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Abstract

A boundary control design for towed cables via backstepping is pre-
sented. A towed cable model is discretized by the finite element
method into n nodes. The boundary control law is designed using
thestatesat theouter nodesasinputsto stabilizethestatesat theinner
nodes, thus moving backwards to construct a controller that can sta-
bilize all system states asymptotically. The boundary controller im-
proves the transient dynamics, suppresses the vibrations and enables
smooth tracking for the towed cable system. Simulation and numer-
ical results are presented to validate the proposed boundary control
law.

1 Introduction

Towing of cables is amethod used extensively in marine oper-
ations. A typical cable-towing configuration consists of aneg-
atively buoyant cable attached to a towing vessel and, at the
other end, to a submersible, which may contain sensor equip-
ment and an actuator for depth control. Accuratecontrol of the
cable motion is of great importance in seismic operations. A
towing arrangement with is illustrated in Figure(1).

Thedynamics of the cables/strings havebeen studied by many
authors: [4], [8], [5], [13], [6], [9] and the references therein.
Boundary control aspectsof thecable/stringsystemshavebeen
investigated by several authors. Among others, [7] designed
a boundary feedback controller for a system described by the
wave equation where exponential stability of the closed loop
is obtained for strictly proper transfer functions. [2] devel-
oped exponentially stabilizing controllers for thetransversevi-
bration of a string-mass system modeled by one-dimensional
wave equation. [12] and [3] devised exponentially stabilizing
controllers for aone-dimensional nonlinear string equation, al-
lowing varying tension in thestring. [10] devised a robust and
adaptive controller to damp out the transverse oscillations of a

�
�������	��
��� ��� ���

t

r ( � , � )uc � ��� ������ ��� � � ���

Figure1: A towing configuration.

stretched string, allowing nonlinear dynamics and their uncer-
tainties in the model. The works mentioned above use a com-
bination of thestatesat theboundary, namely theboundary po-
sition, slope, slope-rate and velocity, to design the stabilizing
boundary control laws.

In this paper, we extend the previous works taking into ac-
count additional states that might be available through ob-
serversor direct measurements, at specified positionsalong the
cable/string system and propose a solution that uses such in-
formation in the control of the motion of a towed cable. The
boundary control law isdesigned viathebackstepping method,
considering a towed cable model that is discretized by the fi-
niteelement method into � nodes. Theboundary control law is
then constructed using thestatesat theouter nodesas inputs to
stabilize the states at the inner nodes, thus moving backwards
along thecableto construct acontroller that canstabilizeall the
system statesasymptotically. Thesimulation and numerical re-
sults are presented to validate the proposed boundary control
law.

2 CableDynamics

2.1 Equation of Motion

Consider a cable of length  "!$# with negligible bending
and torsional stiffness. The unstretched distance along the
average line of the cable is denoted by %&!(' )+*� -, and the
stretched distance by %�. . The axial strain of the cable is then/103254 %�.�6 4 %�7+8 4 % . Let 9 2;: *�%<7�=�' :?> *�@A7CBD' )+*� �,+EF#�G bethe
position vector of an arbitrary point on the average line of the
cablewhere : is thetimevariable. Theunit vector H 2;: *�%�7-!I#�G
tangent to the cable is defined as H 2J: *�%�7 034 9�8 4 %<. which can
be rewritten as

H 2;: *�%<7 0 4 94 %
4 %4 %�. 0 K

K�L /
4 94 % (1)

Theequation of motion of acable is [13] given by

M 4+N 9 2;: *�%<74O: N 0 4
4 % ' P 2;: *�%�7QH 2;: *�%<7�, LSR 2J: *�%�7T' K�L / , (2)

where is M !U# mass per unit length of unstretched cable,PV!D# is the tension and R !D#�G is the sum of external forces
per unit length of unstretched cable acting on the cable. For a
submerged cable, it is assumed that the external forces consist
of thebuoyancy force R�W and thehydrodynamic drag force R�X .



Theseforcesaregiven by

R�W 0 M ' 2���� 6 ��� 7�8 ��� ,��
R�X 0 6 K	�
 X� ������� ��� H ��2���� H<7QH

6 K	�
 X� ������� � 6 2���� H<7QH ��2�� 6 2���� H<7QH�7
where �S!S#�G is the gravitational acceleration, ��� the density
of the cable, � � is the density of the ambient water, 
 X� and
 X�� arethetangential andnormal dragcoefficientsof thecable,
respectively, � isthecablediameter. Thecablevelocity � !D#�G
is given by �A0��9 6�� where � is the relative velocity of the�
uid surrounding thecabledue to vessel’s marching speed and

seacurrent, and it isassumed tobeconstant. ApplyingHooke’s
law, P 0�� �/ where � is the Young’s modulus and � is the
cross-sectional area of the unstretched cable, and using (1) in
(2) gives

M 4+N 94 : N 0
4
4 %
! � � /

K�L /
4 94 %�" LAR ' K�L / , (3)

with theboundary conditions

9 2;: *�)Q7 0$#&%T2;: 7�* 9 2;: *� 17 0$# N 2;: 7
for all :(' :?> , and the initial conditions

9 2;:?> *�%<7 0$# G 2 %<7�* � 2;:?> *�%�7 0$#*)-2 %<7
where #&%C2;: 7 , # N 2;: 7 are functions of time : , and # G 2 %<7 , #�)-2 %�7
are the initial cable configuration and cable velocity respec-
tively.

2.2 FEM model for theCableDynamics

A finite element model, based on the Galerkin approximation,
is derived [1] from thenonlinear PDE describing the cabledy-
namics in (3). Thecable is divided into � elements, where the
length of each element is + 0  -8<� , and the nodal points are
enumerated from ) to � where % 0 ) is the actuator node, and% 0  istow-point. Thesimplified finiteelement model for the
cable is given by

M +�,9.- L � � ' 25/ -<80/-<7�1�-16 25/ -�2 % 80/�-�2 % 7�1�-32 % , LM +�' 2���� 6 ��� 7�8 ��� ,�� L (4)4 %&5 � � - � 1 -�2 % ��6 -�2 %37 � - L4 N�8 /-�2 %&99 5�: G.;�G 6 6 -�2 % 7 � - 99 5�: G.;�G 6 6 -�2 % 73< � - 0>= -
for ? 0 K *3@ @A@�*�� 6 K , where : G.;�G !I#�G.;�G is the identity matrix,= - !I#�G is thecontrol input at node ? , and6 - 0 1 - 1*B- 80/ N- (5)1�- 0 9.-�6 9.-.C % (6)/ - 0 � 1�- � 8.++6 K (7)/- 0 � 1�- � (8)� - 0 �9.-�6D� (9)4 % 0 )�@ E0
 X3� �0���4 N 0 )�@ E0
 X� �0���

Note that by excluding bending stiffness from cable model in
(2), we introduce a zero tension singularity which occurs in
theabsenceof positive tension. Thus, cablemay display adis-
continuous form such that (2) is ill-posed. Requiring positive
tension implies � 1 - ��F + and )HG / - 80/ - G K 80+ such that sys-
tem equations in (4) can be simplified further by approximat-
ing )�G / -<80/-JI�KLG K 80+ where K F ) . This approximation
eliminates the dependence of the terms / -�80/- on the system
states, which in practice means one assumes that the elonga-
tion in each segment is uniform. In (4), the drag forces along
the downstream neighboring elements are ignored to simplify
the implementation. In addition, the mass of two neighboring
elements are lumped at the corresponding node. This gives a
nonconsistent mass-matrix [11]. A set of nonlinear ODEs for
thecableand theactuator can now beput into form

M +�,9 � C % 0 6NM � C %��9 � C % LSR�� C %6 � � ' K*1 � C % 6OK*1 � ,�6D� � C % (10)
... 0 ...M +�,9 % 0 6NM % �9 % LSR % (11)

6 � � ' K*1 % 6DK*1 N ,�6O� %P ,9 > 0 6NM >��9 > LSR > L � � K*1 % 6O� > L�Q � (12)

where for ? 0 K *3@ @A@�*�� 6 K��- 0 M +�' 2���� 6 ��� 7�8 ��� ,��M�- 0>4�%&53� � - � 1�-32 %0�R6 -32 % 7
L 4 NN8 / -�2 %&99 5 : G�;�G 6 6 -32 %7 � - 99 5 : G�;�G 6 6 -32 %373<R - 0 M�-��

for thecableand� > 0 2	MHS 6 ����TUS 7��M > 0>VUW X0Y�Z���%[� ��>�� * � N � �T>�� * � G � ��>�� \R > 0 M > �
where

P 0 M S : G.;�G isthemassmatrix, M S isthemassand T S
is the volume of the actuator. � > !A#�G is the buoyancy force
vector and M > !I#�G�;�G isthedamping matrix where ��% *3@3@�@�* � G
are the damping coefficients and �T> 0��9 > 6�� is the velocity
vector. R > ! #�G is the hydrodynamic damping vector due to
the relative velocity � , for the actuator. The dynamics of the
towing vessel is not included into system equations other than
being considered as apoint moving with acertain commanded
speed. Finally, Q � ! # G is the boundary control input gener-
ated by theactuator which wewish to design via thebackstep-
ping method.

3 Boundary Control Design via Backstepping

The basic idea in the design of boundary control input can be
summarized as follows] the states at the outer nodes are used
as inputs to stabilize the states at the inner nodes, thus moving
towardstheactuator to design aboundary control input that can
stabilizeall thesystem states. This is illustrated in Figure2. To
apply thebackstepping method in theboundary control design,
thesimplified system equations in (10)–(12) will berearranged



into a form with the following structure�� % 0�� % 2�� % 7 L�� % 2�� % 7 � N (13)�� N 0�� N 2���% * � N 7 L�� N 2���% * � N 7 � G (14)
... 0 ...�� N � 0�� N � 2���% *3@3@�@�* � N � 7 L�� N � 2���% *@�@3@�* � N � 7 Q � (15)

where � % *@A@ @	* � N � are the system states and Q � is the boundary
control input. To do that, westart by setting

��% 0 9 � C %	� ���%10 �9 � C %-0�� N� N 0 �9 � C %	� �� N 0 ,9 � C %
... 0 ...

� N � C % 0 9 > � �� N � C %10 �9 >�0�� N �� N � 0 �9 > � �� N � 0 ,9 >
where � N � C % and � N � are the states at the actuator node. Us-
ing those and (5)–(9), we can write (10)–(12) as a set of first-
order nonlinear ODEsin theform (for simplicity, hereit isonly
shown for � 0 	 )���% 0
� N (16)�� N 0 6�� G � N 6���16OK 4 ) 2 619 N L 	 � % 6 � G 7 (17)�� G 0
��) (18)���) 0 6���� ��) 6��� L K���� 2 6 � G L ��% 7 L ��� Q � (19)

where 9 N is theposition vector of the tow-point and

� G 0 2	M +	7 C % M %4) 0 2	M +	7 C % � �
� � 0 2	M +	7 C % 2 � % 6 R % 7
��� 0 P C % M >
��� 0 P C % � �
��� 0 P C % 2 � > 6 R > 7
� � 0 P C��

To obtain the system equations in the form given in (13)–(15),
we introduce theerror terms, ��% @A@A@ �0)

����0���� 6 ��� X (20)

for � 0 K *@A@ @	*�� . Theequilibrium values, �[% X @ @A@ ��) X areassumed
to be constant. Inserting (20) into (16)–(19) gives the error
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Figure2: Backstepping along the towed cable.

dynamics���% 0
��%T2���% 7 L�� %T2���% 7 � N (21)�� N 0
� N 2���% * � N 7 L�� N 2���% * � N 7 � G (22)�� G 0
� G 2���% *3@3@3@	* � G 7 L�� G 2���% *@3@�@�* � G 7 �0) (23)�� ) 0
� ) 2�� % *3@3@3@	* � ) 7 L�� ) 2�� % *@3@�@�* � ) 7 Q � (24)

where

��% 0
� N X� N 0 6�� G 2�� N L � N X 7C6����L K 4)-2 9 N 6 	 ��% 6 	 ��% X-L � G X 7� G 0
��) X��) 0 6���� 2��0) L �*) X 7C6����
L K�� � 2�� % 6 � G L � % X 6 � G X 7

� % 0>: G���G * � N 0 K 4) * � G 0$: G���G * � )�0 ���
3.1 Backstepping

The design of boundary control input Q � through the states� G and �0) for (21)–(24) is shown below in detail.

3.1.1 Design of / G as Control Input

First, consider the system in (21)–(22) with the following
changeof variables

 0���%
! 0�� N

��2" 7 0���%T2���% 7
� 2" 7 0 � %T2���% 7� S 2" * ! 7 0�� N 2���% * � N 7

� S 2" * ! 7 0 � N 2���% * � N 7Q 0�� G
this gives � 0
��2� 7 L�� 2" 7 ! (25)�! 0
� S 2" * ! 7 L�� S 2" * ! 7 Q (26)

This approach will beexploited repeatedly in the latter deriva-
tions to design the boundary control input systematically. As-
sumethat � S-2" * ! 7$#0&% . Substituting theinput transformationQ S0��RS-2" * ! 7 L�� S-2" * ! 7 Q (27)

in (26) gives � 0
��2�' 7 L�� 2"' 7 ! (28)�! 0 Q S (29)

Suppose that we can find a smooth state feedback control! 0)( % 2" 7 such that the origin of � S0)� L�� ( % is asymptot-
ically stable. Suppose further that we know a Lyapunov func-
tion T*%T2"' 7 which satisfies the inequality

4UT�%C2"' 74*' ' � L�� ( % ,,+ 6�- % 2"' 7 (30)



where - %C2"' 7 ispositivedefinite. Using thechangeof variables� 0 ! 6 ( %� 0 Q S 6 254,( % 8 4  7 � (31)

(28)–(29) can be rewritten as� 0�� L�� ( % L�� � (32)�� 0>� (33)

which is similar to the system we started from in (28)–(29),
except that now the first component, � L�� ( % * has an asymp-
totically stable origin when the input is zero. This feature will
be exploited in the design of � via � G to stabilize the system.
Consider theLyapunov functionT N 2" * � 7 0 T�%T2� 7 L T���2�� 7 0 K	  B  L K	 � B � (34)

where T*%T2" 7 satisfies the inequality (30). Taking the time
derivativeof T N 2" * � 7 along the trajectories of (32)–(33) gives�T N 0 4UT %

4* � L 4UT �
4�� ��

0 4UT %
4* ' � L�� ( % L�� � , L � B �

0 4UT�%
4* ' � L�� ( % , L �

��� 4�T�%4* 	� B L ��
 B � (35)

and choosing Q S in (31) as

Q S�0 4�( %4* � 6 � � 4UT�%4* 	� B 6D? % � (36)

where ? % F ) , gives�T N + 6�- % 2" 7T6�? % � B � (37)

which shows that theorigin of (32)–(33) is asymptotically sta-
ble. Restoring the input transformation in (27) and the change
of variables that were introduced earlier in the derivations,
gives thecontrol law for � GQ 0)( N 0 � C %S � 4�( %4  � 6 ��� 4�T�%4  �� B 6�? % ' ! 6 ( % ,�6 � S 


0 � C %N ! 4� %4 ��% ' � % L�� % � N ,
6 � % � 4UT*%4,��% � B 6�? % ' � N 6 ( % ,�6 � N 
 (38)

3.1.2 Design of /3) asControl Input

Next, we consider the system in (21)–(23) as a special case of
(21)–(22) with

 0 � ��%� N � * ! 0&� G
��2� 7 0 � �R% L�� %�/ N� N � * � 2" 7 0 � %

� N �� S 2" *���7 0
� G 2���% *3@3@�@�* � G 7
� S-2" *���7 0 � G 2�� % *3@3@�@�* � G 7Q 0
�0)

This gives � 0
��2� 7 L�� 2" 7 ! (39)�! 0
� S 2" * ! 7 L�� S 2" * ! 7 Q (40)

Assumethat � S 2"' * ! 7$#0�% . Using the input transformationQ S 0�� S 2" * ! 7 L�� S 2" * ! 7 Q (41)

in (39)–(40) gives � 0���2" 7 L�� 2" 7 ! (42)�! 0 Q S (43)

Suppose that we can find a smooth state feedback control! 0 ( N 2" 7 such that the origin of � 0 � L&� ( N is asymp-
totically stable. Note that in this case ( N 2" 7 in (38) would be
our choice. Supposefurther that weknow aLyapunov functionT N 2"' 7 , asgiven in (34), which satisfies the inequality4UT N 2"' 74*' ' � L�� ( N ,,+ 6�- N 2"' 7 (44)

where - N 2"' 7 ispositivedefinite. Usingthechangeof variables� 0 ! 6 ( N� 0 Q S 6 254,( N 8 4* 7 � (45)

(42)–(43) can be rewritten as� 0�� L�� ( N L�� � (46)�� 0>� (47)

wherethefirst component, � L � ( N , hasanasymptotically sta-
bleorigin when the input is zero. Now, consider theLyapunov
function T G 0 T N 2" 7 L T���2�� 7 0 T N 2" 7 L K	 � B � (48)

where T N 2" 7 satisfies the inequality (44). Taking the time
derivativeof T G along the trajectories of (46)–(47) gives�T G 0 4�T N4* � L 4UT��

4�� ��
0 4�T N4* ' � L�� ( N , L

�
� � 4UT N4  �� B L ��
 B � (49)

and choosing Q S in (45) as

Q S 0 4,( N4* � 6 ��� 4�T N4* 	� B 6D? N � (50)

where ? N F ) , gives�T G + 6�- N 2"' 7T6�? N � B � (51)

which shows that theorigin of (46)–(47) is asymptotically sta-
ble. Restoring the input transformation in (41) and thechange
of variables that were introduced earlier in the derivations,
gives thecontrol law for �0)
Q 0)( G 0 � C %G ! 4,( N4 � % ' �R% L�� % � N , L 4,( N4 � N ' � N L�� N � G ,

6 � N � 4UT N4 � N � B 6D? N ' � G 6 ( N ,Q6 � G 
 (52)

where ( N and T N aregiven in (38) and (34), respectively.



3.1.3 Design of Q � as Control Input

Asfinal step, consider thetotal system in (21)–(24) asaspecial
caseof (21)–(22) with

 0 �� ��%� N� G
��
* ! 0&�.)

��2" 7 0 �� �R% L�� % � N� N L�� N � G� G

��
* � 2� 7 0��� %

%
� G

��
� S 2" * ! 7 0���)-2���% *@3@�@�* �0) 7
� S 2" * ! 7 0 � )-2���% *@3@�@�* �0) 7Q 0 Q �

Similar to thepreviousderivations, with thestatefeedback con-
trol
! 0&( G 2" 7 and thechangeof variable � 0 ! 6 ( G , together

with theLyapunov functionT ) 0 T G 2" 7 L T � 2�� 7 0 T G 2" 7 L K	 � B � (53)

wecan obtain

Q � 0 � C %S � 4�( G4  � 6 � � 4UT G4  �� B 6�? G � 6 � S 

where ? G F )�@ The boundary control law Q � , which is con-
structed using (34), (38), (48), (52) and

( % 0 6�� N X 6D? > � % * ? > F )
recursively, will thus asymptotically stabilize the origin of
(21)–(24). Wecan now express theboundary control law as

Q � 0 � C %) ! 4,( G4 � % ' ��% L�� % � N , L 4,( G4 � N ' � N L�� N � G ,
L
4�( G4,� G '

� G L�� G �0) ,
6 � G � 4UT G4 � G � B 6D? G ' �0) 6 ( G ,Q6 ��) 
 (54)

The boundary control law Q � can be designed recursively
through the states ��� for 	 0 	 *@A@ @	* 	 � . A general expression
can bewritten as

Q � 0&( � 0 � C %� Z��
� L�� � L 
 � \ (55)

where

�
� 0
�
��� N ! 4,( � C % 2���%�� @A@ @	* � � C % 74 � � C % �� � C % "

� � 0 6 � � C % ! 4UT�� C %T2���%�� @ @A@�* � � C % 74,��� C % " B
 � 0 6�? � C % 8 � � 6 ( � C %< 6 � �

4 Simulation and Numer ical Results

The boundary control (54) together with the system (21)–(24)
is solved numerically. The results of the simulation are shown
inFigure3-4. In thesimulations, atowedcableof length K E<)��
is discretized with � 0 	 . The parameters used in the simula-
tion are� 032 6 	 *�)�*�)�7 B � 8�� M�S 0�����Y
9 N 032 	 )�)�*�)�*�)Q7 B � T S 0 )�@ )<)�� � � G� 032 )+*�)+*���@ � K 7 B � 8�� N � 0�� B K ) � N/mN� 0 )�@ ) � � K 0 K ) C )+ 0 �0E�� 
 X� 0 )�@ ) ���� 0 K ) 	 E ��Y 8 � G 
 ��� 0 )�@ ) ���� 0 K�K 	 ��@ E ��Y 8 � G ��%�� ! ! � G 0 )�@ K? %�� N 0 K ? G � ) 0 E

Theboundary controller isassigned tocontrol themotionof the
inner node 9 % via theouter node 9 > , and suppressthevibrations
along thecablewhich areassumed to havebeen caused by the
temporary external disturbances through the node 9 % . The ini-
tial disturbed cableconfiguration and thedesired configuration
arecalculated in advanceby setting thetimederivated terms to
zero in (21)–(24). Thosearecalculated to be

Initial configuration Desired configuration��%-032 )+*�)+*�6 � )�7 B ��% X 0V2 )�*�)+*�6 � )Q7 B� N 032 )+*�)+*�)�7 B � N X 0V2 )�*�)+*�)Q7 B� G 032 K )�)�*�)+*�6 ���Q7 B � G X 0V2 ����@ � ���+*�)+*�6 ��)�@ K ���Q7 B��)�032 )+*�)+*�)�7 B ��) X 0V2 )�*�)+*�)Q7 B
Figure3showstheposition trajectory of motion of thenode 9 % ,
which corresponds to the error state ��% , in the controlled and
uncontrolled mode. In the uncontrolled mode, ��%�� " � �$# ��� % #�& & . X ,
as one could expect, the node 9 % moves to a new position due
to the disturbance, and in the absence of the disturbance the
node 9 % is forced back to its equilibrium value 9 % X by the po-
tential energy stored in the cable structure. However, the hy-
drodynamic dissipativeforcesgradually cancel theeffect of the
stored potential such that the node 9 % converges oscillating to
itsequilibrium value 9 % X . In thecontrolled mode, ��%�� �$# ��� % #�& & . X ,
theboundary control Q � actively drives thenode 9 % to its equi-
librium value 9 % X , increasing theconvergence rateof thenode,
and suppressing the vibration caused by the disturbance. The
boundary controller Q � thus improves the transient dynamics
and enablessmooth tracking of thetowed cablesystem. Figure
4 shows the magnitudes of the position error states ��% and � G
in the controlled mode. As seen in the figure, � G being at rest
at the start, converges back to its desired value � G X as ��% con-
verges to zero, thus reaching its desired value ��% X . It should
benoted that thecontroller complexity increasesrecursively as
theorder of aproximations increases, as can beseen from (55).
Thiscan beconsidered adrawback, which isgenerally thecase
inbackstepppingdesigns. Theresultsfrom thesimulationsval-
idates theproposed control law as expected from theory.

5 Conclusions

A boundary control design for towed cables via backstepping
has been presented. A towed cable model is discretized by
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Figure 3: The position trajectory of motion of the inner node9 % , which corresponds to the error state ��% , in the controlled
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Figure 4: Magnitude of theposition errors at the nodes 9 > and9 % in thecontrolled mode.

the finite element method into � nodes. The boundary con-
trol law has been designed using the states at the outer nodes
as inputs to stabilize thestates at the inner nodes, thus moving
backwards to construct a controller that can stabilize all sys-
tem states asymptotically. The boundary controller has shown
to improve the transient dynamics, suppress thevibrations and
enables smooth tracking for the towed cable system. Simula-
tion and numerical results have been presented to validate the
proposed boundary control law.
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