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Abstract

Recently, in (Hatzikos and Owens, 2002b) and (Hatzikos and
Owens, 2002a) it was explored whether or not Genetic Al-
gorithm (GAs) based approach can be used in the context of
norm-optimal Iterative Learning Control (ILC). It turned out
the answer was positive for both linear and nonlinear plant
models. However, this approach is still immature in the sense
that it can produce very ’noisy’ intermediate solutions. Fur-
thermore, in practical applications the dimension of the search
space can be very large, which can slow down considerably the
GA algorithm and increase the computational burden. In order
to overcome these problems, in this paper a new basis func-
tion approach is proposed. The idea is to restrict the GA search
on a proper subspace of the original search space, where the
subspace is spanned by a set of orthonormal functions. In this
way it is possible to decrease the dimensionality of the search
space, and if the basis functions are selected to be ’smooth’,
the search is done only over ’smooth’ functions. It is in fact
shown in this paper that under suitable assumptions, the basis
function approach will result in monotonic convergence, which
is a very strong property of an ILC algorithm. Furthermore, be-
cause the GA needs a simulation model of the plant in question,
it is suggested in this paper that the input-output pairs from the
ILC trials can be used to identify a model for the plant. Con-
sequently this approach will result in an ILC algorithm with
monotonic convergence that requires only an estimate of the
order of the plant model. Simulations are used to illustratethe
new approach, and they show that the basis function approach
combined with identification gives good results in terms of con-
vergence speed and input function smoothness.

1 Introduction

Iterative learning control is a technique to control systems oper-
ating in a repetitive mode with the additional requirement that
a specified output trajectoryr(t) in an interval[0, T ] is to be
followed with high precision. Examples of such systems are
robot manipulators that are required to repeat a given task to
high precision, chemical batch processes, or more generally,
the class of tracking systems. It can be in fact stated that the
repetitive processes comprise a very large group of industrial

processes, ranging from robotics and semi-conductors to steels
and chemical process industries. Motivated by human learning,
the basic idea of iterative learning control is to use information
from previous executions of the task in order to improve per-
formance from trial to trial in the sense that the tracking error
is sequentially reduced (Arimotoet al., 1984), (Moore, 1993).
(Arimoto et al., 1984) in fact introduced a simple ILC algo-
rithm that results in convergent learning, i.e. the tracking error
goes to zero as the number of iterations increases.

Since the introduction of this convergent algorithm into the
control community, several different algorithms have beensug-
gested by several researchers, which will also result in conver-
gent learning. However, most of the algorithms with guaran-
teed convergence properties work only for linear plants. Fur-
thermore, they typically require that a fairly accurate model
of the plant in question is available. These are severe limita-
tions because the dynamics of a repetitive system can be highly
nonlinear and it is typically very tedious build an accuratedy-
namical model for the real plant. Secondly, most of the pro-
cess variables are subject to certain constraints that are set by
safety considerations or physical constraints, resultingin a non-
linear problem setting. Hence there is a need for algorithms
that can handle these hard constraints and nonlinear dynamics
in a straightforward manner without an accurate mathematical
model of the plant.

One straightforward approach is to use the optimality basedal-
gorithm presented in (Amannet al., 1996), because even if the
plant is nonlinear, this algorithm will result in monotoniccon-
vergence under suitable conditions. However, in most cases
it is impossible to write down an analytic solution of the op-
timisation problem if the plant model in nonlinear. Hence in
(Hatzikos and Owens, 2002b) it was suggested that the opti-
misation problem can be solved numerically by using Genetic
Algorithms and a simulation model of the plant. The approach
was shown to feasible with both linear and nonlinear exam-
ples. However, the algorithm had three drawbacks: in practical
applications the dimensionality of the search space can be ex-
tremely large. Secondly, the GA tends to produce a very ’noisy’
input function that cannot fed directly into a real plant (see
(Hatzikos and Owens, 2002a). Finally, the algorithm needs an
accurate plant model. Note that the noisy inputs can be avoided
to a certain extent by filtering the input functions before feed-
ing them into the real plant, but the design of the filter can
very time-consuming. Hence the main theme of this paper is



to propose a basis function approach that will remove the first
two undesirable properties of the GA-based approach. Further-
more, in this paper it is suggested that identification techniques
can be used to build a local plant model from the trial data. This
will result in an algorithm that requires only a rough estimate
of the degree of the real plant.

The rest of the paper is organised as follows: In Section 2 a
rigorous mathematical definition of the ILC problem is given.
Section 3 explains the proposed basis function approach and
shows under which conditions the resulting algorithm will con-
vergent learning. Section 4 describes the identification method.
Section 5 contains a detailed description of the algorithm im-
plementation. Section 6 gives a numerical example, which
shows the effectiveness of the proposed basis function ap-
proach combined with identification technique. Finally, Sec-
tion 7 gives some conclusions and directions for future re-
search.

2 ILC Problem definition

Consider the following possibly non-linear discrete-timedy-
namical system defined over finite time interval,t ∈
[0, Ts, 2Ts . . . , Tf ]:

x(t + Ts) = f(x(t), u(t), t)
y(t) = g(x(t), u(t), t)

(1)

with a suitable initial conditionx(0) = x0. In addition, we are
given a reference signalr(t), and the control objective is make
the output variabley(t) to track this reference signal as closely
as possible by manipulating the input variableu(t). The special
feature of the problem is that when the system (1) has reached
the final time pointt = Tf , the state of the system is reset back
to x0, and after the resetting the system is supposed to follow
the same reference signalr(t) again. This repetitive nature of
the problem opens up possibilities for modifying iteratively the
input functionu(t) so that as the number of repetitions or trials
increases, the system learns the input function that gives perfect
tracking. To be more precise, the idea is to find a control law

uk+1 = f(uk, uk−1, . . . , uk−r, ek+1, ek, . . . , ek−s) (2)

so that

limk→∞ ‖ek‖ → 0 and limk→∞ ‖uk − u∗‖ → 0 (3)

whereu∗ is the input function that gives perfect tracking (i.e.
we are assuming the reference signal belongs to the range of
the plant). Note that if the original plant model is a linear time-
invariant model

x(t + Ts) = Ax(t) + Bu(t)
y(t) = Cx(t)

(4)

it can be represented equivalently with a matrix equationyk =
Geuk, where

Ge =















0 0 0 . . . 0
CB 0 0 . . . 0

CAB CB 0 . . . 0
...

...
...

. . .
...

CATl−1B CATl−2B . . . . . . 0















, (5)

whereTl = Tf/Ts, anduk = [uk(0) uk(Ts) . . . uk(Tf)]T ,
yk = [yk(0) yk(Ts) . . . yk(Tf )]T . This equivalent representa-
tion can typically simplify considerably the convergence anal-
ysis of ILC algorithms.

3 The basis function approach

In (Amannet al., 1996) it was suggested that techniques from
optimal control could be used to solve the ILC problem defined
in the previous section. To be more precise, the idea is to solve
the following optimisation problem

min
uk+1

J(uk+1) (6)

Jk+1(uk+1) = ‖ek+1‖
2 + ‖uk+1 − uk‖

2 (7)

with the constraint equationyk+1 = Guk+1 between trialk and
k + 1, and the optimal inputu∗

k+1 is fed into the plant during
trial k + 1. G is the equivalent input-output mapping corre-
sponding to (1). If the plant modelG is linear, then the optimi-
sation problem (6) can be solved analytically, and the resulting
algorithm givesgeometricconvergence. However, if the plant
modelG is nonlinear, or constraints are imposed on the input
functionuk+1, it might be very difficult to find an analytical
solution for (6). To overcome this problem, in (Hatzikos and
Owens, 2002b) it was propesed that Genetic Algorithms (GAs)
could be used to search for the optimalu∗

k+1
in (6) between

trials using a simulation model of the plantG. The main idea
behind this approach was to observe the following inequality
holds based on (6) and (7)

‖ek+1‖
2 ≤ Jk+1(u

∗
k+1) ≤ ‖ek‖

2 (8)

and hence if the optimisation problem (6) has at least one so-
lution for k = 1, 2, . . . , and the GA algorithm is able to find
this solution, it holds that‖ek+1‖ ≤ ‖ek‖, i.e. the approach
results in monotonic convergence. Even it turned out that this
method was feasible in the sense that it could produce almost
zero tracking with both linear and nonlinear examples, the ap-
proach had two major drawbacks. The first drawback is that
the because the GA is looking directly the optimal input func-
tion u∗

k+1, the dimension of the search space is going to be the
length of trial,Tl = Tf/Ts, and in practical applications this
number can be very large. Hence a mechanism is needed to
reduce the dimension of the search space. Another drawback is
the with this direct approach the GA will look for a vectoru∗

k+1

that gives good tracking, but it does not take into consideration
whether or not the input functionu∗

k+1 is a smooth function.
As was shown experimentally in (Hatzikos and Owens, 2002b)



and (Hatzikos and Owens, 2002a), this results in very ’noisy’
input functions, that cannot necessarily fed directly intoa real
system. Hence another mechanism is needed to constrain the
GA search over smooth functions.

One attractive way to achieve these two goals at the same time
is to use a basis function approach. The idea is to write an input
functionuk+1 as

uk+1 =

Tl
∑

i=1

αi,k+1fi (9)

wherefi is a set of orthonormal functions that span the in-
put function spaceU . Furthermore, if we can assume that the
firstK basis functions span the optimising input functionu∗

k+1,

u∗
k+1 can be written asu∗

k+1 =
∑K

i=1
α∗

i,k+1fi whereK < Tl.
Consequently we can now write the optimisation problem (6)
equivalently in terms of the coefficientsαk+1 in the following
way:

min
αk+1

Jk+1(αk+1) (10)

Jk+1(αk+1) = ‖ek+1‖
2 + ‖αk+1 − αk‖

2

BT
f

Bf
(11)

whereBf is the matrixBf := [f1 f2 . . . fK ]. Note that
BT

f Bf > 0 by assumption, and hence the weighted norm
‖ · ‖BT

f
Bf

is well-defined. Therefore by introducing the ba-
sis function, it is possible to reduce the dimension of the search
space fromTl toK under the assumptions mentioned earlier. In
addition, if the firstK functions are smooth, their linear combi-
nation will be also smooth, and hence the GA will only look for
smooth input functionsuk+1. It is also important to note that if
the original constrain equationyk+1 = Guk+1 is linear, it can
be written asyk+1 = Geuk+1 = GeBfαk+1 = G̃eαk+1. Con-
sequently if the original constraint equation is linear, the con-
straint equation in the basis function approach is linear aswell,
showing the optimisation problem does not become structurally
more complex due the introduction of the basis functions. Itis
also easy to show that in the linear case the optimal control can
be solved analytically and it is given byα∗

k+1 = αk + G̃∗
eek+1

whereG̃∗
e is the adjoint operator of̃Ge. Furthermore, in the

linear case it is easy to show that the algorithm converges, and
the limit of the sequenceαk satisfies

G̃∗
eG̃eα∞ = G̃∗

er, (12)

which means that in the limit the algorithm solves the optimi-
sation problem

min
α

‖r − G̃eα‖
2. (13)

Consequently if the input functionu that gives perfect tracking
does belongs to the span of the basis functionsfi, the algorithm
will converge to that input function in the linear case. Further-
more, ifu does not belong to the span offi, the algorithm looks
for an optimal approximation ofu.

The results in this section can be summarized with the follow-
ing

Proposition 1 Suppose that fork = 1, 2, . . . the optimisation
problemminuk+1

Jk+1(uk+1) has at least one optimal solution
u∗

k+1
, for eachk, u∗

k+1
∈ Span[f1, . . . , fK ], and the GA is able

to findu∗
k+1 ∈ Span[f1, . . . , fK ], then‖ek+1‖ ≤ ‖ek‖.

Proof. The proof is obvious based on the discussion above.2

The actual choice for the basis function set is still an open
question. However, a natural candidate is the Fourier-basis

fi(t) = sin(i ∗ πt/Tl) (14)

for i = 1, . . . , (K − 1)/2,

fi(t) = cos(i ∗ πt/Tl) (15)

for k = (K − 1)/2 + 1 . . . , K − 1, andfK = constant. An-
other common basis function used in the context of dynamical
systems is the Laguerre basis, defined by the recursive formula

(i + 1)fi+1(t) = (2i + 1 − t)fi(t) − ifi−1(t) (16)

where the initial conditions aref1(t) = 1 andf2(t) = −t + 1.
In Section 6 we will test how the Fourier-basis performs in the
GA-ILC context.

4 Identification

In the previous work on GA-based ILC it was assumed that an
accurate model of the plant to be controlled exists. However,
this is not necessarily very feasible in applications, because the
construction of a reasonably accurate plant model can be very
time-consuming and tedious. In order to overcome this prob-
lem in this paper it is suggested that on-line identificationcould
be used to construct a model from the experimental data avail-
able from the ILC trials. To be more precise, the plant model is
parametrisised by using the model

A(z−1)y(k) = B(z−1)u(k) (17)

where

A(z−1) = 1 + a1z
−1 + · · · + anz−n

B(z−1) = z−d(b1z
−1 + · · · + bmz−m)

(18)

wheren, m ∈ N+ and m < n and the relative degree of
the plant isd − 1. For this parametrisation it is a standard
result from identification theory that for the input-ouput pair
(uk+1, yk+1) the least-square estimate for the parameter vector
β := [−a1 − a2 . . . − an b1 b2 . . . bn] is given by

θk = (ΦT
k Φk)−1ΦT

k yk (19)

where

Φk =











ϕT
k (1)

ϕT
k (2)
...

ϕT
k (N)











(20)



and

ϕk(i) =





















−y(i − 1)
...

−y(i − n)
u(i − d − 1)

...
u(i − d − m)





















(21)

Note, however, that because the inputuk is given by an ILC
algorithm, it is not necessarily true that the input will excite all
the different modes of the plant, and hence the estimated pa-
rameters could be biased. The fact that the model is biased, is,
however, not that severe as it sounds, because the algorithmthe
ILC needs only a local model of the plant. This is due the term
‖uk+1−uk‖

2 in the cost function (7), which forces the optimal
solutionuk+1 be close touk. Hence if the model constructed
from the input-output pair(uk, yk) gives a reasonable model
for the input-output pairs in the vicinity of this operatingpoint,
it can be expected that the algorithm will converge.

Figure 1: A flow diagram of the implementation.

This idea is illustated in Fig. 1: as a starting point an initial
guessu0 is fed into the real plant which gives an ouput function
y0. This data is used to constuct a least squares model for the
real plant. After that the optimisation problem (6) is solved
with this model, where the model is only accurate inside the
ball in Fig. 1 centred at(u0, y0). However, because the cost
function (7) includes the term‖u1 − u0‖

2, it can be argued if
the radius of ball does not have to be excessively large in order
to guarantee that the new optimal inputu1 lies inside this ball.
Hence even with the local model the algorithm is able to find
the optimal input foru1. After the new optimal input is found,
a new local model is constructed from the pair(u1, y1), and the
optimisation is repeated. This process is then repeated until the
algorithm converges.

5 Algorithm implementation

The proposed Basis Functions and Genetic Algorithm based
optimisation method for Iterative Learning control systems
(BFGA-ILC) is similar to the one described in (Hatzikos and
Owens, 2002b) and (Hatzikos and Owens, 2002a). However, a
significant difference is the use of real value representation of
the individuals inside the GA instead of binary that was used
before. The procedure starts by generating a population ofK
orthonormal functions and a matrix containing the coefficients.
Using the linear combination of these two the BFGA algorithm
evaluates an initial population of smooth input functions.Then
the algorithm evaluates the fitness of each combination of co-
efficients. After that, the selection of the fittest combinations
takes place. The coefficient matrix is then reproduced usingthe
genetic operators (crossover and mutation). This means that
fittest combinations of coefficients have better change of be-
ing chosen for reproduction. Finally, the developed offsprings
are reinserted into the population replacing the old coefficients.
This loop is repeated 100 times (generations) before selecting
the next input to be introduced into the Simulink model. The
algorithm ends when the error of the system is minimized to an
optimal solution. Note that in this implementation it is straight-
forward to include hard constraints in the input variableu(t):
this is due the fact in the linear combination

ut =

K
∑

i

αifi(t), (22)

the GA algorithm takes an input argument the rangesRi of the
decision variablesαi. Hence if we decide to use the Fourier
basis in (14) and (15), and we specify that|αi| < R, then the
maximum amplitude ofu(t) is going to beK ∗ R, because
the maximum (minimum) ofcos(t) andsin(t) is 1 (-1). Con-
sequently the proposed approach cope very easily with hard
constraints on the input functionu(t).

Note that in order to guarantee monotonic convergence, the GA
optimisation has to include a generation gap process. The idea
behind the process is to use elitism, i.e. from the previous gen-
eration at least the best individual is inserted without modifica-
tion into the next generation. The overall algorithm that com-
bines the Genetic Algorithm and the identification routine can
be described with the following steps:

1) Select an initial guessu0 for the input and observe the
corresponding outputy0 from the real plant. Calculate an
estimate for the plant model with this data.

2) Create initial population of individuals

3) Evaluate objective functionJ for each individual and the
correponding fitness levelF using the identified simula-
tion model from Step 1 duringk = 1 and otherwise from
Step 4 whenk > 1.

4) Select fittest individual to be fed into the real model. Eval-
uate the performance of the selected input with the real
plant. If the tracking accuracy is acceptable, terminate the



algorithm. Otherwise identify a new model equation from
the experimental data. Replace existing simulation model
by the new model.

5) Perform Genetic Operators: Select fittest individuals from
the existing population. Perform crossover and mutation
operators on selected individuals in order to create new
offsprings. Then insert new offsprings into the population
using an elitism strategy. Go back to step 3.

6 Simulation results

As a simulation example (this simulation example is taken from
(Hamamoto and Sugye, 2001)) consider the following plant
model

G(s) =
s + 8

s3 + 10s2 + 30s + 8
(23)

where the system is defined over the time intervalt ∈ [0, 3]
with a sampling rateTs = 0.1. The reference signal is given
by the equation

r(t) = L−1

{

1

s

1000

s4 + 40s3 + 4000s + 10000

}

(24)

whereL−1(·) is the Laplace inverse-operator. The settings of
the algorithm were done according the guidelines presentedin
(Chipperfield, 1996), see also Table 1. The range of theαs

SGA parameter Setting
Population size ofα 300
Total Generations 100
Number of iterations 6
Coding Real-value representation
Selection Low-level stochastic universal

sampling routine
Recombination Shuffle crossover with reduced

surrogate, probability=0.9
Mutation Value-flipping, random probability
Generation gap 0.98
Elitism Best 12 chromosomes of previous

population forward to next one
Number of Fourier basis 31

Table 1: Algorithm parameters for the linear case

were chosen to be[−5, 5], and hence the maximum amplitude
of the input signal is going to be31·5 = 151. The cost function
was chosen to be

J(uk+1) = ‖ek+1‖
2 + 0.01‖uk+1 − uk‖

2, (25)

In order to investigate the robustness of the approach against
uncertainty in the degree of the plant model, the identification
of the plant was done by using a second-order model

(1 + a1z
−1 + a2z

−2)y(k) = (b1z
−1 + b2z

−2)u(k) (26)

Using the above settings the obtained results were very satis-
factory. The proposed algorithm was able to produce the opti-

mal Fourier coefficients after a few iterations, and the conver-
gence is monotonic, see Fig. 2 even the degree of the identi-
fication model was different from the degree of the true plant.
Furthermore, due the smoothness of the basis functions the al-
gorithm is able to produce a smooth input function during each
trial, see Fig. 3. Finally, Fig. 4 shows the parameter estimate
for a1 in (26) as a function of the iteration round. This figure
shows how the parameter value changes from iteration to an-
other because the identification routine is only able to construct
a local model around the operating point(uk, yk).
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Figure 2: ‖~e(k)‖ as a function of iteration roundk with the
linear example.
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7 Conclusions

In this paper the possibility of using GAs, identification and
basis functions in the context of Norm-Optimal ILC algorithms
were investigated. The basic idea behind the GA approach is
that it can be used to implement Norm-Optimal ILC with lin-
ear and nonlinear plant models. The major improvement in the
approach presented in this paper is that it should be computa-
tionally more effective than the previously presented approach
in (Hatzikos and Owens, 2002b). In addition, the algorithm is
capable of producing smooth input functions, whereas the algo-
rithm in (Hatzikos and Owens, 2002b) typically results in very
noisy input function during intermediate iterations, thatneed
filtering before they can fed into the real plant. Furthermore,
the new algorithm needs only a rough estimate on the degree
of the plant, and it uses identification from previous data to
build a identification model is used inside the GA algorithm.

This new approach was tried on a linear example, where the
degree of the identification model was deliberately chosen to be
different from the true plant model. The simulation experiment
showed that in this case the algorithm produced only a local
model around the operating point(uk, yk), but the algorithm
still converged to the optimal input due the term‖uk+1 −uk‖

2

in the cost function.

As a future work it should be investigated rigorously how accu-
rate the local model has to be before convergence is achieved.
In addition, it would be interesting to apply the scheme on non-
linear plant models.
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