BASIS FUNCTIONS, IDENTIFICATION AND GENETIC
ALGORITHMS IN NORM-OPTIMAL ITERATIVE LEARNING
CONTROL
V. Hatzikos', J. Hatonerf, D. H. Owens

* Systems Engineering Laboratory, University of Oulu, POXB4300, FIN-90014 University of Oulu, Finland
t Department of Automatic Control and Systems Engineerimivéfsity of Sheffield, Mappin Street, Sheffield S1 3JD, UK

Keywords: Iterative Learning Control, Genetic Algorithms processes, ranging from robotics and semi-conductorgeédsst

Optimal Control, System Identification and chemical process industries. Motivated by human legrni
the basic idea of iterative learning control is to use infation
Abstract from previous executions of the task in order to improve per-

formance from trial to trial in the sense that the trackinger
Recently, in (Hatzikos and Owens, 2@)2nd (Hatzikos and is sequentially reduced (Arimotet al, 1984), (Moore, 1993).
Owens, 2003) it was explored whether or not Genetic Al{Arimoto et al, 1984) in fact introduced a simple ILC algo-
gorithm (GAs) based approach can be used in the contextr@m that results in convergent learning, i.e. the tragkénror
norm-optimal Iterative Learning Control (ILC). It turnedio goes to zero as the number of iterations increases.

the answer was positive for both linear and nonlinear plagf, o e introduction of this convergent algorithm inte th

models. However, this approach is still immature in the 8ensyntrol community, several different algorithms have betegr
that it can produce very 'noisy’ intermediate solutions.r-Fu

h . cal licati he di ; ¢ tharcle gested by several researchers, which will also result ive@en
thermore, In practical applications the dimension of t (fgent learning. However, most of the algorithms with guaran-

space can be very large, which can slow down considerably &d convergence properties work only for linear plants- Fu

GA algorithm r;\]nd mcregfe the.cor;:_putatmnal burdetr:. Ir_1rofr fiermore, they typically require that a fairly accurate mlod
to overcome these problems, in this paper a new basis fupgyy,q plant in question is available. These are severedimit

tion approachiis proposed. The i_d(_aa is 10 restrict the GAcS\ea{i ns because the dynamics of a repetitive system can bé/high
on a proper subspace of the original search space, where filinear and it is typically very tedious build an accurdye

subs.p'c.lce Is s.panned by a set of ort_honor_mal functions, 80 thi mical model for the real plant. Secondly, most of the pro-
way it is possible to decrease the dimensionality of thecsear ess variables are subject to certain constraints thaeateys

Sﬁ ace, ank:j .'f (tjhe baS|Is funct|?ns ari’sfe Iectg dto Ibe, s_rntf)o fety considerations or physical constraints, resuitimghon-
the searc h!s one 02 y ovzr smc_)otbl unct|ons._ tis 'r:] g%ear problem setting. Hence there is a need for algorithms
shown in this paper that under suitable assumptions, the bgg ¢4 hangle these hard constraints and nonlinear dgesami

function approach will result in monoton_ic convergenceioih i, o straightforward manner without an accurate mathematic
is a very strong property of an ILC algorithm. Furthermom, b model of the plant

cause the GA needs a simulation model of the plant in question

it is suggested in this paper that the input-output painsifiee  One straightforward approach is to use the optimality based
ILC trials can be used to identify a model for the plant. Corgorithm presented in (Amaret al, 1996), because even if the
sequently this approach will result in an ILC algorithm wittplant is nonlinear, this algorithm will result in monotorion-
monotonic convergence that requires only an estimate of ¥grgence under suitable conditions. However, in most cases
order of the plant model. Simulations are used to illusttlage it is impossible to write down an analytic solution of the op-
new approach, and they show that the basis function appro&gtisation problem if the plant model in nonlinear. Hence in
combined with identification gives good results in termsafc (Hatzikos and Owens, 200Rit was suggested that the opti-
vergence speed and input function smoothness. misation problem can be solved numerically by using Genetic
Algorithms and a simulation model of the plant. The approach
was shown to feasible with both linear and nonlinear exam-
ples. However, the algorithm had three drawbacks: in prakti
lterative learning control is a technique to control systemper- applications the dimensionality of the search space canxbe e
ating in a repetitive mode with the additional requireméatt tremely large. Secondly, the GAtends to produce a very $fiois
a specified output trajectony(t) in an interval[0, 7] is to be input function that cannot fed directly into a real plantgse
followed with high precision. Examples of such systems afflatzikos and Owens, 20@¢ Finally, the algorithm needs an
robot manipulators that are required to repeat a given mskaccurate plant model. Note that the noisy inputs can be auoid
high precision, chemical batch processes, or more geperdP @ certain extent by filtering the input functions beforede
the class of tracking systems. It can be in fact stated theat 19 them into the real plant, but the design of the filter can
repetitive processes comprise a very large group of inigdistvery time-consuming. Hence the main theme of this paper is

1 Introduction



to propose a basis function approach that will remove the fifscan be represented equivalently with a matrix equagioe-
two undesirable properties of the GA-based approach. eurthG.uy, where
more, in this paper it is suggested that identification témles

can be used to build a local plant model from the trial datas Th 0 0 0 ... 0
will result in an algorithm that requires only a rough estiena ¢B 0 0 ... 0
of the degree of the real plant. G.= CAB CB 0 . 01 (5
The rest of the paper is organised as follows: In Section 2 a T:71 TLQ :
rigorous mathematical definition of the ILC problem is given cAnT B CATTB 0

Section 3 explains the proposed basis function approach and

shows under?/vhich congitioas the resulting algorithréﬁ)\/\dihe wr]*nereTl = Ty /T, andu = [;L’“(O)_ “’“(Té> - u(Tp)]T
vergent learning. Section 4 describes the identificatiothote 7% ~ [&(0) y&(T%) ... u(Ty)]" . This equivalent representa-
Section 5 contains a detailed description of the algorithm i tlop can typlcally simplify considerably the convergencala
plementation. Section 6 gives a numerical example, whidR' of ILC algorithms.

shows the effectiveness of the proposed basis function ap-

proach combined with identification technique. FinallycSe3 The basis function approach

tion 7 gives some conclusions and directions for future re- _ .
In (Amannet al, 1996) it was suggested that techniques from

search.
optimal control could be used to solve the ILC problem defined
o in the previous section. To be more precise, the idea is teesol
2 ILC Problem definition the following optimisation problem
Consider the following possibly non-linear discrete-tiche min J(ug1) (6)
namical system defined over finite time interval, € Uk41

022 Joea (i) = llewa | + ks — sl ()
with the constraint equatian. 1 = Guyg+1 between triak and
o(t + Ts) = f(a(t), ult),?) (1) k+ 1, and the optimal input;_ , is fed into the plant during
y(t) = g(@(t), u(t),?) trial £ + 1. G is the equivalent input-output mapping corre-
sponding to (1). If the plant modél is linear, then the optimi-
with a suitable initial condition:(0) = . In addition, we are sation problem (6) can be solved analytically, and the tespl
given a reference signa(t), and the control objective is makealgorithm givesgeometricconvergence. However, if the plant
the output variablg(t) to track this reference signal as closelynodel G is nonlinear, or constraints are imposed on the input
as possible by manipulating the input variab(e). The special functionuy.1, it might be very difficult to find an analytical
feature of the problem is that when the system (1) has reacisétition for (6). To overcome this problem, in (Hatzikos and
the final time point = T, the state of the system is reset baclowens, 2008) it was propesed that Genetic Algorithms (GAs)
to zo, and after the resetting the system is supposed to foll@@uld be used to search for the optimél, , in (6) between
the same reference signdl) again. This repetitive nature oftrials using a simulation model of the plaGit The main idea
the problem opens up possibilities for modifying iteraljiae  behind this approach was to observe the following inequalit
input functionu(t) so that as the number of repetitions or trial§olds based on (6) and (7)
increases, the system learns the input function that gedeqt 5 . 9
tracking. To be more precise, the idea is to find a control law lex+1ll” < Jra(upia) < lexll (8)

and hence if the optimisation problem (6) has at least one so-
Upg1 = f(Uky Uk—1s - -+ 3 Uk—ry €kt 15 €hs - - s €hs)  (2) IuFion for_k :_1, 2,..., and the GA algorif[hm is able to find
this solution, it holds thafex11] < |lek]|, i.e. the approach
results in monotonic convergence. Even it turned out that th
so that method was feasible in the sense that it could produce almost
zero tracking with both linear and nonlinear examples, fhe a
limg—oo lex]] — 0 and limp_eo lux — u*| — 0 (3) Proach had two major drawbacks. The first drawback is that
the because the GA is looking directly the optimal input func
_ ) ) ) . tionuy,,, the dimension of the search space is going to be the
whereu* is the Input function that gives perfeCt tl‘aCkIng (|.e|ength of triaLT‘l — Tf/ﬂa and in practica' app“cations this
we are assuming the reference signal belongs to the range,@hber can be very large. Hence a mechanism is needed to
the plant). Note that if the original plant modelis a lingaré-  reduce the dimension of the search space. Another drawback i
invariant model the with this direct approach the GA will look for a vecigy,
that gives good tracking, but it does not take into consiitama
x(t +Ts) = Az(t) + Bu(t) 4 whether or not the input function; , , is a smooth function.
y(t) = Cx(t) 4 Aswas shown experimentally in (Hatzikos and Owens, 202



and (Hatzikos and Owens, 20)2 this results in very 'noisy’ Proposition 1 Suppose that fok = 1,2,... the optimisation

input functions, that cannot necessarily fed directly iateeal problemmin,, ,, Jy+1(ux+1) has atleast one optimal solution
system. Hence another mechanism is needed to constraimthe,, for eachk, uj  , € Spaiifi, ..., fx], andthe GAis able
GA search over smooth functions. tofinduy , € Spanfi,..., fx], then|lexy 1| < [lexl|-

One attractive way to achieve these two goals at the same time i . . .
is to use a basis function approach. The idea is to write autinjy’T00f- The proofis obvious based on the discussion abave.

functionuy, as ) . . o
The actual choice for the basis function set is still an open

T question. However, a natural candidate is the Fouriersbasi
Ukl = Zai,k+1fi 9
i=1 fz(t) = sin(i * 7Tt/Tl) (14)
where f; is a set of orthonormal functions that span the ifor; =1,..., (K —1)/2,
put function spacé&/. Furthermore, if we can assume that the
first K’ basis functions span the optimising input functign ,, fi(t) = cos(i * wt/Ty) (15)

uy, can be written ag;  , = Zfil aj 41 fi whereK < T.
Consequently we can now write the optimisation problem (
equivalently in terms of the coefficients,, ; in the following

ggrk =(K-1)/2+1..., K—1,andfx = constant. An-
other common basis function used in the context of dynamical
systems is the Laguerre basis, defined by the recursive farmu

way:
i 1 ; . .
sain Jia(@k41) A0 4 Dfin = @it 1050 —ifia)  (16)
Jer1(rg1) = |lers1))® + lagsr — OékHQBTBf (11) where the initial conditions arg (t) = 1 and fo(t) = —t + 1.
! In Section 6 we will test how the Fourier-basis performs i@ th
where By is the matrixB; := [f1 f2 ... fx]. Note that GA-ILC context.

BJTBJ» > 0 by assumption, and hence the weighted norm
I| - HB];Bf is well-defined. Therefore by introducing the ba—4
sis function, it is possible to reduce the dimension of tleede
space fronf; to K under the assumptions mentioned earlier. i the previous work on GA-based ILC it was assumed that an
addition, if the firsti” functions are smooth, their linear combi-accurate model of the plant to be controlled exists. However
nation will be also smooth, and hence the GA will only look fothis is not necessarily very feasible in applications, beeahe
smooth input functions, ;. Itis also important to note that if construction of a reasonably accurate plant model can be ver
the original constrain equatign.11 = Gug+1 is linear, it can time-consuming and tedious. In order to overcome this prob-
be written agjx1 = Geug1 = GeBragy1 = Geagy1. Con-  lemin this paper it is suggested that on-line identificationld
sequently if the original constraint equation is lineag tion- be used to construct a model from the experimental data-avail
straint equation in the basis function approach is lineavels  able from the ILC trials. To be more precise, the plant moslel i
showing the optimisation problem does not become struiyuraparametrisised by using the model

more complex due the introduction of the basis functionis It

also easy to show that in the linear case the optimal cordrol ¢ Az Yy(k) = B(z Hu(k) (17)

be solved analytically and itis given by} , ; = ay, + Gegi1

whereG? is the adjoint operator ofi.. Furthermore, in the Where

Ilnegr case it is easy to show _thgt the algorithm converges, a A =14arz" 4+ +apz 16

the limit of the sequence, satisfies B(>-1) = 2~ (byat 4 - + byz—™) (18)

Identification

GeGeaoo = G, (12) wheren,m € N, andm < n and the relative degree of
the plant isd — 1. For this parametrisation it is a standard
tesult from identification theory that for the input-oupuwip

- (uk+1, yr+1) the least-square estimate for the parameter vector
HgHH?”*GeaHQ- (13) Bi=[-a; —as ... —anbiby ... b,]isgivenby

which means that in the limit the algorithm solves the optim
sation problem

Consequently if the input functiomthat gives perfect tracking O, = (2T ®;) 10Ty, (19)
does belongs to the span of the basis functjonthe algorithm
will converge to that input function in the linear case. Rert \yhere
more, ifu does not belong to the spanff the algorithm looks ol (1)
T

for an optimal approximation af. v (2)
P, = 20
The results in this section can be summarized with the foellow i : (20)

ing i (N)



and 5 Algorithm implementation

- The proposed Basis Functions and Genetic Algorithm based
optimisation method for Iterative Learning control sysgem

: (BFGA-ILC) is similar to the one described in (Hatzikos and

. —y(i —n) Owens, 200B) and (Hatzikos and Owens, 2062 However, a
ili) = w(i—d—1) (1) significant difference is the use of real value represesadf

. the individuals inside the GA instead of binary that was used

before. The procedure starts by generating a populatidii of
orthonormal functions and a matrix containing the coeffitse
Using the linear combination of these two the BFGA algorithm
evaluates an initial population of smooth input functiofisen
the algorithm evaluates the fitness of each combination of co
? icients. After that, the selection of the fittest combinias
gkes place. The coefficient matrix is then reproduced ubiag
enetic operators (crossover and mutation). This mearns tha
jttest combinations of coefficients have better change ef be

—y(i—1)

L u(ifc.ifTrL) |

Note, however, that because the inpytis given by an ILC
algorithm, it is not necessarily true that the input will gall
the different modes of the plant, and hence the estimated
rameters could be biased. The fact that the model is biased,
however, not that severe as it sounds, because the algdhith

ILC needs only a local model of the plant. This is due the ter : ;
||ug+1 —ugl|? in the cost function (7), which forces the optima\ng chosen for reproduction. Finally, the developed offsgs

solutionuy 1, be close tau,. Hence if the model constructed® € reinserted into the population replacing the old cdefiis.

from the input-output paifuy, i) gives a reasonable modeITh'S loop is repeated 100 times (generations) before $edpct

for the input-output pairs in the vicinity of this operatipgint, ﬂ;e nﬁf;](t mpt:jt to Ee n:rt]roduced f'r::]O the tS'ml.J“nk. ”_“O_de'a tThe
it can be expected that the algorithm will converge. algorithm ends when the error oTthe systém IS minimized to an

optimal solution. Note that in this implementation it isssgrht-
forward to include hard constraints in the input variable):

Level Curves this is due the fact in the linear combination

Py

K
Uy = Z a; fi(t), (22)

{Uloo, 1)
the GA algorithm takes an input argument the ranggesf the
decision variablesy;. Hence if we decide to use the Fourier
basis in (14) and (15), and we specify that| < R, then the
maximum amplitude of(¢) is going to beK x R, because

the maximum (minimum) oéos(¢) andsin(t) is 1 (-1). Con-

ocal Model ) .

cal Madel for 41 sequenftly the proposed app_roach cope very easily with hard

for -0 constraints on the input functiar(t).

g ¥o)

Note that in order to guarantee monotonic convergence, fhe G

optimisation has to include a generation gap process. T id

behind the process is to use elitism, i.e. from the previaus g

eration at least the best individual is inserted without ificat

tion into the next generation. The overall algorithm thameo
Figure 1: A flow diagram of the implementation. bines the Genetic Algorithm and the identification routiae c

be described with the following steps:

This idea is illustated in Fig. 1: as a starting point an aiti

guessyy is fed into the real plant which gives an ouput function 1) Select an initial guess, for the input and observe the

yo- This data is used to constuct a least squares model for the corresponding outpuf, from the real plant. Calculate an

real plant. After that the optimisation problem (6) is salve estimate for the plant model with this data.

with this model, where the model is only accurate inside the o . o

ball in Fig. 1 centred atug,yo). However, because the cost 2) Create initial population of individuals

function (7) includes the terru; — ug||?, it can be argued if

the radius of ball does not ha\/_e to I_oe exc;es;ivgly Iarge iarord correponding fitness level using the identified simula-

to guarantee that the new optimal mputlles.mad.e this baII.. tion model from Step 1 during — 1 and otherwise from

Hence even with the local model the algorithm is able to find Step 4 wherk > 1.

the optimal input foru; . After the new optimal input is found,

a new local model is constructed from the pair, y;), andthe  4) Select fittest individual to be fed into the real model. [Eva

optimisation is repeated. This process is then repeatédhumt uate the performance of the selected input with the real

algorithm converges. plant. If the tracking accuracy is acceptable, terminate th

L J

3) Evaluate objective functiod for each individual and the



algorithm. Otherwise identify a new model equation frormal Fourier coefficients after a few iterations, and the esnv

the experimental data. Replace existing simulation modgtnce is monotonic, see Fig. 2 even the degree of the identi-

by the new model. fication model was different from the degree of the true plant
Furthermore, due the smoothness of the basis functiond-the a

- . _gorithm is able to produce a smooth input function duringheac
the existing population. Perform crossover and mutatltﬁqaL see Fig. 3. Finally, Fig. 4 shows the parameter egtima

operators on selgcted |nd|V|duaIs_ n o_rder to create ney a1 in (26) as a function of the iteration round. This figure
off_sprmgs. _Then insert new offsprings into the pOPUIat'Oawows how the parameter value changes from iteration to an-
using an elitism strategy. Go back o step 3. other because the identification routine is only able to taos

a local model around the operating pofint., yx)-

5) Perform Genetic Operators: Select fittest individuaiar

6 Simulation results
Error Convergence

As a simulation example (this simulation example is takemfr s
(Hamamoto and Sugye, 2001)) consider the following plant |
model g

Gls) = S (23) ¢ |

s34+ 1052 + 30s + 8

where the system is defined over the time intetva [0, 3]
with a sampling ratd’s = 0.1. The reference signal is given
by the equation

1 1000
(t)=L"1]= 24
r(t) {ss4+4m3+4mmS+1mmo} (24)

35F b

w
T
I

lledll
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I

whereL~1(.) is the Laplace inverse-operator. The settings of T 1

the algorithm were done according the guidelines preséented n il
(Chipperfield, 1996), see also Table 1. The range ofdke

051 b

SGA parameter Setting
Population size of 300 % 05 1 15 2 25 3 25 7 25 5
Total Generations 100 Iteration round k
Number of iterations 6
Coding Real-value representation ) ] ) ] ]
Selection Low-level stochastic universal Elgure 2: ||e(k)|| as a function of iteration round with the
sampling routine linear example.
Recombination Shuffle crossover with reduced
surrogate, probability=0.9 Input functions
Mutation Value-flipping, random probability * ‘ ‘
Generation gap 0.98
Elitism Best 12 chromosomes of previous
population forward to next one
Number of Fourier basis 31

Table 1: Algorithm parameters for the linear case

u(t)

were chosen to be-5, 5], and hence the maximum amplitude
of the input signal is going to b&l -5 = 151. The cost function
was chosen to be

J(urs1) = llewsa]|® +0.01Juprr —ugl?, (25)
In order to investigate the robustness of the approach sigain 20 o5 ; = . PP s
uncertainty in the degree of the plant model, the identificat Time t

of the plant was done by using a second-order model
(14 a1z + a2z 2)y(k) = (biz7 ' +baz ?)u(k) (26) Figure 3: Input functions wheh = 0, 3, 5.

Using the above settings the obtained results were verg-sati
factory. The proposed algorithm was able to produce the opti
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7 Conclusions

In this paper the possibility of using GAs, identificationdan
basis functions in the context of Norm-Optimal ILC algonith
were investigated. The basic idea behind the GA approach is
that it can be used to implement Norm-Optimal ILC with lin-
ear and nonlinear plant models. The major improvementin the
approach presented in this paper is that it should be computa
tionally more effective than the previously presented apph

in (Hatzikos and Owens, 2002 In addition, the algorithm is
capable of producing smooth input functions, whereas the-al
rithm in (Hatzikos and Owens, 20Bptypically results in very
noisy input function during intermediate iterations, thaed
filtering before they can fed into the real plant. Furtherenor
the new algorithm needs only a rough estimate on the degree
of the plant, and it uses identification from previous data to
build a identification model is used inside the GA algorithm.

This new approach was tried on a linear example, where the
degree of the identification model was deliberately chogsdet
different from the true plant model. The simulation expesir
showed that in this case the algorithm produced only a local
model around the operating poifii, v ), but the algorithm
still converged to the optimal input due the tejimy, 1 — u||?

in the cost function.

As a future work it should be investigated rigorously howacc
rate the local model has to be before convergence is achieved
In addition, it would be interesting to apply the scheme on-no
linear plant models.
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