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Abstract

This paper presents a plug-in algorithm to compensate web
tension disturbances caused by the eccentricity and the non-
circularity of the reel and rolls in web winding systems. The
disturbances generated by the non-circularity and eccentricity
of the roll have a quasi-periodic form with a frequency that
varies with the rotation speed of the roll. The algorithm is based
on an estimation of the phase component and the quadrature
phase component of the disturbance. Approximate harmonic
analysis and parameter design are done. The stability and ro-
bustness of the algorithm are also discussed. The ability of
the algorithm to reject quasi-periodic disturbances with slowly
varying frequencies is shown through simulations on the phys-
ical model as well as with experimental results.

1 Introduction

The system under study is quite common in industry. The sys-
tem has at least three motors (cf. Figure 1): an unwinder, a
traction motor and a winder, and it presents the inherent dif-
ficulties of web transport systems. In web transport systems,
roll eccentricity and non-circularity create tension disturbances
that are periodic or quasi-periodic due to change of radius of
the roll when the roll is on the winder or the unwinder. These
disturbances may induce web break and folds or material dam-
age. This paper focuses on removing the effect of these distur-
bances that are quasi-periodic (periodic with a slowly varying
frequency) and whose amplitude and phase are unknown.

There exist several approaches to tackle periodic disturbance
rejection problems. A well known approach is based on repeti-
tive control principles (see, e.g., [3], [6]). This type of approach
works well when the disturbances are periodic. However, it is
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not suitable when the disturbance’s main frequency varies with
time. A second approach is based on adaptive algorithms (see,
e.g., [1], [2], [8]). This approach may work even if the fre-
quency is changing with time. In our application (high speed
web winding), the frequency of the disturbance is known but
varies with time during operation. Furthermore, for practical
industrial applications, it is interesting to design an algorithm
that can be added to an existing industrial controller to estimate
the parameters of the disturbance and to cancel it. Therefore,
in this paper we propose a plug-in type algorithm based on the
adaptive algorithm for noise cancellation [1].

This paper is organized as follows, the first section presents
the model of the web transport system based on the laws of
physics with the tension disturbance on the unwinding roll. An
experimental validation of the model is also described. The
second section presents the disturbance cancellation algorithm
with harmonic analysis and parameter design. In the third sec-
tion, the stability and robustness of the algorithm are analyzed.
Finally, in the last section, simulation and experimental results
are presented using this plug-in algorithm on the unwinder of a
web transport system.

2 Model of the web transport system

2.1 Nonlinear nominal model

The tension model in web transport systems is based on
Hooke’s law, Coulomb’s law, mass conservation law and the
laws of motion for each rotating roll (see [4]). Figures 1 and
2 show a typical three motors system with winder, unwinder,
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Figure 2: Three motors web transport system

tractor and two load cells that is used in our experiments. The
complete model of this system is given by the following equa-



 

 
 

Figure 1: Three motors web winding system

tions (see, e.g., [4] and [5] for more details):
Tensions between consecutive rolls:

Lk−1

dTk

dt
= ES(Vk − Vk−1) + Tk−1Vk−1

−Tk(2Vk−1 − Vk) (1)

k = 2, 3, 4, 5 (Vk = RkΩk)

where Lk−1 is the web length between roll k− 1 and roll k, Tk

is the tension on the web between roll k−1 and roll k, Vk is the
linear velocity of the web on roll k, Ωk is the rotational speed
of roll k, Rk is the radius of roll k, E is the Young modulus
and S is the web section.
Laws of motion:
Unwinder: (U1 = Uu)

d(J1Ω1)

dt
= R1T2 −K1Uu − Cu − fuΩ1 (2)

Unwinder load cell:

J2

dV2

dt
= R2

2(T3 − T2)− f2V2 (3)

Tractor: (U3 = Ut)

J3

dΩ3

dt
= R3(T4 − T3) + K3Ut − Ct − ftΩ3 (4)

Winder load cell:

J4

dV4

dt
= R2

4(T5 − T4)− f4V4 (5)

Winder: (U5 = Uw)

d(J5Ω5)

dt
= −R5T4 + K5Uw − Cw − fwΩ5 (6)

where Cw, Ct, Cu are the dry friction torques of the three mo-
tors, respectively, fu, f2, ft, f4 and fw are the viscous friction
parameters, and KkUk are the motor torques. We can notice
at this point that the inertia Jk and the radius Rk of the winder
(k=1) and the unwinder (k=5) are time dependent and may vary
on a large scale during the process operation (about 300 % for
the radius in our experiments).

2.2 Eccentricity and non-circularity of the unwinder roll

The effect of the eccentricity and non-circularity of roll k can
be modeled as a sinusoidal disturbance on the nominal radius
of roll k:

Rk(t) = Rk0(t) +

∞
∑

m=1

Akmsin(θkm(t)) (7)

where Rk0(t) is the nominal radius of roll k and

θkm(t) = m

∫ t

t0

Ωkdτ + δθkm(t) (8)

δθkm(t) are the instantanous phases of the different harmonics.
In a constant speed web transport system, if the eccentricity
or non-circularity disturbance is due to the winder or the un-
winder, the disturbance frequency is shifting with time due to
the change of nominal radius of the roll.

2.3 Identification and experimental validation of the
model

Firstly, the friction parameters of each motor are identified us-
ing a least squares method with data acquired at constant speed.
Then, the inertia of the motors and the load cells as well as the
torque gains are identified by a model matching method (cf.
[7]). Measurements on the real system and simulations with
the identified parameters are compared in Figure 3, in the case
of a circular roll without eccentricity. Note that the difference
at t=16 sec and t=36 sec is due to the slipping of the web that
is not taken into account in the model. In the case of non-
circularity or eccentricity disturbances, the difference between
simulation and measurements can be seen in Figure 4. Indeed,
if we look at the spectrum of the web tension measured during
the winding process (cf. Figure 5), we can see that this distur-
bance is related to the winding and unwinding frequencies. The
tension measured is the average tension between two consecu-
tive rollers. We observe two fundamentals and two harmonics
at frequencies which vary slowly during the winding process.
The linear velocity is usually maintained constant in web trans-
port systems, and the varying radius will modify the rotational
speed of the winder and unwinder during the process opera-
tion (cf. equations (2) and (6)). The fundamentals in Figure 5



Figure 3: Simulation and measurement

Figure 4: Simulation and measurement with a non-circular roll

correspond to the frequency of rotation of the unwinding and
winding motors.

Figure 5: Experimental web tension spectrum

3 Disturbance rejection algorithm

The adaptive disturbance rejection algorithm is based on the
estimation of the amplitude of two components of the distur-
bance that are in phase quadrature to each other. This algorithm
is inspired from the work of Bodson (see, [1]) on noise cancel-
lation. We adapt Bodson’s approach to the case of a feedback
control system with output signal y and reference input signal
r. Another difference with Bodson’s approach is that the cen-
tral frequency Ωc of the disturbance can be measured in our
application and used at the input of the frequency modulator

inside the algorithm. The adaptive algorithm scheme is shown
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Figure 6: Adaptive algorithm scheme

in Figure 6 for the rejection of the first harmonic, where G(s)
is the system, K(s) is the controller, and d is the unknown peri-
odic disturbance. The estimate of the disturbance, ud, is given
by:

α̇ = Ωc

ud = δdcos(α)− δqsin(α) (9)

It’s important that the disturbance cancellation algorithm does
not make matter worse even during a starting transient. There-
fore, Bodson’s algorithm is modified by introducing a satura-
tion on the estimated disturbance and a switching algorithm
that can slowly close or open the disturbance cancellation loop.

3.1 Approximate harmonic analysis

An approximate harmonic analysis of this adaptive algorithm
will allow us to deduce a simple design rule for the matrix P−1

and the gain g. The analysis of the adaptive scheme is based on
the following assumption:

• The disturbance to be cancelled is equivalent to an input
disturbance d(t) = Ad(t)cos(αd(t)).

• The value of Ωc varies sufficiently slowly and the instan-
tanneous frequency of the disturbance, ω0 = α̇d, is suffi-
ciently close to the known frequency Ωc, so that G(jω0)
can be replaced by G(jΩc).

We have:

y =
KG

1 + KG
[r] −

G

1 + KG
[ud − d]

e =
1

1 + KG
[r] +

G

1 + KG
[ud − d] (10)

Let’s define:

GR = Re[
G

1 + KG
(jΩc)] GI = Im[

G

1 + KG
(jΩc)]

If we neglect the transient due to the variations of Ωc, then

e '
1

1 + KG
[r] + δdGRcos(α) − δdGIsin(α)

−δqGRsin(α)− δqGIcos(α) −AdGRcos(αd)

+AdGIsin(αd) (11)



If the high-frequency components are neglected due to the low-
pass filtering of the signals e1 and e2, then,

[

e1

e2

]

' P

[

δd −Adcos(α− αd)
δq + Adsin(α− αd)

]

(12)

where P is defined as:

P =
1

2

[

GR −GI

GI GR

]

(13)

Therefore, the dynamics of δd and δq are decoupled as shown
in the linearized model of the disturbance cancellation loop in
Figure 7. The parameter, g, sets the estimation dynamics. In-
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Figure 7: Linearized model

deed:
[

δ̇d

δ̇q

]

= −g

[

δd −Adcos(α− αd)
δq + Adsin(α− αd)

]

(14)

Therefore, g must be smaller than Ωc in order to filter the high-
pass frequency components, but large enough in order to follow
the phase variations of the perturbation d. In that case, δd ex-
ponentially converges toward Adcos(α − αd) and δq toward
−Adsin(α−αd), so that ud exponentially converges toward d

(with time constant 1

g
).

4 Robustness and stability analysis

In (12), P is the true plant matrix, while P−1 in Figure 6 is
identified from the Bode plot. Therefore, there is always an
error between both terms that may cause system unstability.
Let P∆ = P̂ − P , with

P̂ =
1

2

[

ĜR −ĜI

ĜI ĜR

]

(15)

Considering the linearized scheme with uncertainty in Figure
8, we have
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Figure 8: Linearized model with uncertainty

δ̇ = −g(I + ∆)(δ + r) (16)

where,

r =

[

r1

r2

]

δ =

[

δd

δq

]

∆ = −P̂−1P∆

Whereupon, the stability condition for the linear system (16)
is:

Re{λi{I + ∆}} > 0 ⇔ Re{λi{∆}} > −1 (17)

with

∆ = −P̂−1P∆

= −
1

Ĝ2
R + Ĝ2

I

[

ĜR ĜI

−ĜI ĜR

][

GR∆ −GI∆

GI∆ GR∆

]

= −
1

Ĝ2
R + Ĝ2

I

[

a −b

b a

]

where a = ĜRGR∆ + ĜIGI∆ and b = ĜRGI∆ − ĜIGR∆,
then

λi{∆} =
a± jb

Ĝ2
R + Ĝ2

I

i = 1, 2 (18)

So that (17) is equivalent to

ĜRGR∆ + ĜIGI∆

| Ĝ |
2

< 1 (19)

with ĜR = GR + GR∆, ĜI = GI + GI∆, and equation (19)
becomes:

ĜRGR + ĜIGI

| Ĝ |
2

> 0 (20)

Let
ĜR

| Ĝ |
= cosϕ and

ĜI

| Ĝ |
= sinϕ, then the following stabil-

ity condition can be deduced:

GRcosϕ + GIsinϕ > 0 (21)

This condition is shown as the shaded area in Figure 9 which is
defined by an orthogonal line which goes though the origin to
the vector Ĝ, i.e, if G is in the shaded area, then the algorithm
will be stable. In other words, if G and Ĝ are in the same
half plant limited by the orthogonal line to Ĝ, the algorithm is
stable.

Figure 9: Stability condition

5 Application to the web winding system

In the web winding and transport system, if the eccentricity
and non-circularity disturbances are due to roll k, then the main
tension disturbance essentially is on tension Tk+1. Therefore,
we add the adaptive algorithm on the controller of the motor
of roll k with a feedback of the tension Tk+1. For exemple,
if the disturbance is due to the unwinder, we add the adaptive
disturbance cancellation algorithm on the unwinder controller
as shown in Figure 10.



Figure 10: Control scheme with adaptive algorithm on the un-
winder

5.1 Selection of design Parameters

a) Parameter g: In our simulations and experiments, Ωc ∈
[8.6, 50] rad/s and parameter g = 1 ∼ 10.
b) System matrix P : The Bode plot of the transfer function be-
tween the control signal of the unwinder ud and the measured
torque error, Turef − Tu, is shown in Figure 11 for different
constant reference linear velocities Vref of the web. Based on
the value of Vref , an average value Ω̄c is computed for Ωc and
the corresponding matrix P (cf. equation(13)) is measured on
the Bode plot.
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Figure 11: Bode plot of the transfer between ud to Turef − Tu

5.2 Simulations with the adaptive algorithm

We demonstrate the validity of the adaptive algorithm through
simulations with the algorithm at the unwinder roll as in Figure
10. Considering eccentricity or non-circularity disturbances on
the unwinder, the tension on the unwinder and the winder is
shown in Figure 12 with and without the adaptive algorithm.
One can clearly see that the adaptive algorithm completely
compensates the disturbances. Figure 13 shows that two har-
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Figure 12: Simulation of adaptive algorithm
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Figure 13: Simulation with algorithms for harmonics

monics on the unwinder can be also cancelled by two parallel
algorithms (one algorithm with central frequency Ωc and the
other with central frequency 2Ωc).

5.3 Experimental results

In our practical system, the main controller is a H∞ multivari-
able controller (see [5]). One or more adaptive plug-in algo-
rithms are added to this real system. Figure 14 shows the spec-
trogram (amplitude of the Fourier transform with a sliding win-
dow) of the measured web tension at the unwinder during a real
experiment on the system shown in Figure 1 for an unwinder
roll which presents an eccentricity and a noncircularity at the
web transport speed Vuref = 50 m/min. For this experiment,
the adaptive disturbance cancellation algorithm is not added.
Figure 15 shows the spectrogram of the measured web ten-
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without disturbance rejection algorithm
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with algorithm

sion at the unwinder during a real experiment at the web trans-
port speed Vuref = 50 m/min with the adaptive disturbance



cancellation algorithm on the unwinder. One can see that the
slowly varying first harmonic is almost completely cancelled.
The higher frequency disturbance term is due to the traction
motor. The experimental result can be seen in Figure 16 when
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Figure 16: Spectrogram of tension measurement at 50 m/min
with algorithm in a period

the adaptive algorithm is switched on between the time instants
t=20 s and 50 s. During this time interval, the fundamental of
the disturbance due to the unwinder is completely eliminated
and the transient from activation to desactivation of the can-
cellation algorithm does not create oscillations of the tension.
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Figure 17: Spectrogram of tension measurement (fundamen-
tal and harmonics) at 50 m/min without disturbance rejection
algorithm
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Figure 18: Spectrogram of tension measurement (fundamental
and harmonics) at 50 m/min with algorithm (rejection of fun-
damental and 2nd harmonic)

If there exist more harmonics on the unwinder, several algo-
rithms can be added in parallel on the experimental system.
Figure 17 shows the spectrogram with several harmonics of
the measured tension without disturbance rejection algorithm.
Then, in Figure 18, the rejection of disturbances is activated

for the fundamental and also for the second harmonic. Com-
paring both figures, we can notice that the adaptive rejection al-
gorithm is effective to eliminate both the fundamental and the
harmonic. Moreover, the measurements show also that even
higher harmonics are simultaneously attenuated.

6 Conclusion

In this paper, an adaptive algorithm is proposed to reject the
disturbances generated by the non-circularity and eccentricity
of the rolls in web transport systems. It estimates the dis-
turbances based on the tension error signals in the system
and cancels them. This adaptive algorithm works when the
frequencies of the disturbance are known and vary slowly.
The stability robustness analysis of the algorithm is given and
one can clearly see that the adaptive algorithm is robust for
quasi-periodic disturbance rejection. Simulations with the
physical model and practical experiments on a 3-motors web
transport system verify the theoretical results of the analysis
and show the usefulness of the algorithm for the rejection of
quasi-periodic disturbances. Finally, it should be noted that the
algorithm is plug-in in nature and can be added on an existing
scheme.
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sis, Université Louis Pasteur (Strasbourg I University),
(2000).
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