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Abstract

A boundary control design for towed cables via backstepping is pre-
sented. A towed cable model is discretized by the finite element
method into n nodes. The boundary control law is designed using
the states at the outer nodes as inputsto stabilize the states a the inner
nodes, thus moving backwards to construct a controller that can sta-
bilize all system states asymptotically. The boundary controller im-
proves the transient dynamics, suppresses the vibrations and enables
smooth tracking for the towed cable system. Simulation and numer-
ical results are presented to validate the proposed boundary control
law.

1 Introduction

Towing of cablesis amethod used extensively in marine oper-
ations. A typical cable-towing configuration consists of a neg-
atively buoyant cable attached to a towing vessd and, at the
other end, to a submersible, which may contain sensor equip-
ment and an actuator for depth control. Accurate control of the
cable motion is of great importance in seismic operations. A
towing arrangement with isillustrated in Figure (1).

The dynamics of the cables/strings have been studied by many
authors: [4], [8], [5], [13], [6], [9] and the references therein.
Boundary control aspects of the cable/string systems have been
investigated by severa authors. Among others, [7] designed
a boundary feedback controller for a system described by the
wave equation where exponentia stability of the closed loop
is obtained for strictly proper transfer functions. [2] devel-
oped exponentially stabilizing controllers for the transverse vi-
bration of a string-mass system modeled by one-dimensional
wave equation. [12] and [3] devised exponentiadly stabilizing
controllers for aone-dimensional nonlinear string equation, al-
lowing varying tension in the string. [10] devised arobust and
adaptive controller to damp out the transverse oscillations of a
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Figure 1: A towing configuration.
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stretched string, allowing nonlinear dynamics and their uncer-
tainties in the model. The works mentioned above use a com-
bination of the states at the boundary, namely the boundary po-
sition, slope, dope-rate and velocity, to design the stabilizing
boundary control laws.

In this paper, we extend the previous works taking into ac-
count additional states that might be available through ob-
servers or direct measurements, at specified positions aong the
cable/string system and propose a solution that uses such in-
formation in the control of the motion of a towed cable. The
boundary control law is designed viathe backstepping method,
considering a towed cable model that is discretized by the fi-
nite element method into » nodes. The boundary control law is
then constructed using the states at the outer nodes as inputs to
stahilize the states at the inner nodes, thus moving backwards
along the cable to construct acontroller that can stabilize al the
system states asymptotically. The simulation and numerical re-
sults are presented to validate the proposed boundary control
law.

2 Cable Dynamics
2.1 Equation of Moation

Consider a cable of length L € R with negligible bending
and torsiona stiffness. The unstretched distance along the
average line of the cable is denoted by s € [0,L] and the
stretched distance by s.. The axia strain of the cable is then
e = (0s. — 0s) /9s. Letr (¢, 5) : [to,00) x [0, L] — R? bethe
position vector of an arbitrary point on the average line of the
cablewheret isthetime variable. The unit vector t (¢, s) € R?
tangent to the cable is defined as t (¢, s) = dr/ds. which can
be rewritten as

Jr Os 1 or
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The equation of motion of a cableis[13] given by

&r (t, )
ot?
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where is m € R mass per unit length of unstretched cable,
1 € Risthetension and q € R3 isthe sum of external forces
per unit length of unstretched cable acting on the cable. For a
submerged cable, it is assumed that the external forces consist
of the buoyancy force q; and the hydrodynamic drag force q4.



Theseforces are given by
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where g € R? isthe gravitational acceleration, p, the density
of the cable, p,, is the density of the ambient water, C; and
Cy,, arethetangentia and normal drag coefficients of the cable,
respectively, d isthe cable diameter. The cable velocity v € R3
isgiven by v =  — v where v is the relative velocity of the
fluid surrounding the cable due to vessel’'s marching speed and
seacurrent, and it is assumed to be constant. Applying Hooke's
law, 7' = K Ae where £ isthe Young's modulus and A is the
cross-sectional area of the unstretched cable, and using (1) in
(2) gives
O?r 9] e Or
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with the boundary conditions

r(t,0)=by(t), r(,L)=Dba(t)
for dl ¢ > tg, and the initial conditions
r(tOvS) - b3 (S) El

whereb; (), bz (t) are functions of timet, and b3 (), by (s)
are the initial cable configuration and cable velocity respec-
tively.

v (to,s) = ba (s)

2.2 FEM model for the Cable Dynamics

A finite eement model, based on the Galerkin approximation,
is derived [1] from the nonlinear PDE describing the cable dy-
namicsin (3). The cable is divided into n elements, where the
length of each element is! = L/n, and the noda points are
enumerated from O to n where s = 0 isthe actuator node, and
s = L istow-point. The simplified finite element model for the
cableis given by

mify, + EA[(er/€x) hi — (€r+1/€r+1) hya] +

ml [(pw - pc) /pc] g+ (4)
e ([vie - s | Yeqr) Vit
ez [eh1 |(Taxs = Ypeer) Vie| (Tsxs = Yen) | Vi = 7

fork =1,...,n—1, whereIs, 3 € R3*3 isthe identity matrix,
75, € R3 isthe control input at node &, and

Vi hyhi/€f (5)
h, = rp—rr (6
er = |hgl/l—1 (7)
e = |hy (8)
Vi = I"k — v (9)
¢ = 05C4dp,

Coy = 0-5Cdndpw

Note that by excluding bending stiffness from cable model in
(2), we introduce a zero tension singularity which occurs in
the absence of positive tension. Thus, cable may display adis-
continuous form such that (2) isill-posed. Requiring positive
tension implies |hy| > 1 and 0 < e /€, < 1/1 such that sys-
tem equations in (4) can be simplified further by approximat-
iNng0 < ep/er =~ p < 1/l where o > 0. This approximation
eliminates the dependence of the terms ey, /¢, on the system
states, which in practice means one assumes that the elonga-
tion in each segment is uniform. In (4), the drag forces along
the downstream neighboring elements are ignored to simplify
the implementation. In addition, the mass of two neighboring
elements are lumped at the corresponding node. This gives a
nonconsistent mass-matrix [11]. A set of nonlinear ODEs for
the cable and the actuator can now be put into form

mi¥,_1 = —Dp_1Tp_1+dn-1
—EA [/,Lhn,1 - th] — 8n-1 (10)
mi¥, = —Dif+q (11)
—EA[uhy — phy] — gy
Miy = —Dofo+qo+ EAuh; —gotu. (12)

wherefork =1,...,n— 1

gr = ml [(pw - pc) /pc] g
D, = a (le -hyaq] ’Yk+1)
+co [ert1 |(Taxs — Vi) V| (Taxz — Yasr)]
q: = Dyv
for the cable and

g = (7na — Pw ‘/a) g

Do = diag{di |vo|,dz|vo|,ds|vol}

q = Dov

where M = m, 133 iSthe mass matrix, m, isthe massand V,,
is the volume of the actuator. g, € R3 is the buoyancy force
vector and Dy € R3*3 isthe damping matrix whered; , .. ., ds
are the damping coefficients and vo = ¢y — v is the velocity
vector. qo € R? isthe hydrodynamic damping vector due to
the relative velocity v, for the actuator. The dynamics of the
towing vessel is not included into system equations other than
being considered as a point moving with a certain commanded
speed. Findly, u. € R? isthe boundary control input gener-
ated by the actuator which we wish to design via the backstep-
ping method.

3 Boundary Control Design via Backstepping

The basic idea in the design of boundary control input can be
summarized as follows; the states at the outer nodes are used
asinputs to stahilize the states at the inner nodes, thus moving
towards the actuator to design aboundary control input that can
stabilize all the system states. Thisisillustrated in Figure 2. To
apply the backstepping method in the boundary control design,
the simplified system equationsin (10)—(12) will be rearranged



into a form with the following structure

& = fi(e1)+Gi(er) e (13
& = f(e;,ex)+Ga(er,er)es (14
& = fou(er,...,e2,) +Gaon(er,...,e2)u. (15

where eq, ..., e9,, are the system states and u,. is the boundary
control input. To do that, we start by setting

X1 = Tpo1 = X =T, 1 =Xz
X2 = I"nfl = 5(2 = .I:nfl
Xopn-1 = Tg =  Xgp_1 =To = X2,
Xon = To = X9, =T

where x»,,_ ;1 and x»,, are the states at the actuator node. Us-
ing those and (5)—(9), we can write (10)—(12) as a set of first-
order nonlinear ODEsintheform (for smplicity, hereit isonly
shown for n = 2)

)'(1 = X2 (16)
Xy = —C3Xp—C5—pcy(—To+2x; —x3) (17)
X3 = X4 (18)
X4 = —CeXq — Cg+ pcr (—X3+X1)+cou, (19)

wherer;, isthe position vector of the tow-point and

c3 = (ml)f1 D;

¢ = (ml) "EA

cs = (ml) ' (g1—a)
ce = M 'Dg

c; = M 'EA

cs = M '(g0—qo)
cg = M1

To obtain the system equations in the form given in (13)—(15),
we introduce the error terms, e; ...e4
(20)

€ = X; — Xiq

fori =1,...,4. Theequilibrium values, x14...X44 are assumed
to be constant. Inserting (20) into (16)—(19) gives the error

Figure 2: Backstepping along the towed cable.

dynamics
& = fi(el)+Gi(er) e (21)
& = fr(er,e)+ Ga(er,e2)es (22)
& = fi(e,...,e3)+Gs(er,...,e3)es (23)
& = fi(er,....,es) +Gy(er,...,egu. (24)
where
fi = x4
f, = —c3(es+x94) —cs
+picy (T2 — 21 — 2X1q + Xaq)
f3 = =xuq
fi, = —celes+xuq)—cs
+pcy (€1 — €3 + X1g — X3q)
Gy = Igus, Go=pcy, Gz=I33, Gi=cg

3.1 Backstepping

The design of boundary control input u. through the states
ez and e, for (21)—(24) is shown below in detail.

311 Design of e asControl Input

First, consider the system in (21)—(22) with the following
change of variables

n €1
£ = e
f(n) = fi(el)
G(m) = Gi(en)
f.(n,&) = fa(er,ez)
G.(n,§) = Gzer,ez)
u €3
this gives
7 = fm+GMm)¢ (25)
£ = £.(1.8+G.(n.&u (26)

This approach will be exploited repeatedly in the latter deriva
tions to design the boundary control input systematicaly. As-
sumethat G, (n7, €) # 0. Substituting the input transformation

ua:fa (n7§)+Ga ("%5)11 (27)

in (26) gives
o= f+GMnE (28)
é = U (29)

Suppose that we can find a smooth state feedback control

& = ¢, (n) such that the origin of 7 = f + G¢, is asymptot-

ically stable. Suppose further that we know a Lyapunov func-

tion V1 (1) which satisfies the inequality
Vi (n)

— — f+ G < —Wi(n)

o (30



where W (n) ispositive definite. Using the change of variables

z = §— ¢1
v = — (091 /0m)7 (31)
(28)—(29) can be rewritten as
1 = f+G¢, +Gz (32
Z = Vv (33

which is similar to the system we started from in (28)—(29),
except that now the first component, £ + G¢,, has an asymp-
totically stable origin when theinput is zero. This feature will
be exploited in the design of v via e3 to stabilize the system.
Consider the Lyapunov function
1 1
Va(mz)=Vi(n)+ V. (&) =5n'n+52'z (34
where V; (n7) satisfies the inequdity (30). Taking the time
derivative of V, (n,z) along the trgjectories of (32)—(33) gives

v . OV
2T Tan 1T g
v,

= %[f-i—Gd)l-l—Gz]-l—z v

otz
% Vv

% [f+ Gyl +

z (35)

and choosing u, in (31) as

o, . <8V1)T
u,=—N—-G|(— | —kz (36)
on ! on !
where k1 > 0, gives
Vo < =Wy () — kiz'z (37)

which shows that the origin of (32)—33) is asymptotically sta-
ble. Restoring the input transformation in (27) and the change
of variables that were introduced earlier in the derivations,
givesthe control law for e3

u=¢y, =

9¢
= Ggl [—1 [f]_ -+ G’leg]

e <gll) —kl[e2—¢1]—f2]

3.1.2 Design of ¢4 asControl Input

Next, we consider the system in (21)—(23) as a specia case of

(21)<(22) with
n = < z; ) . &=eg
tw = () em-(4,)
fa (T]vé.) - f3 (elv"'7e3)
Ga (T]vé.) - G3 (elv"'7e3)
u = €4

9 i\’
G, la%lﬁ—c; <a—nl) — ki le - 1] —fa]

(38)

This gives
f(n)+Gn)¢ (39)

f. (7,8) +Ga(n,€)u (40)
# 0. Using the input transformation

M o=
£ =
Assumethat G, (1, €)

u, =1, (n7€)+Ga ("%5)11 (41)

in (39)—(40) gives
= fm+Gn)¢ (42)
é = U, (43)

Suppose that we can find a smooth state feedback control
& = ¢, (n) such that the origin of 71 = £ + G, is asymp-
totically stable. Note that in this case ¢, (1) in (38) would be
our choice. Suppose further that we know a Lyapunov function
Vo (), asgivenin (34), which satisfies the inequality

ol
;s” [f + Gl < — W2 (n) (44)
where W, (1) is positive definite. Using the change of variables
z = §— ¢
v o= — (0¢y/0m) 7 (45)
(42)—43) can be rewritten as
1 = f+Gey+ Gz (46)
Z = Vv (47)

where the first component, f + G ¢,, hasan asymptotically sta-
ble origin when the input is zero. Now, consider the Lyapunov
function
1
Va=Va(n) + V. (2) = Vo (n) + 52" (48)
where V, (n7) satisfies the inequality (44). Taking the time
derivative of V3 along the trajectories of (46)—(47) gives

. Ve . OV,
/ = —' 7
Vi 5 7+ o
V. Ve \ ! g
2 2
= —017 f+ Goy) + l <—c’?n) +v| z (49

and choosing u,, in (45) as

Iy <5V2)T
u, =—20—-G|——) —kez 50
5 n ) 2 (50)
where ko > 0, gives
Vs < —Wao () — koz''z (51)

which shows that the origin of (46)—(47) is asymptoticaly sta-
ble. Restoring the input transformation in (41) and the change
of variables that were introduced earlier in the derivations,
gives the control law for e,

a op
u=¢; = Gy’ [ s [fi + Giey] + - [fz + Gaes]

12l
— Gy <6e2) — ka[es — ¢y —

where ¢, and V5, are given in (38) and (34), respectively.

(52)



3.1.3 Design of u. asControl Input

Asfinal step, consider thetotal system in (21)—(24) as a special
case of (21)—(22) with
) k] 5 = €4

€1
€2
€3

fi + Giey

0
f(n) = (f2+G263), G(n):( 0 )
f3 G3

3
Il

fa (T]vg) f—L (elv"'ve-L)
Ga (T]vg) - G-L (elv"'ve-L)
u u.

Similar to the previousderivations, with the state feedback con-
trol & = ¢4 (1) andthechange of variablez = £— ¢, together
with the Lyapunov function

1
Vi=Vs(m)+V.(2) =Vs(m)+52'z  (89)
we can obtain

P I/ T
u=G,'|—97-G % —ksz—f,
on on

where k3 > 0. The boundary control law u., which is con-
structed using (34), (38), (48), (52) and
P = —gq — koe1, ko >0

recursively, will thus asymptotically stabilize the origin of
(21)—(24). We can now express the boundary control law as

4|0 9]
u = Gy L [% [f; + Gires] + % [f2 + Gaes]
O
=+ Des [f3 =+ G3e4]

(54)

The boundary control law u. can be designed recursively
through the states e; for j = 2,...,2n. A genera expression
can bewritten as

where
I [O¢, (e1,---,€i—1)
_ Jj—1 1, »C1—-1 .
A o=y [Pmfmeenl,
=2
oVi_q(eyr,...,ei_1) .
Bi = —Gia dej_y
Cp = —kj1[ej—; 4]

4 Simulation and Numerical Results

The boundary control (54) together with the system (21)—(24)
is solved numerically. The results of the simulation are shown
in Figure 3-4. Inthe simulations, atowed cable of length 150 m
is discretized with n = 2. The parameters used in the simula
tion are

v =(-200"m/s |m, =8kg

r;  =(200,0,0)" m V, =0.0078 m?

g  =(0,098) m/s® | E =3 x 10° N/m?2
d =008m L =104

l =75m Cy =0.03

po = 1025kg/m’ Cne  =0.08

p.  =11275kg/m® di.3 =0.1

kig =1 ksa =5

Theboundary controller isassigned to control the motion of the
inner noder; viathe outer noder,, and suppressthe vibrations
along the cable which are assumed to have been caused by the
temporary external disturbances through the noder;. Theini-
tial disturbed cable configuration and the desired configuration
are caculated in advance by setting the time derivated terms to
zero in (21)—(24). Those are cdculated to be

Initial configuration
x1 = (0,0,—80)"

Desired configuration
14 = (0,0,—80)"

xy = (0,0,0)" xaq = (0,0,0)"
x3 = (100,0,—44)" | x34 = (99.844,0,—40.144)"
x4 = (0,0,0)" X4q = (0,0,0)"

Figure 3 showsthe position trgjectory of motion of the noder,
which corresponds to the error state eq, in the controlled and
uncontrolled mode. In the uncontrolled mode, €1 uncontroieds
as one could expect, the node r; moves to a new position due
to the disturbance, and in the absence of the disturbance the
node r; is forced back to its equilibrium value r14 by the po-
tential energy stored in the cable structure. However, the hy-
drodynamic dissipative forces gradually cancel the effect of the
stored potential such that the node r; converges oscillating to
its equilibrium value r 4. In the controlled mode, €1 controieds
the boundary control u,. actively drivesthe noder; to its equi-
librium value r4, increasing the convergence rate of the node,
and suppressing the vibration caused by the disturbance. The
boundary controller u,. thus improves the transient dynamics
and enables smooth tracking of the towed cable system. Figure
4 shows the magnitudes of the position error states e; and eg
in the controlled mode. As seenin the figure, es being at rest
at the start, converges back to its desired value e3; ase; con-
verges to zero, thus reaching its desired value e;,. It should
be noted that the controller complexity increases recursively as
the order of aproximationsincreases, as can be seen from (55).
This can be considered a drawback, which is generaly the case
in backsteppping designs. The resultsfrom the ssimulationsval-
idates the proposed control law as expected from theory.

5 Conclusions

A boundary control design for towed cables via backstepping
has been presented. A towed cable modd is discretized by
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Figure 3: The position trgectory of mation of the inner node
r1, which corresponds to the error state ey, in the controlled
and uncontrolled mode. o is the start point and x is the end
point of the motion trajectoriesin both modes.
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Figure 4: Magnitude of the position errors at the nodes ry and
r; inthe controlled mode.

the finite dement method into » nodes. The boundary con-
trol law has been designed using the states at the outer nodes
as inputs to stahilize the states at the inner nodes, thus moving
backwards to construct a controller that can stabilize al sys
tem states asymptotically. The boundary controller has shown
to improve the transient dynamics, suppress the vibrations and
enables smooth tracking for the towed cable system. Simula
tion and numerical results have been presented to validate the
proposed boundary control law.
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