 1-5, the fol-
0 = T(p()+d)ax,t), I'>0 (11) lowing hold

with control (7) under Assumptions 1, 3 — 5. In addition, hOWAs
ever, it is possible to derive from [2, 1] that algorithms (1%
guarantee) € Lo N Lo, andu(x,0,t) — u(x,0,t) € Lo [18].

sumption 7 For the given functionsy(x,t) and i (x,t)
ere exists functiod (x) such that the following hold:
Sometimes it is desirable to consider slightly different error ~ © (%) OU(x,1)/0%2 = P (x, t)da(x, t) /0% (13)

model from that given by equations (8): o , .
Then realizations of the adaptive scheme described by equa-

= —o) + 2(x,0,t) — 2(x,0,t) + £(t), (12) tions (10) follow from the next theorem:



Theorem 2 Let Assumption 7 hold. Then there is a finite-forra single scalar argument. One example that fits the required

realization of the algorithms (10): assumptions is a special case of (3) far = n — 1, with
) ) ) function ¥(x, #) satisfying Assumption 5. This assumption
0(x,t) =L(0p(x,t) +01()); is automatically satisfied if/(x, §) linearly parameterized or
ép(x, t) = p(x, t)a(x, t) — U(x, ) ¥(x,0) = 9(xT0) andd(-) is monotonic and belongs to a sec-

tor Notice that indefinite integral in (17) can be replaced by
(V(x,t))o(x,t) + 0¥(x,t) /0t — ffn(g; P(x, 1)0o(x, t) ) 0xday,.
Y(x,t)0a(x,t)/0t — (Y(x,t)0a(x,t)/0x1 —
W (x,t)/0x1)(f1(x) + g1 (x)u(x,6,1)) (14) Another class of dynamical systems that automatically satisfy
Assumption 7 is given by the following corollary.

Proof of Theorem 2The theorem proof is quite stralghtforward
and follows from explicit differentiation of functiod(x, t)

with respect to timed(x,t) = T'(6p + 0;) = T(Pa(x,t) +
Ya(x,t) — U(x,t) + 6;). Notice that

Corollary 2 Let functiona(x,t) be independent ofl,, i. e.,
foranyxs € Lo

Oa(x,t)/0xa = da(xy ® Xa,t)/0x2 =0 (18)
_ then there is a finite-form realization of algorithms (10).
Pa(x,t) — U(x,t) + 0 = P(x,1)0a(x,t)/0x1%1 +
Y(x,t)0a(x)/0xa%xa + (%, t)0ca(x,t) /0t — (15)
OU(x, 1) /%1%, — OV (x, 1) /Oxa%s — OV(x, ) /Ot + O

Notice that equality (18) is equivalent to the fact that the plant
dynamics can be described by the following equations

5(1 = fl(xl @Xg) —|—g1(X1 @Xg)u
According to  Assumption 7 9W(x,t)/dx; = Xy = f(x1 @x2) +9(x1,0) + g2(x1 Dx2)u (19)
P(x, t)&_a(x, t)/0x2. Then taking into account (15) Weanddy(x; @ xa,t)/dxs = A(t), wherel : R — R"™is a
can derive that known function of time. On the other hand, one can conclude

. . from Corollary 2 that every error model of the type
Yé(x, t) — U(x, ) + 07 = ((x, H)da(x, 1) /0x; — y y yp

a\I//axl)Xl + ¢(X, t)aa(x, t)/at . P = _90(1/)) + Z(W(t)ve) - z(w(t),@), (20)
wherew(t) : R — R", w € C'is a function with known
time-derivativesw(t) admits the sufficient conditions for the

Hance it follows from (14) and (16) thaité(x, ) — \i,(x7 £+ algorithms (10) to be realize_d in the finite form. Indged, _it fol-
. ;. : lows directly from Assumption 5 as functiongx, ¢) in this
iﬁ:&ﬁiﬁ?ﬁé%b@iremreﬁ(X7 t) =T+ p@))alxb). case are independent en Therefore if the derivative&(t)
' are known, then the finite forms follow immediately from
Theorem 2 provides us with an answer to the question of exis- ; 5 AN 4
tence of thepalgorithms that being physically rgalizable satisfy (t) = TOp(x8)+05):0p(x,t) = $x t)alt)
P(Y(x,t)a(x,t) — P(x, t)a(t)

differential equations (10). What is important is that the num- 6,
ber of integrators for both algorithms (10) and (14) is the SaMehis property along with decomposition (19) will be used later
for the approximate realizations of algorithms (10).

U(x,1)/0t + 0, (16)

The disadvantage, however, is that the functidiig, ¢) in As-
sumption 7 are not easy to find, if they exist at all. Neverthe-
less, despite the obvious difficulties in finding those functior80 far the simplified conditions for existence of the adaptive
U (x,t) that satisfy Assumption 7 there are several classesajgorithms in the finite form were derived from Theorem 2 for
the dynamical systems with certain structural properties ttihpse classes of nonlinear systems that admit certain structural
automatically reduce Assumption 7 to more easily verifiabfgoperties like single dimension uncertainty-dependent parti-

requirements. tion (Corollary 1 and equation (3) witlh = n — 1), inde-
pendence ok(x,6,t) on uncertainty-dependent partition
Corollary 1 Let dim(x) — 1 and function (Corollary 2, equation (19) and error model (20)). These struc-
U(x,t)0a(x,t)/0x, be Riemann-integrable with respecfur"ﬂ properties allowed us to reduce Assumption 7 to at most
to z,,, i.e. the following integral exist integrability of a function with respect to the single scalar ar-
gument. This rather simple test, however, is only sufficient (but
(x, 1) / e ) da (17) not necessary) to establish existence of the adaptive control al-
&zn " gorithms with improved transient behavior and abilities to deal

with nonconvex parameterization. On the other hand, it is nat-
ural to expect that there are classes of systems that can be re-
duced to the considered cases for which the algorithms in the
Remark 1 Corollary 1 allows us to turn the problem of searchfinite forms are proven to exist. In the next section we present
ing for a function¥ (x, t) satisfying equation (13) to that of ex-a technique that allows us to transform a nonlinear dynamical
istence of the indefinite integral of a function with respect tsystem into a form that obeys these sufficient conditions.

Then there is a finite-form realization of algorithms (10).



3.2 Asymptotic Design via Embedding 2(%,0,t) — 2(x,0,t). Further,z(x,0,t) — 2(X,0,t) € Ly N
L., by Assumption 8. One also can verify that algorithms
(25) satisfy the following differential equations: = I'(¢) +
o())a(x, t). Therefore, according to Theorem 1 we can con-
clude thaty(x,t) € Ly N Lo, andt) € Ly. Due to Assump-
1) partition of the state vectot: x = x; ®x, x4, dimx, = tion 1 we can deduce that, § are bounded and furthermore
my, dimxs”" =n—-m-m, 0<m; <n—-m z2(x,0,t) — z(x,0,t) € Ly. Then z(x,0,t), z(i,é,t) are
bounded. Therefore) is bounded and) — 0 ast — oc.
The theorem is proven.

Let us introduce the following assumption

Assumption 8 There exist

2) system of differential equations

§ = fe(x,81); ye =he(§), (21)  Theorem 3 provides us with a way to reduce the complexity of
€€ R, f:R"x R x Ry — R, fe € Clihe : R" — _searching for the functiol (x, t) defined in Assu.mption 7.1t _
Rr-m-m1 . € O is suggest'ed to replace 'fhe 'problem of ;earchl.ng for thg suit-

e ' able functions¥(x,t) satisfying partial differential equation
3) function¥' (x,¢) € C'! and partitionx = x; &x)dhe, such (13) by that of searching for the embedding (26) which ensures
that: properties (22) and (23). The complexity of finding a solution
to equation (13) is reduced dam x/, < dim x if the embed-
2(x,0,t) — 2(X,0,t) € Ly N Log; (22)  ding into higher-order dynamics is used. Indeed, according to
Assumption 8 and notations introduced above one can describe
OV (%, 1) /0%, = Y(%, )da(X, t) /9%, (23) dynamics of the extended system as follows

for anyd € Q) andt € R, along the solutions of the original % fi(x) + gl/(X)U; he = (Ohe / 00)fe(x, £, 1)
system (3). Xy = fo(x) +9'(x,0) + g (x)u
Xor = fou(x) +9"(x,0) + g2r (%)u, (27)

The sufficient conditions for the desired embedding folloyyere vectok; @ h, stands for uncertainty-independent parti-

from the next theorem. tion in the extended state space, and vetpis chosen to sat-
isfy equation (23). Observe, that functie(k, 6, t) is indepen-
Theorem 3 Let functiony(x, ) be given and Assumptions 1dent onx} anddim he = dim x4. Then for anyh: dim h, >
6, 8 hold for system (3). Then there exist control functiqpwe can derive thatim x}, < dim x, = dimx}, & x4.
u(x e, 6, 1) Notice also that by the appropriate choice of the dimensions of
u(x, he,0,t) = (Lg(x)w(x,ﬁ))—l(_<p(¢) — Leyp(x,t) —  vectorsg andhg (dim he = dim x3) in (21) one can reduce di-

3 . ) : o .
I 9()}7@)1/}(& t) — O(x,t)/t) (24) mehspn oafa\g(f;gqu to the unity or try to ann|h|late the partial
derivative=5 -~ in (23). Hence, eventually either Corollary 1
. . 2
and adaptation algorithm or Corollary 2 conditions will be satisfied for the extended sys-

1) = T (3 p T tem (27). The last in turn implies that we can replace assump-
(%,8) =T(0p(x,t) +01(t)), I' > 0 tion (23) by weaker requirement like integrability of a function
= (x,t)a(x,t) — U(x,t) with respect to a single scalar argument.

P(x,t)a(x,t) + 0¥ (%,t)/0t — da(x,t) /Ot — The remaining problem is that, having computable function
(1h(x, )0, t) JOx1 — OU(X, 1) /0% ) (FL(x) + U (x,t), one should still find an extension (21) that guaran-
A - tees property (22) for the given partition= x; ¢ x5 & he.
g1(x)u(x, he, 0, 1)) — (¥(x,1)0a(X,t)/Ohe — If such an extension exists, then Assumption 8 is automati-
OW(x,1)/0he)Ohe /0L (x, €, 1) (25) cally satisfied, and adaptive control algorithms follow imme-
diately from Theorem 3. Nevertheless, finding extension (21)

such that for the extended system that ensures boundedness and squared integrability of the dif-

. . ferencez(x; x5, ®x5,0,t) — z(x1 ® x5, D he(£),0,t) is not
= f +’l9 79_’_ : = f, , ’t 1 2 27_7 . 2__ E » Y .
x B () (,0) + g(xJus & =fe(x,&,1) an easy problem (considering that partitiof) is uncertainty-
ye = he(6), (26) dependent). Itis possible to solve it by using specially designed

adaptiveor high-gainauxiliary subsystems that track the ref-
. . erence signals/ with the desired performance:(x, 6,t) —
1) Y(x,t),9 € La N Log, 2(X,0,1) — 2(%,0,t) € LyN Loo  2(%,0,t) € Ly N Loo. For example, if partitionx is linearly
. i p :
2 t 0 ast _ parameterized (i.e?’(x, 0) = n”(x)#) and functionz(x, 0, t)
Y% 1) = 0ast = oo is locally bounded inc}: |=(x1 @ xb @ x4, 0, ) — 2(x1 & Xy ®

" 1 _
Proof of Theorem 3.To prove the theorem it is sufficient tohE(E.)’ 9’.t)| S.)‘(X’f’e’t)||x2 .hg(g)H’ then the suitable ex
tension is defined by the following system

notice that control function (24) provides the following er-~ i
ror model dynamics) = —p(¢) + 2(x,0,t) — 2(%,0,t) + & = £(x) +10"(x)& + Mx, &) (xy — &) + g5 (x)u

the following statements hold:



€ = Ti(xf — )T (x), T1 >0, he(€) = &, [6] Ai-Poh Loh, A.M. Annaswamy, F.P. Skantze, “Adaptation
in the presence of General Nonlinear Parameterization: An

wr?erei_:_g% @ %@,ﬂd)‘(x’g’ﬂ : Suﬁf)ef&?sll)‘(’f’g’ 0,t). To _ Error Model Approach,IEEE Trans. Automat. Contrvol.
show this it is sufficient to consider the following Lyapunov's 4 0 1634-1652, Sept. 1999,

candidateV/ (x, &) = 0.5(|(x4 — &)[|* + 0.5/ — &||?-, and

observe thal” < —A2(x, £,1)?||x4 — &1]]? < —(z(x,0,t) — [7] Netto M.S., Annaswamy A.M., Ortega R., Moya P. “Adap-

2(%,0,t))% <0. tive control of a class of nonlinearly parameterized system
using convexitificationInt. J. Contro| vol. 73. No 14. pp.

4 Conclusion 1312-1321, 2000.

A. L. Fradkov, Adaptive Control in Complex Systems

. . 8
In the paper we proposed new method to design adaptive C[)ANauka,1990.

trol algorithms with the improved performance for nonlinear
systems with linear and nonlinear parameterization of the §d} S. Sastry, M. Bodsomdaptive Control: Stability, Conver-
missible type. The admissible nonlinearities are those thatgense, and Robustnes&entice Hall, 1989.

have linear growth property and are “monotonic” with respect ) ) _ _

to their parameters. In contrast to the existing adaptive cd#9] W- Lin, C. Qian. "Adaptive Control of Nonliarly Param-
trol schemes that start from designing the adaptive control al-6térizéd Systems: A Nonsmooth Feedback Framework”,
gorithms in the differential form and prohibit any use of the EEE Trans. on Automatic Controvol. 47, No. 5, pp. 757-
derivatives in the parameter tuning procedures, we first search 73, 2002.

for the desired augmentation of the error which, if used in “Tfl] K.S. Narendra, J. Balakrishnan,

adjustment algorithms in the differential form, may result in sponse of adaptive control systems using multiple models

non-realizable schemes. Having obtained the desired augmens, 4 switching” IEEE Tans. on Automatic Conttolol. 39
tations which satisfy the given performance measure, we theny, g pp. 1861 -1866, 1994. ' ’

search for the realizations of these algorithms in the integral-

algebraic or finite form. The conditions obtained for explicitl2] M. French, Cs. Szepesvari and E.Rogers, “Uncertaity,
realization of the algorithms require to solve partial differential Performance, and Model Dependency in Approximate
equation (13) for the functiong(x, t) anda(x,t). To make Adaptive Nonlinear Control”|JEEE Trans. on Automatic
the method applicable for more broad class of nonlinear sys-Control, vol. 45, No. 2, pp. 353 - 358, 2000.

tems, we propose to embed the system dynamics into that of

the higher order. It is possible to show that this allows us to 3] M. _Fre||1ch, “AS Analyti;:al Compa}risokr; Betwdeer; th_e
crease the dimensionality of (13) in Assumption 7, thereby sig- Nonsingular Quadratic Performance of Robust and Adaptive

nificantly reducing complexity of the problem. Furthermore, Balckstepping DesignsIEEE Trans. on Automatic Control
if it is possible to design the extension satisfying (22) for any vol. 47, No. 4, pp. 670 - 675, 2002.

partition of vectorx, then one can sequentially transform origl;14] A. S. Morse, “High-Order Parameter Tuners for the
inal equation (13) for the extended system into (23) which will Adaptive Control of Linear and Nonlinear SystemBtoc.

eventually satisfy assumptions of Corollaries 1 and 2. Theseqt 5 ys-Italy Warkshop in honor of Professor Antonio Ru-
equations have been shown to admit the sufficient conditionsperti, Capri, 15-17 pp. 339-364, June, 1992.

for the finite-form realization of the adaptive algorithms. Fur-

ther results will be reported in [19]. [15] R. Marino, P. Tomei, “Global Adaptive Output-Feedback
Control of Nonlinear Systems, Part I: Linear Parametriza-
tion”, IEEE Transactions on Automatic ControVol. 38,
No. 1, pp. 17 — 32, January, 1993.

“Improving transient re-
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