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Abstract

The stability robustness analysis for a class of nonlinear
systems with bounded structured uncertainties is characterized
by Nonlinear Matrix Inequalities (NLMI). By introducing scal-
ing to reduce conservatism arising from the uncertainty struc-
ture, the problem turns out to be still convex. However, it is
shown that it is as hard as Lyapunov stability analysis. In this
paper, it is proposed a new way for the stability robustness anal-
ysis. It consists of splitting the problem into two steps and
treating it on the basis of Lyapunov designs.

As application, we have applied the nonlinear backstepping
based approach to deal with the problem of stabilizing a mag-
netic suspension system with bounded structured uncertainties.
Numerical simulations as well as experimental results have
been performed, they are shown to be satisfactory and are in
concordance.

1 Introduction

In this paper, robustness analysis for a class of uncertain non-
linear systems with bounded structured uncertainty is consid-
ered. On the basis ofL2-gain analysis and small-gain theorem
for nonlinear systems [5,6,7], the problem can be characterized
by nonlinear matrix inequalities which are convex. The NLMI
conditions involve neither a finite number of unknowns nor fi-
nite number of constraints. In [3,6], NLMI computations have
been proposed, by using finite differences and finite elements
approximations, in order to solve robustness analysis problem.
Theses schemes are anyhow useful tools only in the case of low
dimensional problems. It is proved that the NLMI characteri-
zation for robustness analysis is as hard as Lyapunov stability
analysis.

Therefore, we herein propose an easier way to overcome this
difficulty. It consists of a reformulation of the stability robust-
ness analysis problem by splitting it into two steps, one for

checking a Lyapunov function of the nominal system by em-
ploying techniques proposed in [4], and another step, for ana-
lyzing the stability robustness of the uncertain nonlinear system
by solving an LMI.

In order to illustrate this approach, an application is described.
It deals with the stabilization of a magnetic suspension system
with bounded structured uncertainties.

This paper is organized as follows: InSection 2, some results
onL2-gain analysis for nonlinear system are reviewed. InSec-
tion 3, NLMI characterization of stability robustness analysis
for nonlinear uncertain systems is emphasized and a new ap-
proach is proposed to deal with stability robustness analysis in
an easier way. InSection 4, the model of a magnetic suspension
is presented with nonlinear backstepping design controller and
the simulation results are provided out for the nominal system
and for the one with uncertainties as well.Section 5is devoted
to the experimental results. InSection 6, the proposed approach
for stability robustness analysis are applied to the magnetic sus-
pension system with structured uncertainty. Finally, some con-
cluding remarks are given inSection 7.

2 The L2-gain of nonlinear systems and small-
gain theorem

Let us consider the following control affine system:

{
ẋ = f(x) + g(x)u
y = h(x) (1)

wherex ∈ Rn is the state vector,u ∈ Rm is the input vector
andy ∈ Rp is the output vector. It is assumed that :f, g, h ∈
C0 are vectors or matrices valued functions andf(0) = 0,
h(0) = 0. The system evolves on a convex open subsetX ⊂
Rn containing the origin. Thus,0 ∈ Rn is the equilibrium of
the system withu = 0.

Definition 2.1
System (1) with the initial conditionx(0) = 0 is said to have

L2-gain less than or equal to 1 if

∫ T

0

‖y(t)‖2 dt ≤
∫ T

0

‖u(t)‖2 dt (2)



for all T ≥ 0 and u(t) ∈ Le
2(R

+). Where Le
2(R

+) is
the extended space ofL2(R+) which is defined as the
set of all vector-valued functionsu(t) on R+ such that
‖u(t)‖2 := (

∫∞
0
‖u(t)‖2 dt)1/2 < ∞.

The following theorem characterizesL2-gains for a class of
nonlinear systems which are asymptotically stable in terms of
NLMIs [5,10].

Theorem 2.1
Consider systemG given by (1), it is asymptotically stable

and hasL2-gain≤ 1 if there exists aC1 positive definite func-
tion V : X → R+ such that




∂V

∂x
(x)f(x) + hT (x)h(x)

1
2

∂V

∂x
(x)g(x)

1
2
gT (x)

∂T V

∂x
(x) −I


 < 0 (3)

for all x ∈ X\{0}. The upperscriptT denotes the transposi-
tion sign.

Note that the condition in theorem (2.1) is affine inV (x) and
all solutions form convex sets. This inequality is the so-called
Nonlinear Matrix Inequalities (NLMIs) [5,6].

3 Robustness analysis for nonlinear uncertain
systems

Consider the uncertain nonlinear system described in Fig.1
as a feedback system, whereG is the nominal system and has
realization similar to system (1).∆ is the uncertainty matrix.
It belongs to a bounded-norm structured set:

B∆ := {∆ = diag{∆1, ∆2, ..., ∆N} : ∆ is causal stable
and hasL2-gain≤ 1 }

 ∆ 

G 

u y 

Figure 1: The uncertain system

Definition 3.1

The uncertain system isrobustly stableif for each∆ ∈ B∆,
the feedback system is well-posed and is asymptotically stable
around the origin.

So, it is assumed that the nominal systemG is well-posed and
a stronger assumption is made for each uncertainty∆ :

Assumption 3.1
For each∆ = diag{∆1,∆2, ..., ∆N} ∈ B∆, ∆i,
i = 1, 2, ..., N has the following realization:
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Figure 2: The uncertain system with scaling

{
ξ̇i = f∆i

(ξi) + g∆i
(ξi).yi

ui = h∆i
(ξi)

(4)

which evolves onXi with f∆i
(0) = 0 andh∆i

(0) = 0. In
addition, there is aC1 storage functionUi such that

U̇i(ξi) ≤ ‖yi‖2 − ‖ui‖2.

In order to reduce possible conservatism arising from the un-
certainty structure, scaling manipulation can be used as in fig-
ure 2, whereD is some real invertible matrix such thatD ∈ D
with the bloc diagonal matrix set

D := {diag{d1I, d2I, ..., dNI} : di ∈ R, di > 0}

where each of identity matrix is compatible with the corre-
sponding uncertainty∆i. It is noted that for eachD ∈ D,
∆ ∈ B∆ if and only if D∆D−1 ∈ B∆, since theL2-gains of
∆ andD∆D−1 are the same.

Therefore,D∆D−1 is a legal uncertainty structure and sat-
isfies assumption (3.1).

Thus, we consider the scaled systemDGD−1 instead ofG.
The obtained uncertain system is the same as the original one
represented in figure 1.

We have the following theorem on robustness analysis for
structured nonlinear uncertain systems [5,6,7,8].

Theorem 3.1
Consider the uncertain nonlinear system represented in fig-

ure 2 whereG is the nominal system as in (1) and∆ is the struc-
tured uncertainty in the admissible uncertainty setB∆ under
assumption (3.1).

The uncertain nonlinear system is robustly stable if there exists
a positive definite functionV : X → R+ and a positive
definite matrixQ ∈ D such that the following “NLMI ” holds




∂V

∂x
(x)f(x) + hT (x)Qh(x)

1
2

∂V

∂x
(x)g(x)

1
2
gT (x)

∂T V

∂x
(x) −Q


 < 0

(5)

for all x ∈ X\{0}.



For more details, one may find the proof of the theorem in [5].

By Schur complements argument, inequality (5) can be rewrit-
ten as follows:





H(V,Q, x) =
∂V

∂x
(x)f(x) + hT (x)Qh(x)

+
1
4

∂V

∂x
(x)g(x)Q−1gT (x)

∂T V

∂x
(x) < 0

Q > 0
(6)

The inequalityH(V, Q, x) is called Hamilton-Jacobi inequal-
ity. Its solutions also form a convex set but it is not easy to
employ it in numerical computation. In [2,6], Huang, Lu and
Doyle propose computational issues using finite differences
and finite elements approximations. Theses schemes are
useful tools in the case of low dimensional problems only.
Moreover, the solutions depend on the initial conditions, which
is nevertheless not obvious. With the NLMI characterization,
it is shown that the NLMI computation for robustness analysis
is as hard as Lyapunov stability analysis.

Therefore, we propose herein an easier way. Why not splitting
the problem into two steps: in the first step, one may check
a Lyapunov functionV (x) for the nominal system by using
techniques proposed in [4] by Krstic, Kanellakopoulos and
Kokotovic, and in the second step, we look for a positive
definite matrixQ by solving the LMIH(Q, x).

Let us apply this suggestion to a magnetic suspension system.
A Lyapunov function is determined for the nominal system by
backstepping approach.

4 Application to a magnetic suspension device

4.1 System modelling

Consider the magnetic suspension shown in figure 3. It con-
sists of an iron pendulum in a vertical magnetic field created
by a single electromagnet. The closed loop block diagram is
depicted in figure 4, wherez is the measured position of the
rotor about the sensor position center in an absolute reference
frame andi is the output current signal of the actuator.

The dynamics between the input voltageu of the actuator and
its output currenti are a first order differential equation. By
letting the state vector asx = [i, z,mż]T , the modelling of the
system is





ẋ1 = (−x1 + kνu)/τ
ẋ2 = x3/m

ẋ3 = −mg + k
x2

1

(c− x2)2

(7)

Figure 3: Magnetic suspension device
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Figure 4: Block diagram of the magnetic suspension system

wherem is the mass of the pendulum,τ , kν are the time con-
stant and the amplification factor of the actuator respectively,k
is a positive constant andc denotes the nominal air gap.

For a given desired constant position of the pendulumx2∗, the
equilibrium we want to stabilize is

x∗ = [
√

mg/k(c− x2∗), x2∗, 0]T

Magnetic suspension system is an open loop unstable, so
then in order to guarantee stable feedback, suitable control is
needed. Let us first determine the controller by using a non-
linear backstepping control design that has been developed in
[4].

4.2 Backstepping controller design

In nonlinear systems, the backstepping procedure is consist-
ing of finding strictly assignable Control Lyapunov Function
(CLF), positive definite and radially unbounded guarantees the
global asymptotic stability of the system (see [4,9]).

Step 1: Consider the subsystem:

ẋ2 = v1(x2)/m (8)

In order to find the virtual control lawv1(x2), we introduce the
CLF

V1(x2) =
1
2
α1e

2 (9)

wheree being the error signale = x2−x2∗ andα1 is a positive
constant. So, we have



V̇1(x2) = α1e.v1/m (10)

By takingv1 = −e , we strictly assign the CLFV1(x2).

Step 2: Now we consider the subsystem:





ẋ2 = x3/m

ẋ3 = −mg + k
v2(x2, x3)
(c− x2)2

(11)

with v2(x2, x3) as the second virtual control law.
Taking the CLF

V2(x2, x3) = V1(x2) +
1
2
α2(x3 − v1(x2))2, α2 > 0 (12)

As in step 1, we strictly assign CLFV2(x2, x3) by setting

v2(x2, x3) =
−1
k

(c− x2)2(−mg +
(1 + α1

α2
)e + 2x3

m
) (13)

Step 3: Finally, we consider the whole magnetic suspension
system (1).
Introducing the CLF

V (x1, x2, x3) = V2(x2, x3) +
1
2
α3(x2

1 − v2(x2, x3))2, α3 > 0
(14)

and similarly as made in the preceding steps, we can get
the control inputu that renders CLFV (x1, x2, x3) strictly
assignable, thus achieving the global asymptotic stability of
the magnetic suspension system. The control law is found to
be having the following expression :

u = h0x3 + (c− x2)2h1(−2mg + h2x1)
+h3

x1x3

(c− x2)
+h4(c− x2)2(h5 − h6x3 − h7(x2 − xref ))

(15)

where thehi’s are constant.

Two parametric uncertainties are considered, one on the pendu-
lum massm and the other one on the actuator constantk. Thus,
structured matrix uncertainty is obtained as shown below:

∆ =
[

δm 0
0 δk

]
(16)

4.3 Simulation results

The required performance are commonly expressed in terms
of the overshoot(< 20%), the settling time(< 1s) and the
tracking error accuracy. First, numerical simulations have been
performed for both nominal system and under uncertainties.

Figure 5 exhibits the set point positionz (a), the input volt-
ageu (b). It may be observed that concerning the position the
overshoot , the settling time and the accuracy are within the
required performance. The control input lies within the exper-
imental device constraints, namely(±10V ).

The control law for the nominal system does not guarantee the
global asymptotic stability in the presence of parametric un-
certainties,i.e. there is a steady state error compared to the
equilibrium we want to stabilize. In order to “robustify ” the
backstepping control design, we propose to redesign the con-
troller by adding a PI regulator in parallel with the nonlinear
controller.

The parameters of the PI controller have been determined based
on the local linearization of magnetic suspension system (7)
around the operating pointz = 0, such that the integral action
operates far from the desired band-width of the system in order
to do not jeopardize the performance of stabilization brought
by the nonlinear backstepping controller.

In doing so, the simulation results are shown to be satisfying
the required performance in the case of parametric uncertain-
ties δm = 10% andδk = 10% in (Fig.6). The control input
still remains within the required voltage bounds.
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Figure 5: Simulation results with nominal parameters.
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Figure 6: Simulation results with parametric uncertainties
δm = 10% andδk = 10%



5 Experimental results

5.1 Platform description

The experimental bench available in our laboratory(fig.7)
is composed of a magnetic suspension unit and a personal com-
puter with an interface.
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Figure 7: Experimental bench.

The magnetic suspension device is made of an actuator, a rotor
and a sensor position(Fig.3). The actuator consists of a coil
and a corresponding voltage controlled current source. Thus,
the electromagnet and the controller current are considered as
a unit. The later is assumed to be a first order lag where the
parametersτ andkν of system(1) result from an experimen-
tal identification. The rotor axis is in line with the acceleration
due to the gravity, it is subject to the force exerted by the actu-
ator, thus causing a displacement of the pendulum. The sensor
position is based on the differential transformer principle. Sen-
sors of this type offer a good linearity as well as an infinite
resolution. Moreover, they are robust with respect to electrical
disturbances. The main characteristics of the actuator and the
rotor are:

m = 0.0844kg k = 0.005 g = 9.81m/s2

τ = 1ms kν = .1 c = 0.011m

Concerning the interface, it contains three A/D converters in-
puts(12 bits) and two D/A converters outputs(12 bits).

5.2 Experimental results

In order to implement the nonlinear backstepping controller
we have estimated the velocity and the current of the actua-
tor by using a linear observer. The dynamics of the observer
are chosen faster than the magnetic suspension dynamics. The
initial state condition isx(0) = [x1∗, 0, 0]T .

The experimental results are shown to be satisfactory with re-
spect to the nominal mass and to the considered uncertainties.
Hereafter, are some results corresponding to system perfor-
mance with nominal parameters(Fig.8) and with parametric
uncertainties∆m = 10% and∆k = 10% (Fig.9). One may
observe that the desired performances are met. For more re-
sults, the reader may see [11].

Bear in mind that our aim is to solve the robustness analysis
problem (6). This problem is more significant for industrial
applications when tests are particularly quite expensive.
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Figure 8: Experimental results with nominal parameters.
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Figure 9: Experimental results with parametric uncertainties
δm = 10% andδk = 10%.

6 Robustness analysis for the uncertain system

The parametric uncertainties form a structured matrix uncer-
tainty as follows:

∆ =
[

δm 0
0 δk

]
(17)

By standard manipulation, the structured uncertain system
may be represented as shown in figure 10, whereG is the
nominal system interconnected with the controllerK, y is the
measured output,u the control input,z and v are the input
and output of the system uncertainty respectively. Finally,d
is a perturbation depending on the pendulum mass parametric
uncertainty. The conservatism may be reduced by introducing
scaling as is described inSection 3.

By applying the nonlinear backstepping design, the Lyapunov
function of the nominal system is derived from the procedure
of Section 4.2.
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Figure 10: The structured uncertain system

Thus, the new problem on robustness analysis for the feed-
back system depicted in Figure 10 consists of solving LMI (6),
where

Q =
[

qm 0
0 qk

]
(18)

By using the LMI control toolbox (see [1, 2]), the following
optimal matrixQ is obtained:

Q =
[

1.4764 0
0 1.4572

]
(19)

Consequently, sinceQ is positive definite matrix we may con-
clude that the nonlinear uncertain system is robustly stable, this
is validated by robustness tests carried out on the experimental
bench.

7 Conclusion

Robustness analysis for nonlinear systems with bounded
structured uncertainties consists of solving the Hamilton-
Jacobi inequality which can be characterized by NLMI. With
this characterization, it is shown that the NLMI computation
for robustness analysis is as hard as Lyapunov stability analy-
sis.

Therefore, in order to over pass this difficulty we have proposed
an easier way that split the problem into two steps. The first
one checks a Lyapunov function for the nominal system, and
the other one checks the positive definite matrix of the theorem
statement by solving an LMI.

As application, we have applied the nonlinear backstepping
based approach to deal with the problem of stabilizing a mag-
netic suspension system and then to get a Lyapunov function
for the nominal system. The obtained experimental results are
satisfactory and are in concordance with the theoretical ones,
the required performances are achieved.
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