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Björn Bukkems,1 Dragan Kostić,2 Bram de Jager,3 and Maarten Steinbuch4

Technische Universiteit Eindhoven, Department of Mechanical Engineering
Dynamics and Control Technology Group, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Fax: +31 40 246 1418, Phone: 1+31 40 247 2841, 2+31 40 247 5730, 3+31 40 247 2784, 4+31 40 247 5444
1B.H.M.Bukkems@tue.nl, 2D.Kostic@tue.nl, 3A.G.de.Jager@wfw.wtb.tue.nl, 4M.Steinbuch@tue.nl

Keywords: Robotics, Dynamics, Model-based control, Itera-
tive Learning Control, Direct-drive robots

Abstract

This paper presents an Iterative Learning Control algorithm for
direct-drive robots. The learning algorithm assumes linear dy-
namics, which is created using a nonlinear model-based com-
pensator. The convergence criterion of the learning controller
is derived in the frequency domain. Rules for designing the fil-
ters, used in the update law, are explained. The effectiveness
of the algorithm is demonstrated in experiments on a spatial
direct-drive robot. The root-mean-square values of the tracking
errors in a demanding writing task are over 10 times smaller
after just eight iterations of the learning algorithm, compared
with the errors before learning.

1 Introduction

Increasing demands on the performance of modern robot ma-
nipulators have led to the development of various motion con-
trol approaches. They can be divided into three main categories
[3]. The first one is decentralized control, relying on indepen-
dent feedback loops that implement PD and PID controllers
[12]. Nonlinear robot dynamics is neglected and coupling ef-
fects are treated as disturbances. Although still a dominant
practical solution, it does not maximize robot performance.
The second category is model-based control. To achieve bet-
ter tracking accuracy, dynamic couplings between robot axes
are taken into account, which is realized by integrating the dy-
namics into the control design.

Whereas the previous two categories essentially resort on feed-
back control design, the third category is focussed on the de-
sign of a feedforward control input. A special approach within
this category is the so-called Iterative Learning Control (ILC)
approach. Becoming more attractive in robotics, it is used for
accurate tracking of repetitive motions, which are often met in
practice. An ILC algorithm calculates a feedforward control in-
put iteratively, based on the error and the feedforward control
input of a previous trial. The tracking performance is improv-
ing through the repetition of trials, until the reproducible part of
the tracking error becomes small and non-reproducible errors
become dominant.

After its introduction in robotics [1], the number of ILC tech-

niques proposed for robotic problems has become almost as
large as the number of practitioners. Commonly, they require
very little knowledge on the robot dynamics, assuming either
just an approximate nonlinear dynamics with roughly known
parameters [2, 5, 6], or even linear dynamics [9]. Regard-
ing the domain in which the learning controller is designed,
a distinction can be made between time-domain [1, 2, 5, 6],
and frequency-domain ILC techniques [9]. Usually, the time-
domain techniques offer rather conservative rules for tuning
the learning controller. This is considered to be a basic limi-
tation, since the maximum effect on the tracking performance
cannot be anticipated. On the other hand, frequency-domain
techniques can take into account additional knowledge on par-
ticular plant dynamics and thus they enable building up a real
tuning formalism, but a drawback is that they work only with
linear plants.

In robotics, assuming linearity is justified only if high-geared
transmission elements are used in the robot joints. Due to high
reduction ratios, nonlinear dynamic couplings between robot
axes are reduced and the linear behavior along each axis pre-
vails [15]. However, this is not the case for manipulators with
direct-drive actuators, as nonlinear dynamics are inherent to
them. To use an ILC design for such manipulators, one should
combine ILC and model-based control approaches.

In this paper, we consider a frequency-domain ILC technique
for improving the performance of direct-drive robots. The de-
sign of the learning filter is based on the dynamics that remains
after decoupling the robot axes with a model-based compen-
sator for the nonlinear dynamics. To the best of our knowl-
edge, this is the first attempt to practically investigate the func-
tional combination of a nonlinear model-based compensator
and frequency-domain ILC. A notable difference between other
frequency-domain techniques used in robotics (e.g., [9]) and
our approach, is that we provide a formalism for tuning the fil-
ters based on the measured dynamics. Such formalism enables
one to anticipate the benefits of the ILC algorithm on the track-
ing performance. To demonstrate the merits of the suggested
technique, we perform experiments on a direct-drive robotic
arm with three rotational joints, implemented as a waist, shoul-
der and elbow. As the considered kinematic structure is often
met in industry, results of this study are representative for in-
dustrial cases. Experiments using a demanding writing task
[11] show the potential of the proposed ILC technique.



The paper is organized as follows. In the next section we intro-
duce ILC for a single-input single-output (SISO) linear system.
Use of the nonlinear model-based compensator to establish a
linear decoupled dynamics in the robot joints is explained in
section 3. The experimental setup and the learning filter de-
sign are discussed in section 4. Section 5 demonstrates the
effectiveness of the proposed technique with experiments, and
conclusions will come at the end.

2 Iterative Learning Control

Consider the block diagram in Figure 1. The SISO linear plant
P is described by its transfer function:

P(s) =
Θ(s)
U(s)

, (1)

where U(s) and Θ(s) are the Laplace transforms of the applied
control input u(t) and the plant output θ (t), respectively. The
feedback controller C is used to stabilize the system by gen-
erating the feedback control input ufb(t), corresponding to the
tracking error:

e(t) = θr(t)−θ (t), (2)

where θr is the desired output of P. The input uilc(t) repre-
sents the feedforward control signal, which is updated after
each trial. In the Laplace domain1, the update rule of the learn-
ing algorithm is defined as follows:

Uk+1
ilc (s) = Q(s)(Uk

ilc(s)+L(s)Ek(s)), (3)

where k is the number of the trial, L is the learning filter and Q
is a robustness filter. According to Figure 1, the errors in two
successive trials satisfy the following relations:

Ek(s) = −P(s)S(s)Uk
ilc(s), (4)

Ek+1(s) = −P(s)S(s)Uk+1
ilc (s), (5)

where S denotes the sensitivity function:

S(s) =
1

1+P(s)C(s)
. (6)

The product P(s)S(s) is called the process sensitivity. Substitu-
tion of (3) and (4) into (5) results in:

Ek+1(s) = Ek(s)Q(s)(1−L(s)P(s)S(s)). (7)

From this equation it can be seen that the tracking error de-
creases if the following convergence criterion is satisfied:

‖Q(s)(1−L(s)P(s)S(s))‖∞ < 1, (8)

with ‖.‖∞ denoting the infinity norm. To maximize the con-
vergence speed, the learning filter L should be identical to the
inverse of the process sensitivity:

L(s) =
1

P(s)S(s)
. (9)

1Because we assume identical initial conditions in each trial, the analysis
in the Laplace domain is allowed, even though each trial has finite time-length
[10].
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Figure 1: Iterative Learning Control block diagram

To compute the L-filter, a parametric model of the process sen-
sitivity has to be made. If the plant P is non-minimum phase,
the L-filter in (9) will be unstable when the process sensitivity is
inverted directly. To avoid this, the Zero Phase Error Tracking
Algorithm for Digital Control [14] can be used, which makes
use of a discrete-time model of the process sensitivity. It inverts
its poles and stable zeros and cancels the phase shift induced
by the unstable zeros. To ensure that the convergence crite-
rion (8) is satisfied for the real plant dynamics, the robustness
filter Q is introduced. It is needed, as the L-filter is designed
using a parametric model of the process sensitivity which, in
practice, cannot cover the complete dynamics of the real sys-
tem but only some low-frequency range. The Q-filter should
guarantee the validity of (8) for the frequency components at
which the model is inaccurate, as at these frequencies the con-
vergence criterion can be violated. Since in practice modelling
errors occur in the high-frequency range, Q is mostly chosen
to be a low-pass filter. In the simplest case, below its cut-off
frequency fQ, the Q-filter has a pass-band equal to 1, while
above fQ its amplitude is decreasing. The Q-filter should in-
fluence the frequency content of the feedforward control input
only by its magnitude characteristics, but should not introduce
any phase distortion. To explain this, let us discuss the learning
mechanism defined within the parenthesis in the update rule
(3). The learning mechanism produces an input signal from the
tracking error and the feedforward input of the previous trial.
This input signal is effective in reducing the tracking error only
in the frequency range at which the L-filter is a correct rep-
resentation of the inverse of the measured process sensitivity.
Frequency components of the input signal that are outside this
range are not effective in decreasing the error, so they must
be suppressed by the Q-filter. However, in time-domain, the
input signal should exactly match the measured tracking error
and the feedforward input from the previous trial. That is why
the Q-filter is not allowed to introduce phase distortion. Con-
sequently, filtering the input signal with the Q-filter is a non-
causal filtering operation that will be performed offline during
the experiments, as indicated in Figure 1.

The disadvantage of the introduction of the Q-filter is that a
zero tracking error cannot be guaranteed above fQ. This can be



verified using the following formula, derived from (3) and an
expression for the tracking error obtained from Figure 1:

lim
k→∞

Ek(s) =
1−Q(s)

(S(s))−1(1−Q(s))+Q(s)P(s)L(s)
Θr(s). (10)

At low frequencies the tracking error can become zero, as Q is
identity below fQ, while at high frequencies |Q| << 1 and the
error will be:

lim
k→∞

Ek(s) ≈ S(s)Θr(s), ∀ f >> fQ. (11)

However, this is not a drawback in practical robotics problems,
since the harmonic content of the reference motions is typically
present at low frequencies.

3 Robot dynamics

Let us now investigate the possibility to apply the ILC algo-
rithm of the previous section in a direct-drive robot control
problem. The dynamics of a robot with n actuated joints can be
represented using the Euler-Lagrange formalism:

D(θ (t))θ̈ (t)+ c(θ (t), θ̇(t))+g(θ (t))+ f(t) = τ(t), (12)

where θ , θ̇ and θ̈ are the n×1 vectors of joint motions, speeds,
and accelerations, respectively, D is the n×n inertia matrix, c, g
and f are 3×1 vectors of nonlinear Coriolis/centripetal, gravita-
tional and friction forces, respectively, and τ is the n×1 vector
of control inputs (joint forces/torques). Since the ILC algo-
rithm can be applied to linear plants only, the nonlinear and
highly coupled dynamics in (12) have to be compensated for
by a model-based compensator for the system dynamics:

τc(t) = D̄(θr(t))u(t)+ c̄(θr(t), θ̇r(t))+

+ḡ(θr(t))+ f̄(t). (13)

Here u represents the n×1 vector of new control inputs that
should ensure stable robot motions and accurate tracking of the
reference θr. The upper bars indicate that a model is used to
compensate the real dynamic effects. Ideally, when the con-
troller (13) is applied to the dynamics (12), a linear plant re-
mains:

θ̈ (t) = u(t). (14)

This holds only if the dynamic model perfectly matches the
real robot dynamics. In practice this rarely happens, especially
in the presence of flexible effects that are not included in the
model. As discussed in [8], the dynamics in the robot joints ob-
tained after applying the nonlinear model-based compensator is
more complex than the ideal one in (14). For the i-th degree of
freedom (d.o.f.), it is defined as the transfer function:

Pi(s) =
Θi(s)
Ui(s)

, (15)

where Pi is not just a double integrator, as suggested by (14),
but it has poles and zeros due to the appearance of resonances
and anti-resonances. The frequencies and damping of these res-
onances vary as the robot configuration changes. Capturing all

possible variations in the plant dynamics with a single model
could be a difficult task. To avoid this, we choose a strategy of
adopting a nominal model of the plant, to represent its average
dynamics. Differences from the nominal model are interpreted
as perturbations in the dynamics.

In order to calculate the nominal plant model P0
i , needed in

the ILC design, the frequency response functions Gl
i( jω) from

ui(t) to qi(t) are measured for N different robot configurations
(l= 1, . . . ,N), as explained in [8]. These configurations should
span the full range of the robot joints. Once a set of measure-
ments has been collected, at least two possibilities can be used
to calculate the nominal frequency response G0

i ( jω):

G0
i ( jω) = arg min

Gi( jω)
max

l

∣

∣

∣

∣

Gl
i( jω)−Gi( jω)

Gi( jω)

∣

∣

∣

∣

, (16)

or

G0
i ( jω) =

1
N

N

∑
l=1

Gl
i( jω). (17)

The first possibility minimizes the distance between the nomi-
nal and the N measured frequency responses at each frequency
ω . The second possibility calculates the average of the N mea-
sured frequency responses. We choose the latter possibility,
because it provides us smoother amplitude and phase plots.
Smoother plots will facilitate fitting the parametric model P0

i
onto the nominal frequency response data G0

i . Perturbations
from this nominal dynamics must be taken into account dur-
ing the ILC design, which will be particularly illustrated by the
case study in the next section.

After applying the nonlinear model-based compensator, the
control situation illustrated by Figure 1 can be established.
Consequently, the ILC design of section 2 becomes possible.

4 Experimental Setup

The robotic arm, shown in Figure 2, is the subject of our case
study. The photo and kinematic parameterisation according to
the well-known Denavits-Hartenberg’s (DH) notation [4], re-
veal three revolute degrees of freedom (d.o.f.), which makes
such a kinematic structure referred to as RRR. Each d.o.f. is
actuated by a brushless DC direct-drive motor and has an in-
finite range of motions, thanks to the use of slip-rings for the
transfer of power and sensor signals [15], [16]. The actuators
are Dynaserv DM-series servos with nominal torques of 60, 30
and 15 [Nm], respectively. The servos are driven by power
amplifiers with built in current controllers. Joint motions are
measured using incremental optical encoders, with a resolution
of 10−5 [rad]. A PC-based platform is used for implementation
of control algorithms using Matlab/Simulink software.

Detailed models of the robot kinematics and dynamics are
available in [7]. From Figure 2, one can determine the DH
parameters, whose numerical values are presented in Table 1.
The DH parameters are: twist angles α i, link lengths ai, joint
displacements θ i, and link offsets di.

After applying the nonlinear model-based compensator (13)



and stabilizing the robot using a PD feedback control law:

u f b = Kpe+Kdė,
Kp = diag [Kp,1,Kp,2,Kp,3] , Kd = diag

[

Kd,1,Kd,2,Kd,3
] , (18)

the remaining dynamics is identified.
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Figure 2: The RRR robotic arm and the kinematic parameteri-
sation according to the DH notation

dof α i [rad] ai [m] θ i di [m]
1 π

2 0 θ 1 O0O1=0.560
2 0 R1O2=0.200 θ 2 O1R1=0.169
3 0 R2O3=0.415 θ 3 O2R2=0.090

Table 1: DH parameters of the experimental RRR robotic arm

As a case study, we explain the ILC design for the first robot
joint only, but the experimental results, given in the next sec-
tion, cover the case with learning controllers for all three
joints. Figure 3 shows frequency responses for the first joint
corresponding to N=16 static postures, spanning the com-
plete range of joints 2 and 3:

[

θ 1
r,2 θ 1

r,3

]

= [0◦ 0◦] ,
[

θ 2
r,2 θ 2

r,3

]

=

[0◦90◦] , . . . ,
[

θ 16
r,2 θ 16

r,3

]

= [270◦270◦] . From this figure it is ob-
vious that the theoretically expected dynamics of a double inte-
grator (see (14)) holds at low frequencies only (below 20 [Hz]),
while the real dynamics is more involved at higher frequencies.
The increasing phase lag, which can be observed in the phase
plot in Figure 3, is caused by the time delay in the control sys-
tem [8]. The nominal frequency response G0

1, calculated ac-
cording to (17), is shown in Figure 3 as well. It is also depicted
in Figure 4, together with its parametric fit P0

1 . The fitting is
done in the least-squares sense, using an output-error model
structure [13]. As can be seen from this figure, the fit is accu-
rate only until 70 [Hz] because we do not expect it would be
necessary to learn above this frequency. Fitting the high fre-
quent dynamics is therefore unnecessary.

The PD feedback controller C1, with Kp,1 = 1000 and Kd,1 =

2
√

1000, is adopted to stabilize the robot. Given C1 and P0
1 , the

parametric model of the process sensitivity can be calculated.
Based on this model the L-filter can be calculated as explained
in section 2. Figure 5 shows the L-filter, the process sensitivi-
ties calculated for all 16 frequency responses G1

1, . . ., G16
1 , and

their products. A perfect L-filter would result in 0 [dB] mag-
nitude and 0◦ phase shift of these products. From Figure 5, it
can be seen that the obtained L-filter matches the inverse of the
process sensitivities until approximately 20 [Hz]. The conver-
gence criterion (8) can be preserved above 20 [Hz] by means
of the low pass robustness filter Q. Therefore, the cut-off fre-
quency of the Q-filter is chosen to be 18 [Hz]. For joints 2 and
3, the cut-off frequencies of the Q-filters are 25 [Hz] and 27
[Hz], respectively.
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Figure 3: Experimentally obtained frequency responses G1
1, . . .,

G16
1 (gray) and the nominal frequency response G0

1 (black).
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5 Experimental results

To demonstrate the effectiveness of the proposed control de-
sign, experiments have been conducted. In these experiments,



the robotic arm had to perform a writing task, which is often
recognized as very demanding for the dynamics of a mechan-
ical system due to its fast motions [11]. In this writing task,
shown in three dimensional space on the left hand side of Fig-
ure 6, the robot-tip had to track the path starting from "A" in
the direction of the arrows. The corresponding joint motions
are depicted on the right hand side of Figure 6.
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Figure 5: Frequency response of the L-filter for the first joint
(black, thick), the process sensitivities calculated for 16 distinct
robot postures (gray) and their products (black, thin)
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Figure 6: Reference path of the robot tip (left) and correspond-
ing joint motions (right)

During the experiments, the robot motions are stabilized by
the PD feedback controllers that have also been used in the
derivation of the L-filters. After each trial, the new feedfor-
ward control input is calculated according to (3). This means
filtering of the measured tracking errors with the corresponding
L-filters, adding the previous feedforward input to this filtered
signal, and, finally, filtering of the obtained signals with the
corresponding Q-filters. The result is the feedforward control
input for the next trial.

The performed experiment consisted of 10 trials. In Figure 7
the tracking errors during the first, second and tenth trial in all
three joints are depicted. From this figure it can be seen that the
tracking errors have already reduced considerably in the second
trial, i.e., after just one iteration.

As depicted in Figure 8, the root-mean-square values of the er-
rors in all joints keep decreasing until they reach lower bounds,

that cannot be further reduced. For the first two joints, seven
trials are needed, while for the third joint it takes eight trials.
The root-mean-square values of the errors after the learning
process are over ten times smaller than before learning. Fig-
ure 9 shows the auto power spectra of the tracking errors in
all joints, based on data measured during the first, second and
tenth trial. The spectra show significant reduction of frequency
components until approximately 10 [Hz] in the first two joints
and 15 [Hz] in the third joint. Such reduction is very important
as the frequency content of the reference motions are within
these ranges.
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6 Conclusions

This paper presents an Iterative Learning Control algorithm
for direct-drive robots. As it is a frequency-domain approach,
it is applicable to linear systems only. Therefore, a nonlin-
ear model-based compensator is used to obtain linear, decou-
pled dynamics, after which this dynamics is identified. A for-
malism for tuning the filters based on the measured dynamics



is given, taking into account learning capabilities and conver-
gence issues. The effectiveness of the algorithm is experimen-
tally demonstrated on a spatial direct-drive robotic arm with
three rotational joints. A considerable reduction in the tracking
error is obtained in all three joints.
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