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Abstract

We suggest a new method to design adaptation algorithms that
guarantee improved performance and are applicable for a class
of plants with nonconvex parameterization. The main idea of
the method is, first, to augment the tuning error (possibly using
uncertainty-dependent signals) of the known adaptive schemes
in such a way that the desired characteristics of the adaptive
system are guaranteed. Then we search for realization of the
proposed schemes in an integral-differential form similar to the
PI (proportional-integral) rules. Such adaptation schemes in
the paper are called adaptive algorithms infinite forms. For
this new description, neither dependence on state derivatives,
nor unknown parameters is required. Sufficient conditions for
existence of new finite form realizations of adaptive algorithms
are proposed.

1 Introduction

Despite significant progress in adaptive control theory of lin-
ear and nonlinear plants [3, 5, 4, 9], plants with relative degree
greater than one [16, 14, 15], and systems with nonconvex pa-
rameterization [6, 10], there is still a room for further studies,
especially when striving for improved performance in the pres-
ence of nonconvex parameterization.

Most of the available results in direct adaptive control when
considering some different performance measures, for instance
LQ performance, deal only with convergence analysis of differ-
ent adaptive schemes without concern for improving their per-
formance [12, 13]. When they do suggest improvements like
those in [11], they do not provide any exact performance mea-
sure that can explicitly be computeda-priori except probably
the bounds onL2 andL∞ norms1 for the tracking errors.

1Function ν : R+ → R is said to belong toL2 iff L2(ν) =∫∞
0

ν2(τ)dτ < ∞. The value
√

L2(ν) stands for theL2 norm of ν(t).
Functionν : R+ → R belongs to andL∞ iff L∞(ν) = supt≥0 ‖ν(t)‖ <
0, where‖ · ‖ is the Euclidean norm. The value ofL∞(ν) stands for theL∞

Another unresolved issue of conventional adaptive control the-
ory is nonconvex parameterization of the plant model. Un-
fortunately, the available approaches encourage the designer
to compensate for the nonlinearity (at least, in part) by using
an additional damping term, or high-gain feedback [6, 10, 7].
Very recent results on nonparametric adaptation [17] can also
be applied to nonlinearly parameterized systems. Neverthe-
less, all these approaches merely can provide integrability of
the squared error.

One impediment to further progress, we believe, is due to
the lack of sufficient information in the conventional adaptive
schemes to improve the performance and deal with nonconvex
parameterization. One way to provide the algorithms with ex-
tra information is to augment the tuning errors. Many adaptive
control schemes use the error augmentation to make the estima-
tion error be dependent on the controller parameters. This idea
is inherent to both Morse’s adaptive controllers [14] and those
based on Kreisselmeier’s observers [16] when dealing with the
plants with relative degree grater than one. These augmented
errors then are used in conventional gradient schemes

˙̂
θ = −Γψ̃(x, t)A(x, θ̂, t), (1)

wherex ∈ Rn is a state (or output) vector,θ̂ ∈ Rd is a vector of
the controller parameters,A(x, θ̂) is an operator that depends
on particular problem, and gainΓ > 0.

The existing performance limitations that have been pointed
out motivate the following challenging question: is there an
augmentation that can create new properties in the system if ap-
plied to it (in addition to readily achievable finiteness ofL2 and
L∞ norm bounds). Furthermore, are algorithms with such an
augmentation physically realizable, i.e., the controller parame-
ters θ̂ can be computed at any time instant without measuring
the unknown signals or parameters?

Instead of searching for the desired adaptive algorithm in the
conventional form defined by (1), we suggest to extend this
class as follows (as in [1, 17, 18]):

θ̂(x(t), t) = θ̂P (x, t) + θ̂I(t);
˙̂
θI = A2(x, θ̂, t),

norm ofν(t).



θ̂P (x, t) = A1(x, t). (2)

It is obvious that algorithms (1) belong to the class (2). Further-
more, functionŝθ(x, t) when written in the differential form (1)
may depend on the unknown parameters and unmeasured sig-
nal. These simple observations lead to quite unexpected con-
clusions. Instead of restricting the design procedure to those al-
gorithms that can be realizable in the form of equation (1), one
may design the adaptation algorithms in two steps. First, search
for the desired augmentation, possibly uncertainty-dependent,
to obtain the requested properties of the adaptive control2. Sec-
ond once a suitable tuning error is chosen, find a realization of
the algorithm in the form of integral-algebraic equations of the
type (2), what is termed byalgorithms in finite form3.

The current paper is devoted to solution of the following prob-
lem: given the desired augmentation (possibly, derivative-
dependent) that guarantees improved performance and ability
to deal with nonconvex parameterization for a class of nonlin-
ear systems, find functionsA1(x, t),A2(x, θ̂, t) that guarantee
the desired realization. The layout of the paper is as follows.
In Section 2 we specify a class of nonlinear dynamical systems
under consideration and select the desired augmentation. Sec-
tion 3 contains the main results of the paper. We show that the
realization problem is solvable for a class of nonlinear systems
and provide the sufficient conditions which guarantee existence
of solutions. Section 4 concludes the paper.

2 Problem Formulation

Let the plant model be given as

ẋi = fi(x) + gi(x)u, i = 1, . . . ,m (3)

ẋj = fj(x) + νj−m(x, θ) + gj(x)u, j = m+ 1, . . . , n,

wherex ∈ Rn is a state vector,fi, gi : Rn → R, fi, gi ∈ C1,
θ ∈ Ωθ ⊂ Rd is a vector of unknown parameters,ϑi : Rn ×
Rd → R, ϑi ∈ C1, u is a control input. For the notational
convenience, we will use more compact description of system
(3):

ẋ = f(x) + ϑ(x, θ) + g(x)u, (4)

where x ∈ Rn is a state vector,θ ∈ Ωθ ⊂ Rd

is a vector of unknown parameters,u ∈ R is a
control input, functions f(·), g(·), ϑ(·, ·) are speci-
fied as follows: f(x) = (f1(x), f2(x), . . . , fn(x))T ,
g(x) = (g1(x), g2(x), . . . , gn(x))T ϑ(x, θ) =
(0, . . . , 0, ν1(x, θ), . . . , νn−m(x, θ))T . For the sake of com-
pactness when dealing with the partial derivatives of a function
we will use the following notation:Lfψ(x) = ∂ψ/∂x f(x)
to denote the Lie derivative of functionψ(x) along the vector

2It has been reported, for instance, in [2, 1] that the derivative-dependent
algorithms written in differential form (1) are able to deal with a class noncon-
vexly parameterized plant.

3To the best of our knowledge, such terminology in adaptive control lit-
erature has been proposed first by A. Fradkov in [8] in order to denote the
speed-gradient based adaptive control schemes given by integral-algebraic, not
differential equations.

field f(x). It will be useful also to think of the state vector
x ∈ L ⊆ Rn as follows

x = x1 ⊕ x2,

x1 = (x1, . . . , xm)T , x2 = (xm+1, . . . , xn)T (5)

where symbol⊕ denotes concatenation of two vectorsx1 ∈
L1 ⊆ Rm, x2 ∈ L2 ⊆ Rn−m, andL, L1, L2 are linear
spaces. Notice that time-derivative ofx1 is independent on
θ whereas time-derivative of vectorx2 depends on unknown
parametersθ explicitly. We refer to the spacesL1 andL2 as
uncertainty-independentanduncertainty-dependent partitions
of system (3), respectively. To denote the right-hand sides of
the partitioned system we use the following notations:f1 =
(f1, . . . , fm)T , f2 = (fm+1, . . . , fn)T , g1 = (g1, . . . , gm)T ,
g2 = (gm+1, . . . , gn)T . In analogy with the definition of inde-
pendence of a function on the componentsxi of its argumentx
we would like to define a notion of independence of the func-
tion with respect to partition. Given thatx ∈ L = L1⊕L2 and
functionω(x) : Rn → Rn be differentiable for anyx ∈ Rn.
Functionω(x) is said to beindependent on partitionL2 iff
∂ω(x1 ⊕ x2)/∂x2 = 0.

Similarly to [1, 2], we define the control goal as reaching a tar-
get manifold asymptotically. We assume that the target mani-
fold can be given by the following equalityψ(x, t) = 0, where
ψ : Rn × R → R, ψ(x, t) ∈ C1. Additional restrictions on
the functionψ(x, t) are formulated in Assumptions 1, 2.

Assumption 1 Functionψ(x, t) is such that for anyδ > 0
there exists a functionε : R+ → R+: |ψ(x, t)| ≤ δ ⇒ ‖x‖ ≤
ε(δ) along system (4) solutions.

Assumption 2 Functionsψ(x, t) andg(x) satisfy the follow-
ing inequality:∀ x ∈ Rn ⇒ |Lgψ(x, t))| > δ1 > 0, δ1 ∈ R+.

Assumption 2 ensures existence of the feedback that transforms
the original system into that of the error model with respect to
the variableψ(x, t). We consider

ψ̇ = Lfψ(x, t) + Lϑ(x,θ)ψ(x, t) + (Lgψ(x, t))u+
∂ψ(x, t)/∂t. (6)

If Assumption 2 holds, there exists the control input

u(x, θ̂, t) = (Lg(x)ψ(x, t))−1(−ϕ(ψ)− Lfψ(x, t)−
Lϑ(x,θ̂)ψ(x, t)− ∂ψ(x, t)/∂t), (7)

whereθ̂ ∈ Ωθ̂ ⊂ Rd is a vector of controller parameters, such
that it transforms (6) into

ψ̇ = −ϕ(ψ) + z(x, θ, t)− z(x, θ̂, t) (8)

wherez(x, θ, t) = Lϑ(x,θ)ψ(x, t).

Let the closed-loop system satisfy the following additional re-
quirements



Assumption 3 For any θ ∈ Ωθ there existŝθ∗ ∈ Ωθ̂ ⊂ Rd,
such that for allx ∈ Rn, t ∈ R+ the following holds

ψ̇ + ϕ(ψ) + z(x, θ, t)− z(x, θ̂∗, t) = ψ̇ + ϕ(ψ) = 0 (9)

Assumption 4 Functionϕ(ψ) in (9) satisfies

ϕ(ψ) ∈ C0, ϕ(ψ)ψ > 0 ∀ψ 6= 0, lim
ψ→∞

∫ ψ

0

ϕ(ξ)dξ = ∞.

Assumption 5 There exists functionα(x, t) : Rn × R →
Rd such that(z(x, θ̂, t) − z(x, θ̂∗, t))(α(x, t)T (θ̂ − θ̂∗)) >

0 ∀ z(x, θ̂∗, t) 6= z(x, θ̂, t); ‖z(x, θ̂, t) − z(x, θ̂∗, t)‖ ≤
D‖α(x, t)T (θ̂ − θ̂∗)‖, D ∈ R+, D > 0.

Assumption 6 There exists such positive constantD1 > 0 that
for anyx, θ̂, θ̂∗, t > 0 the following inequality holds

‖z(x, θ̂, t)− z(x, θ̂∗, t)‖ ≥ D1‖α(x, t)T (θ̂ − θ̂∗)‖.

Assumption 3 is a kind of certainty equivalence or matching
condition. It simply states that for every unknownθ∗ ∈ Ωθ
there exists such vector of the controller parametersθ̂∗(θ∗) ∈
Ωθ̂ that the system dynamics with this control function satis-
fies the following equatioṅψ = −ϕ(ψ). Assumption 4 speci-
fies the properties of functionϕ(ψ), thus stipulating asymptotic
stability of manifoldψ(x, t) = 0 for θ̂ = θ̂∗ and ensuring un-
bounded growth of integral

∫ ψ
0
ϕ(ξ)dξ asψ →∞.

Assumption 5 is given to specify an admissible nonlinear
parameterization of the controller. Notice that for linearly
parameterized plants this assumption is automatically satis-
fied. Throughout the paper we will also assume that func-
tionsα(x, t) andu(x, θ̂, t) both are bounded int and function
α(x, t) ∈ C1.

As a candidate for the augmented errorψ̃(x, t) we select the
following ψ̃(x, t) = ψ̇ + ϕ(ψ(x, t)). It has been proven in
[2, 1] that the algorithm

˙̂
θ = Γ(ϕ(ψ) + ψ̇)α(x, t), (10)

with positive-definite matrixΓ > 0 guaranteesψ(x(t), t) → 0
ast→∞ for the closed loop system

ẋi = fi(x) + gi(x)u, i = 1, . . . ,m
ẋj = fj(x) + ϑj−m(x, θ) + gj(x)u, j = m+ 1, . . . , n,

ψ̇ = −ϕ(ψ) + z(x, θ, t)− z(x, θ̂, t)
˙̂
θ = Γ(ϕ(ψ) + ψ̇)α(x, t), Γ > 0 (11)

with control (7) under Assumptions 1, 3 – 5. In addition, how-
ever, it is possible to derive from [2, 1] that algorithms (10)
guaranteeψ̇ ∈ L2 ∩ L∞ andu(x, θ, t)− u(x, θ̂, t) ∈ L2 [18].

Sometimes it is desirable to consider slightly different error
model from that given by equations (8):

ψ̇ = −ϕ(ψ) + z(x, θ, t)− z(x, θ̂, t) + ε(t), (12)

where functionε : R+ → R, ε ∈ C0, ε ∈ L2 models unknown
disturbances due to the unmodeled dynamics or the measure-
ment errors. The properties of algorithm (10) in this case are
formulated in the next theorem:

Theorem 1 Let the error model be given by equation (12) and
Assumptions 1, 3-6 hold. Thenψ(x, t) is bounded and further-
moreψ(x, t) ∈ L2, ψ̇ ∈ L2, z(x, θ, t) − z(x, θ̂, t) ∈ L2.
If function ε(t) is bounded and functionz(x, θ̂, t) be locally
bounded with respect tox, θ̂, uniformly bounded with respect
to t thenψ(x, t) → 0 ast→∞.

Its proof follows from analysis of time-derivative of the follow-
ing function:

2(D −D1)
∫ ψ

0

ϕ(ξ)dξ + Vθ̂ + 2β2(D −D1)
∫ ∞

t

ε2(τ)dτ,

whereβ ∈ R, β > 1, and

Vθ̂ = D1/4
∫ ∞

t

ε2(τ)dτ + 0.5(θ̂ − θ̂∗)TΓ−1(θ̂ − θ̂∗)

Hence the question is how to realize this algorithm in a form
that depends on neither time-derivativeψ̇ nor its filtered es-
timate explicitly, nor on anything implying knowledge of un-
known parametersθ. As mentioned in Section 1, we propose
to use finite form (2) of the adaptive algorithms instead of the
differential form (10). In the next section we study under what
conditions one can represent algorithms (10) in finite forms.

3 Adaptive Algorithms in Finite Forms

First, we consider rather general case and formulate the condi-
tions ensuring realization of algorithm (10) in the finite form
explicitly, i.e., without any additional filters and further trans-
formations of the closed loop system. Being nontrivial to solve
for any admissible model of the plant given by equations (3),
these conditions are satisfied for some special combinations of
the plant models and goal functionsψ(x, t).

Second, we suggest to embed the plant dynamics into these ex-
tended systems for which the conditions sufficient for the finite-
form realizations are always met. By doing so we no longer
need to find a solution of the partial differential equations to
realize the adaptation algorithms.

3.1 Explicit realization

Let us assume that in addition to the Assumptions 1–5, the fol-
lowing hold

Assumption 7 For the given functionsα(x, t) and ψ(x, t)
there exists functionΨ(x) such that the following hold:

Ψ(x) : ∂Ψ(x, t)/∂x2 = ψ(x, t)∂α(x, t)/∂x2 (13)

Then realizations of the adaptive scheme described by equa-
tions (10) follow from the next theorem:



Theorem 2 Let Assumption 7 hold. Then there is a finite-form
realization of the algorithms (10):

θ̂(x, t) = Γ(θ̂P (x, t) + θ̂I(t));

θ̂P (x, t) = ψ(x, t)α(x, t)−Ψ(x, t)
˙̂
θI = ϕ(ψ(x, t))α(x, t) + ∂Ψ(x, t)/∂t−
ψ(x, t)∂α(x, t)/∂t− (ψ(x, t)∂α(x, t)/∂x1 −
∂Ψ(x, t)/∂x1)(f1(x) + g1(x)u(x, θ̂, t)) (14)

Proof of Theorem 2.The theorem proof is quite straightforward
and follows from explicit differentiation of function̂θ(x, t)

with respect to time:̇̂θ(x, t) = Γ( ˙̂θP + ˙̂
θI) = Γ(ψ̇α(x, t) +

ψα̇(x, t)− Ψ̇(x, t) + ˙̂
θI). Notice that

ψα̇(x, t)− Ψ̇(x, t) + ˙̂
θI = ψ(x, t)∂α(x, t)/∂x1ẋ1 +

ψ(x, t)∂α(x)/∂x2ẋ2 + ψ(x, t)∂α(x, t)/∂t− (15)

∂Ψ(x, t)/∂x1ẋ1 − ∂Ψ(x, t)/∂x2ẋ2 − ∂Ψ(x, t)/∂t+ ˙̂
θI

According to Assumption 7 ∂Ψ(x, t)/∂x2 =
ψ(x, t)∂α(x, t)/∂x2. Then taking into account (15) we
can derive that

ψα̇(x, t)− Ψ̇(x, t) + ˙̂
θI = (ψ(x, t)∂α(x, t)/∂x1 −

∂Ψ/∂x1)ẋ1 + ψ(x, t)∂α(x, t)/∂t−

Ψ(x, t)/∂t+ ˙̂
θI (16)

Hance it follows from (14) and (16) thatψα̇(x, t)− Ψ̇(x, t) +
˙̂
θI = ϕ(ψ)α(x, t). Therefore˙̂

θ(x, t) = Γ(ψ̇ + ϕ(ψ))α(x, t).
The theorem is proven.

Theorem 2 provides us with an answer to the question of exis-
tence of the algorithms that being physically realizable satisfy
differential equations (10). What is important is that the num-
ber of integrators for both algorithms (10) and (14) is the same.
The disadvantage, however, is that the functionsΨ(x, t) in As-
sumption 7 are not easy to find, if they exist at all. Neverthe-
less, despite the obvious difficulties in finding those functions
Ψ(x, t) that satisfy Assumption 7 there are several classes of
the dynamical systems with certain structural properties that
automatically reduce Assumption 7 to more easily verifiable
requirements.

Corollary 1 Let dim(x2) = 1 and function
ψ(x, t)∂α(x, t)/∂xn be Riemann-integrable with respect
to xn, i.e. the following integral exist

Ψ(x, t) =
∫
ψ(x, t)

∂α(x, t)
∂xn

dxn (17)

Then there is a finite-form realization of algorithms (10).

Remark 1 Corollary 1 allows us to turn the problem of search-
ing for a functionΨ(x, t) satisfying equation (13) to that of ex-
istence of the indefinite integral of a function with respect to

a single scalar argument. One example that fits the required
assumptions is a special case of (3) form = n − 1, with
function ϑ(x, θ) satisfying Assumption 5. This assumption
is automatically satisfied ifϑ(x, θ) linearly parameterized or
ϑ(x, θ) = ϑ(xT θ) andϑ(·) is monotonic and belongs to a sec-
tor. Notice that indefinite integral in (17) can be replaced by

Ψ(x, t) =
∫ xn(t)

xn(0)
ψ(x, t)∂α(x, t)/∂xndxn.

Another class of dynamical systems that automatically satisfy
Assumption 7 is given by the following corollary.

Corollary 2 Let functionα(x, t) be independent onL2, i. e.,
for anyx2 ∈ L2

∂α(x, t)/∂x2 = ∂α(x1 ⊕ x2, t)/∂x2 = 0 (18)

then there is a finite-form realization of algorithms (10).

Notice that equality (18) is equivalent to the fact that the plant
dynamics can be described by the following equations

ẋ1 = f1(x1 ⊕ x2) + g1(x1 ⊕ x2)u
ẋ2 = f2(x1 ⊕ x2) + ϑ(x1, θ) + g2(x1 ⊕ x2)u (19)

and∂ψ(x1 ⊕ x2, t)/∂x2 = λ(t), whereλ : R → Rn−m is a
known function of time. On the other hand, one can conclude
from Corollary 2 that every error model of the type

ψ̇ = −ϕ(ψ) + z(ω(t), θ)− z(ω(t), θ̂), (20)

whereω(t) : R → Rn, ω ∈ C1 is a function with known
time-derivativesω̇(t) admits the sufficient conditions for the
algorithms (10) to be realized in the finite form. Indeed, it fol-
lows directly from Assumption 5 as functionsα(x, t) in this
case are independent onx. Therefore if the derivatives ˙α(t)
are known, then the finite forms follow immediately from

θ̂(x, t) = Γ(θ̂P (x, t) + θ̂I); θ̂P (x, t) = ψ(x, t)α(t)
˙̂
θI = ϕ(ψ(x, t)α(x, t)− ψ(x, t)α̇(t)

This property along with decomposition (19) will be used later
for the approximate realizations of algorithms (10).

So far the simplified conditions for existence of the adaptive
algorithms in the finite form were derived from Theorem 2 for
those classes of nonlinear systems that admit certain structural
properties like single dimension uncertainty-dependent parti-
tion (Corollary 1 and equation (3) withm = n − 1), inde-
pendence ofz(x, θ, t) on uncertainty-dependent partitionx2

(Corollary 2, equation (19) and error model (20)). These struc-
tural properties allowed us to reduce Assumption 7 to at most
integrability of a function with respect to the single scalar ar-
gument. This rather simple test, however, is only sufficient (but
not necessary) to establish existence of the adaptive control al-
gorithms with improved transient behavior and abilities to deal
with nonconvex parameterization. On the other hand, it is nat-
ural to expect that there are classes of systems that can be re-
duced to the considered cases for which the algorithms in the
finite forms are proven to exist. In the next section we present
a technique that allows us to transform a nonlinear dynamical
system into a form that obeys these sufficient conditions.



3.2 Asymptotic Design via Embedding

Let us introduce the following assumption

Assumption 8 There exist

1) partition of the state vectorx: x = x1⊕x′2⊕x′′2 , dimx′2 =
m1, dimx2

′′ = n−m−m1, 0 ≤ m1 ≤ n−m

2) system of differential equations

ξ̇ = fξ(x, ξ, t); yξ = hξ(ξ), (21)

ξ ∈ Rr, fξ : Rn × Rr × R+ → Rr, fξ ∈ C1;hξ : Rr →
Rn−m−m1 , hξ ∈ C1;

3) functionΨ(x̃, t) ∈ C1 and partitionx̃ = x1⊕x′2⊕hξ, such
that:

z(x, θ, t)− z(x̃, θ, t) ∈ L2 ∩ L∞; (22)

∂Ψ(x̃, t)/∂x′2 = ψ(x̃, t)∂α(x̃, t)/∂x′2 (23)

for anyθ ∈ Ωθ andt ∈ R+ along the solutions of the original
system (3).

The sufficient conditions for the desired embedding follow
from the next theorem.

Theorem 3 Let functionψ(x, t) be given and Assumptions 1–
6, 8 hold for system (3). Then there exist control function
u(x,hξ, θ̂, t)

u(x,hξ, θ, t) = (Lg(x)ψ(x, t))−1(−ϕ(ψ)− Lfψ(x, t)−
Lϑ(x̃,θ̂)ψ(x̃, t)− ∂ψ(x, t)/∂t) (24)

and adaptation algorithm

θ̂(x̃, t) = Γ(θ̂P (x̃, t) + θ̂I(t)), Γ > 0

θ̂P (x̃, t) = ψ(x, t)α(x̃, t)−Ψ(x̃, t)
˙̂
θI = ϕ(ψ(x, t))α(x̃, t) + ∂Ψ(x̃, t)/∂t− ∂α(x̃, t)/∂t−
(ψ(x, t)∂α(x̃, t)/∂x1 − ∂Ψ(x̃, t)/∂x1)(f1(x) +

g1(x)u(x,hξ, θ̂, t))− (ψ(x, t)∂α(x̃, t)/∂hξ −
∂Ψ(x̃, t)/∂hξ)∂hξ/∂ξfξ(x, ξ, t) (25)

such that for the extended system

ẋ = f(x) + ϑ(x, θ) + g(x)u; ξ̇ = fξ(x, ξ, t)
yξ = hξ(ξ), (26)

the following statements hold:

1)ψ(x, t), ψ̇ ∈ L2 ∩ L∞, z(x̃, θ, t)− z(x̃, θ̂, t) ∈ L2 ∩ L∞
2)ψ(x, t) → 0 ast→∞.

Proof of Theorem 3.To prove the theorem it is sufficient to
notice that control function (24) provides the following er-
ror model dynamicsψ̇ = −ϕ(ψ) + z(x, θ, t) − z(x̃, θ, t) +

z(x̃, θ, t) − z(x̃, θ̂, t). Further,z(x, θ, t) − z(x̃, θ, t) ∈ L2 ∩
L∞ by Assumption 8. One also can verify that algorithms

(25) satisfy the following differential equations:˙̂θ = Γ(ψ̇ +
ϕ(ψ))α(x̃, t). Therefore, according to Theorem 1 we can con-
clude thatψ(x, t) ∈ L2 ∩ L∞ andψ̇ ∈ L2. Due to Assump-
tion 1 we can deduce thatx, θ̂ are bounded and furthermore
z(x, θ, t) − z(x̃, θ, t) ∈ L2. Then z(x̃, θ, t), z(x̃, θ̂, t) are
bounded. Thereforėψ is bounded andψ → 0 as t → ∞.
The theorem is proven.

Theorem 3 provides us with a way to reduce the complexity of
searching for the functionΨ(x, t) defined in Assumption 7. It
is suggested to replace the problem of searching for the suit-
able functionsΨ(x, t) satisfying partial differential equation
(13) by that of searching for the embedding (26) which ensures
properties (22) and (23). The complexity of finding a solution
to equation (13) is reduced asdimx′2 < dimx2 if the embed-
ding into higher-order dynamics is used. Indeed, according to
Assumption 8 and notations introduced above one can describe
dynamics of the extended system as follows

ẋ1 = f1(x) + g1(x)u; ḣξ = (∂hξ / ∂ξ)fξ(x, ξ, t)
ẋ2′ = f2′(x) + ϑ′(x, θ) + g2′(x)u
ẋ2′′ = f2′′(x) + ϑ′′(x, θ) + g2′′(x)u, (27)

where vectorx1⊕hξ stands for uncertainty-independent parti-
tion in the extended state space, and vectorx′2 is chosen to sat-
isfy equation (23). Observe, that functionz(x̃, θ, t) is indepen-
dent onx′′2 anddimhξ = dimx′′2 . Then for anyhξ: dimhξ >
0 we can derive thatdimx′2 < dimx2 = dimx′2 ⊕ x′′2 .

Notice also that by the appropriate choice of the dimensions of
vectorsξ andhξ (dimhξ = dimx′′2 ) in (21) one can reduce di-
mension of vectorx′2 to the unity or try to annihilate the partial
derivative∂α(x̃,t)

∂x′2
in (23). Hence, eventually either Corollary 1

or Corollary 2 conditions will be satisfied for the extended sys-
tem (27). The last in turn implies that we can replace assump-
tion (23) by weaker requirement like integrability of a function
with respect to a single scalar argument.

The remaining problem is that, having computable function
Ψ(x̃, t), one should still find an extension (21) that guaran-
tees property (22) for the given partitioñx = x1 ⊕ x′2 ⊕ hξ.
If such an extension exists, then Assumption 8 is automati-
cally satisfied, and adaptive control algorithms follow imme-
diately from Theorem 3. Nevertheless, finding extension (21)
that ensures boundedness and squared integrability of the dif-
ferencez(x1⊕x′2⊕x′′2 , θ, t)− z(x1⊕x′2⊕hξ(ξ), θ, t) is not
an easy problem (considering that partitionx′′2 is uncertainty-
dependent). It is possible to solve it by using specially designed
adaptiveor high-gainauxiliary subsystems that track the ref-
erence signalsx′′2 with the desired performance:z(x, θ, t) −
z(x̃, θ, t) ∈ L2 ∩ L∞. For example, if partitionx′′2 is linearly
parameterized (i.e.ϑ′′(x, θ) = η′′(x)θ) and functionz(x, θ, t)
is locally bounded inx′′2 : |z(x1⊕x′2⊕x′′2 , θ, t)− z(x1⊕x′2⊕
hξ(ξ), θ, t)| ≤ λ(x, ξ, θ, t)‖x′′2 − hξ(ξ)‖, then the suitable ex-
tension is defined by the following system

ξ̇1 = f ′′2 (x) + η′′(x)ξ2 + λ̄(x, ξ, t)2(x′′2 − ξ1) + g′′2 (x)u



ξ̇2 = Γ1(x′′2 − ξ1)T η′′(x), Γ1 > 0, hξ(ξ) = ξ1,

whereξ = ξ1 ⊕ ξ2 andλ̄(x, ξ, t) = supθ∈Ωθ
λ(x, ξ, θ, t). To

show this it is sufficient to consider the following Lyapunov’s
candidateV (x, ξ) = 0.5‖(x′′2 − ξ1)‖2 + 0.5‖θ − ξ2‖2Γ−1 and
observe thaṫV ≤ −λ̄2(x, ξ, t)2‖x′′2 − ξ1‖2 ≤ −(z(x, θ, t) −
z(x̃, θ, t))2 ≤ 0.

4 Conclusion

In the paper we proposed new method to design adaptive con-
trol algorithms with the improved performance for nonlinear
systems with linear and nonlinear parameterization of the ad-
missible type. The admissible nonlinearities are those that
have linear growth property and are “monotonic” with respect
to their parameters. In contrast to the existing adaptive con-
trol schemes that start from designing the adaptive control al-
gorithms in the differential form and prohibit any use of the
derivatives in the parameter tuning procedures, we first search
for the desired augmentation of the error which, if used in the
adjustment algorithms in the differential form, may result in
non-realizable schemes. Having obtained the desired augmen-
tations which satisfy the given performance measure, we then
search for the realizations of these algorithms in the integral-
algebraic or finite form. The conditions obtained for explicit
realization of the algorithms require to solve partial differential
equation (13) for the functionsψ(x, t) andα(x, t). To make
the method applicable for more broad class of nonlinear sys-
tems, we propose to embed the system dynamics into that of
the higher order. It is possible to show that this allows us to de-
crease the dimensionality of (13) in Assumption 7, thereby sig-
nificantly reducing complexity of the problem. Furthermore,
if it is possible to design the extension satisfying (22) for any
partition of vectorx, then one can sequentially transform orig-
inal equation (13) for the extended system into (23) which will
eventually satisfy assumptions of Corollaries 1 and 2. These
equations have been shown to admit the sufficient conditions
for the finite-form realization of the adaptive algorithms. Fur-
ther results will be reported in [19].
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