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Abstract 

In this paper parameter optimisation through a quadratic 
performance index is introduced as a method to establish a 
new iterative learning control law. With this new algorithm, 
monotonic convergence of the error to zero is guaranteed if 
the original system is a discrete-time LTI system and it 
satisfies a positivity condition. A high-order version of the 
algorithm is also derived and its convergence analysed. The 
theoretical findings in this paper are highlighted with 
simulations. 

 

1.  Introduction 

Iterative learning control (ILC) can be used to overcome 
some of the design difficulties associated with conventional 
feedback control synthesis. In more precise terms, iterative 
learning control is a technique for improving the transient 
response and tracking performance of processes, machines, 
equipment, or systems that execute the same trajectory, 
motion, or operation repetitively. For example, in the general 
area of trajectory following in robotics, the specified task is 
regarded as the tracking of a given reference )(tr  or output 

trajectory on a specified time interval ],0[ Tt ∈ . Feedback 

control cannot, by its very nature, achieve this exactly as a 
non-zero error is required to activate the feedback 
mechanism. On the other hand, there exits several ILC 
algorithms that can achieve zero tracking error as the number 
of repetitions increases, e.g. Amann and Owens (1996). 

   Since the introduction of iterative learning control 
methodology by Arimoto et al (1984), a lot of progress has 
been made by several researchers in understanding the 
different theoretical and practical aspects of ILC, e.g. Oh 
(1988), Amann (1996), Longman (1997) Barton (2000) and 
Moore (2000).  

   To illustrate the type of result available, Togai and 
Yamano’s paper (1985) proposed the following simple 

discrete-time ILC input-updating algorithm for a system with 
a relative degree one  

)1()()(1 +Γ+=+ tetutu kkk                    (1) 

Where the errors )1( +tek  and the control input signal )(tuk
 

can be recorded during thk repetition and this information can 
be used to compute a new input signal )(1 tuk+

 that will be 

applied to the system during the next repetition or trial 1+k . 
Undated law (1) showed that, with a LTI system defined over 
the time interval ],0[ Tt ∈  and with a state-space description 

( CBA ,, ), if 0≠CB  and the induced operator norm satisfies 

1<≤Γ− ρ
i

CBI , then the output signal will track perfectly 

the given reference signal as ∞→k .  

    Several other researchers have done further development 
on the algorithm with the equation (1), such as Lee and Bien 
(1998). Furthermore, Y. Q Chen et al (1998, 2000) have 
focused on the analysis of a high-order version of equation 
(1), given by 
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The convergence conditions for this high-order learning 
control law have been established. Owens et al (2000) 
extended a class of ILC schemes from (2), which use 
information from the previous input vectors, the current trial 
error vector, and error vectors from the earlier trials. On trial 

1+k  the control input is calculated using the update-law 
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The guaranteed stability and convergence of the algorithm 
with the equation (3) have been fully analysed by Owens et al 
(2000).  

   Although the convergence properties of all these algorithms 
have been thoroughly analysed, it is not always clear how to 
select the free parameters of the algorithms in order to 
achieve fast or monotonic convergence. Hence in this paper, a 
performance index is suggested for the first-order ILC 



 

algorithm in (1). An optimal value Γ in (1) is calculated in 
each repetition using this performance index. Furthermore, 

the approach results in monotonic convergence in the 2l -

topology if the original system satisfies a positivity condition. 
After that the optimisation approach is extended to the high-
order algorithm similar to equation (2) and it is shown again 
that positivity guarantees monotonic convergence. Finally 
simulations are used to illustrate the theoretical findings in 
this paper. 

 

2.  Problem statement 

   Consider the following general multivariable, continuous 
and linear discrete system, which performs a given task over a 
time interval [0,T] repeatedly. Note that inputs and outputs 
are assumed to be sampled at intervals h   
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where φ , ∆ , C  are constant real nn× , ln× , nm×  matrices 

respectively. Then the ILC synthesis objective can be 
specified as: (a) the tracking of a signal )(tr ; (b) the intention 

that this tracking accuracy increases from iteration to 
iteration, and (c) that perfect tracking accuracy is ultimately 
achieved as the number of trials/iterations becomes infinite.  

   Assume that a SISO system is considered in this paper, thus 
it is useful in the analysis to replace this model by a matrix 
model relating a vector (time series) of inputs to a vector 
(time series) of outputs for each trial. Then the linear plant (4) 
can be described equivalently as 

  dGuy +=                                      (5) 

where G  and d are the matrices 
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and G  consists of the Markov parameters of the plant (4). In 
order to take into account the repetitive nature of the problem 
setting, the plant model (5) is written as dGuy kk += where k 

is the trial number. Furthermore, the tracking error at trial k is 
defined as 

kkk GudrdGure −−=−−= )( and hence, without 

lost of generality, it is possible to replace r  by dr −  and 
therefore to assume that 0=d  in what follows. Equivalently, 
it is possible to assume that 

0x =0.   

     The ILC problem statement can easily be seen to be 
equivalent to finding an iterative algorithm that converges to 

the minimizing input ∞u  for the optimisation problem 

 { }Guyyree
u

=−= ,:min
2                     (7)  

where the inner product is Qgfgf T>=< ,  and the norm is 

defined as Qeee T=2||||  and 0>= TQQ . A natural choice of 

Q is }{ jQblockdiagQ = where 
jQ  becomes a weighting factor 

of )( je  in the norm. Note that the scaling of the output via the 

transformation 
kk yQy 2/1�  and GQG 2/1
 enables the 

analysis to proceed assuming IQ = . The optimal error 
2

∞− Gur  is a measure for how well the iterative learning 

control procedure has solved the inversion problem. It also 
represents the best that the system can do in tracking the 
signal )(tr . The case of interest here is when the optimal error 

is exactly zero, that is when 
∞u  is a solution of 

∞= Gur  and 

hence solves the iterative learning control problem. 

    As an optimization problem in ILC, Furuta and Yamakita  
(1987) proposed the following gradient based algorithm 

kkkk eAuu *
1 ε+=+ , where *A  is the adjoint operator of the 

system and kε  is a trial dependent gain. In this paper, we use 

this to modify the following simple feedforward control law 
(similar to the given in equation (1)) 

)1()()( 11 ++= ++ tetutu kkkk β                     (8) 

which is chosen as a starting point for further investigation 
where 

1+kβ  a scalar gain parameter. Note that due to its very 

simple structure, equation (16) is very easy to implement in 
practise, whereas for example the causal implementation of 
the algorithm in Owens and Amann et al's paper (1993, 1996, 
1998, 2000), which requires solving differential as difference 
equations numerically between trials. The important thing to 
observe here is that the parameter 

1+kβ  is to be varied from 

each trial, which is different from (1). In order to calculate the 
control input on the thk )1( +  trial based on (8), at the end 

thk trial 
1+kβ  is selected to be the solution of the quadratic 

optimisation problem  
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where the performance index )( 1+kJ β  is defined as 
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Using kk Gure −=  the tracking error update relation has the 

from 

         
kkk eGIe )( 11 ++ −= β , 0≥∀k                    (11) 

The stationary condition 0
1

=
+kd

dJ

β
 (a necessary and a 

sufficient condition) gives the optimal 
1+kβ  as 
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This equation is a starting point for further analysis on the 
issue of convergence and convergence rates. Note that 

1+kβ  

can be computed from the known signal 
ke  and the signal 

kGe  obtained either by using 
ke  as an input to a plant model 

with zero initial condition or by performing the equivalent 
experiment on the real plant.   

 

3.  Proper ties 

The ILC algorithm defined in the previous section is 
conceptually simple, but possesses several useful properties 
as can be seen as follows.  

Theorem 1: For the algorithm defined by equation (8) and 
(10), 

a) The performance index satisfies the interlacing/ 
monotonicity condition 2

11

2
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holding if, and only if, 01 =+kβ . 

b) The parameter sequence satisfies the condition ∞<
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and hence 0lim 1 =+∞→ k
k
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Note: (a) states that, despite its simplicity, the algorithm is a 
decent algorithm as the norm of the error is monotonically 
non-increasing in k , and the “ energy costs”  from the first to 
the last trial are bounded, whilst (b) indicates that the 
learning rate becomes slower as the algorithm progresses to 
convergence (see theorem 2). 

Proof: (a) From optimality and the fact that the (non-optimal) 
choice of 01 =+kβ  gives 2

1 )0( kk eJ =+
, the following estimate 

holds 
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It shows that the norm of the error is monotonically non-
increasing in k , if and only if 01 =+kβ . For the second of the 

theorem (part (b)), it is necessary to use 
2
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   The algorithm has a number of other useful properties. The 
first is that the following limit exist: 
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The existence of the limit suggests that the algorithm has a 
form of convergence property. The details are developed 
below. 

Theorem 2  Under the assumptions of Theorem 1 and the 
additional assumption that G  is positive in the sense that 

  0>+ TGG                                  (15) 

then following iterative learning convergence condition is 
obtained 

 0lim =
∞→ k

k
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Proof: Without lost of generality, replace r  by dr −  and 
therefore assume that 0=d . It is clear from 0

2 ≥kGe  and 

the assumption that 0>+ TGG , that there exists a real 

number 02 >σ such that IGG T 2)( σ≥+  and hence that 
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Theorem 1 has shown that 0lim 1 =+∞→ k
k

β  and hence the estimate 

(17) indicates that 0,lim >=<
∞→ kk

k
Gee  and consequently 0lim =

∞→ k
k
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which proves the theorem. 

   In summary, by using the simple updating rule (8) and the 
performance index (10), the positivity condition on G  ensures 
that  

a) The iterative learning control tracking error sequence { }ke  

converges in norm to zero, i.e. the iterative learning control 
algorithm has guaranteed convergence of learning 

b) This convergence has the important property that the error 
norm sequence is monotonic. 

So far these two theorems have proved the convergence of the 
ILC algorithm (8) under the assumption that the original 
system is positive. It is important to analyse the importance of 
the requirement that TGG +  is positive definite. Its importance 
is underlined by the following result: 

Proposition 1: If TGG +  is not positive definite but G  is 

invertible, then 
ke  does not necessarily converge to zero.  

Proof: Consider the expression for the optimal value 
1+kβ  in 

(12). If TGG +  is not positive definite, there exists a non-zero 

vector vsuch that 0=GvvT . Let v  be such that zGrv e−=  

(such a z  exists if G  is invertible) and choose the initial 

control input sequence via zu =0 . This yields ν=0e  and 

hence 0
1

=β . By induction, 
kβ =0, 1≥k  and hence 

00 ≠= eek
, 1≥k . The lack of convergence is obvious. 

   In summary, despite its simplicity, the algorithm has very 
strong monotonic convergence property if the original plant is 
positive. However, some practical limitations induced by the 
positivity condition could occur. Thus, if the original plant 
does not satisfy the positivity condition, two different 
procedures were established in our previous report [Owens D 



 

H & Feng K, 2002], which can be used to modify the original 
system so that it can become positive.  

   For the choice of the weighing parameter w  in performance 
index (10), examination of the optimal value *

1+kβ  in (12), 

suggest that *
1+kβ  reduces as w  increases, causing smaller 

change in control and hence, intuitively reducing convergent 
speed. However, the choice of 0=w  will mean that, when 

ke  

turns small, *
1+kβ  is obtained by dividing a small number by a 

small number. This could be numerically unreliable so the 
choice of 0>w  but small seems the practical way. The details 
how to choose a proper weighting parameter was fully 
analysed in our previous report [Owens D H & Feng K, 
2002]. As a result adaptive weights 2

21 kewww +=  

substituted into (12) are introduced as a method to improve 
the convergence properties of the algorithm.   

 

4. High order  ILC algor ithm 

  Intuitively, the inclusion of more degrees of freedom will 
improve algorithm performance. The purpose of this section 
is to show how more degrees of freedom can be introduced in 
an optimisation context. In this section the following high-
order ILC algorithm is introduced  �
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where kMi <≤≤1 , )()()( tytrte ii −=  is the tracking error; 

)(1 ik+β  are gains, M  is the order of the ILC updating law and 

ike −+1  are the errors from earlier trials. The parameter vector 

( )(1 ik+β ) is selected as the solution of the following 

optimisation problem 
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where 0>iw  are weighting parameters of the performance 

index (19).  Using 
kk Gure −=  and the updating law (18), the 

error evolution equation becomes �
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+−++ −=
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i
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The stationary condition (necessary and sufficient) 
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 Mi ≤≤1 , gives, after some calculation. 
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or in more compact matrix form 
kkk FD =+

*
1β , where 

kD  and 

kF  are defined in an obvious way from (21). The matrix kD  

can be rewritten as 
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It is clear that if either (i) 0>iw , Mi �,1=  or (ii) 

Mkkk GeGeGe −+− 11 ,,, �  are linearly independent then 1−
kD  

exists and *
1+kβ  can be solved as 

kkk FD 1*
1

−
+ =β . Note that 

because of the assumption of SISO system, >< ji GeGe ,  in 

(21) is equivalence to a scalar value. Thus the dimension of 
matrix 

kD  is only MM × , and consequently 1−
kD  is easy to 

be found.   

Theorem 3: For the high order algorithm defined by 
equation (18) and (19),  

a) The performance index satisfies the interlacing/ 
monotonicity condition  
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with equality holding if, and only if, 
0)()2()1( 111 ==== +++ Mkkk βββ � .  

 b) The parameter sequence satisfies the condition  
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      which immediately implies that  
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Note: (a) states that, the algorithm is a decent algorithm as 
the norm of the error is monotonically non-increasing in k , 
and the “ energy costs”  from the first to the last trial are 
bounded, whilst (b) and (c) indicates that the learning rate 
becomes slower as the algorithm progresses to convergence 
(see theorem 4). 

Proof: The proof is similar to Theorem 1. (a) From optimality 
and the fact that the (non-optimal) choice of 

0)()2()1( 111 ==== +++ Mkkk βββ � , kM ≤≤1 gives 
2

1 )0,0,0( kk eJ =+ � , results in the following simple 

interlacing result 
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This result shows that the norm of the error is monotonically 
non-increasing in k  with equality, if and only if 

0)()2()1( 111 ==== +++ Mkkk βββ � , kM ≤≤1 . For the 

theorem (b) and (c) it is necessary to use the following 
estimate  
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all k which proves (b) and (c). 

Convergence is guaranteed by the following theorem: 

Theorem 4 Under the assumptions of Theorem 3 and the 
additional assumption that G  is positive in the sense that 

0>+ TGG , the optimal  high order updating law (18) 
converges in the limit  0lim =

∞→ k
k

e  . 

Proof: From (21) and theorem 3, it follows that 

0,lim >=<
∞→ kk

k
Gee  and the result follows in a similar manner 

to theorem 2.  

   In summary, by using the high-order updating rule (18) and 
the performance index (19), the positivity condition on G  
ensures that iterative learning control algorithm has 
guaranteed convergence of learning and the error norm 
sequence is monotonic and decreasing.  

  The theorems in this section have shown that if the original 
system (4) is positive the high-order ILC algorithm (18) 
converges to zero.  

 

5.  Numer ical Example 

To demonstrate the effectiveness of the new parameter 
optimisation based ILC algorithm (8), consider a plant having 
the following transfer function 

34
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Using sampling time 1.0=h  and the reference signal chosen 

is )10/sin()( 20/ tetr t ω=  where ]20,0[∈t . With these 

particular choices of sampling time and trial length, 
MATLAB indicates that the eigenvalues of TGG +  lie 
between 0.1989 and 1.9786 and hence G is a positive matrix. 
The selection 210−=w  in (10) is chosen to provide numerical 
solutions of the evaluation of 

1+kβ  at very small error values.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   The results confirm the theoretical prediction that norm of 
the error 

ke  and 
1+kβ  converge to zero as ∞→k  and that 

the convergence of the error norm is monotonic. This is due 
to Theorem 1 and Theorem 2, which state that the positivity 
of the plant is a sufficient condition for monotonic 
convergence to zero. 

Consider now the high-order algorithm in (18) where the 
order of the algorithm is selected to be 2=M . In order to 
make a comparison it with the first order algorithm possible, 
the weighting parameters of the algorithm are selected as 

2
21 105.0

2
−×=== w

ww , i.e. 2
21 10−=+= www . The plant model 

and the reference signal are the same as in the previous 
examples. Figure 2 shows that with this high-order algorithm 
the convergence increases relative to 1=M .     

 

 

 

 

 

 

 

 

  Consider now the plant 
2)1(

1
)(

+
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s
sG , and the reference 

signal )10/sin()( 20/ tetr t ω=  where ]20,0[∈t and let the 

sampling interval h to be 1.0=h . In this case the eigenvalues 
of TGG +  vary from -0.2086 to 1.8934, which shows that 

TGG +  is not positive definite. Using the first-order algorithm 
in (30) with the same weighting parameter 210−=w  gives the 
behaviour shown in Figure 3, where the error converge to a 
non-zero limit, i.e. it fails to converge to zero! 
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Figure 2    Simulation results of POILC – comparison 
with the first order and high order case.  

Figure 1    Simulation results of parameter Norm-
optimisation Iterative Learning Control.  
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6.  Discussion and Conclusion  

   In this paper, parameter optimisation based iterative 
learning control (POILC) was introduced as a new method to 
solve the ILC problem when the original plant is a discrete-
time LTI system. The resulting algorithm is of feed-forward 
type and it has guaranteed monotonic convergence to zero if 
the original system satisfies a positivity condition. Because of 
its computational simplicity, this new ILC algorithm is 
potentially straightforward to implement in real-time 
applications. 

    Based on the intuition that improved ILC should be 
obtainable if more design parameters are used, a high-order 
version of the algorithm was derived. This more complex 
algorithm uses the error data over the past M iterations as the 
basis of control updating and might be expected to improved 
algorithm performance markedly. A convergence theory was 
given for this algorithm with the surprising conclusion that 
positivity is again a sufficient condition on the plant for 
monotonic convergence of the error to zero. Simulation 
examples confirm the tendency for a high-order algorithm to 
give faster convergence than the first-order algorithm but it is 
still unclear how it works theoretically. This suggests that the 
use of higher order algorithms does have benefits in a 
parameter optimisation framework but that additional work is 
needed to improve on the results of this paper. Progress will 
be reported separately. 
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