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Abstract

The main contribution of this paper is an end-to-end rate-based
congestion control algorithm for unicast quality adaptive video
streaming that we call Adaptive Rate Control (ARC). The al-
gorithm is based on end-to-end estimation of both available
bandwidth and queue backlog. ARC has been compared with
the TCP-Friendly Rate Control (TFRC) algorithm via thens-2
simulator. In particular, both single bottleneck and multi-hop
scenarios with and without lossy links have been considered.
Simulation results have shown that ARC: (1) is more friendly
than TFRC towards Reno; (2) remarkably improves the good-
put with respect to TFRC and Reno TCP in the presence of
lossy links; (3) provides no rate oscillations in the presence of
stationary network load; (4) exhibits a less oscillating rate dy-
namics with respect to Reno TCP.

1 Introduction

Integration of congestion control with quality adaptation is the
key strategy to provide efficient video delivering over time
varying capacity networks, such as the Internet, so that when
the available bandwidth is scarce a low quality video is trans-
mitted whereas, when an abundant bandwidth is available,
video of improved quality is delivered [17]. Classic Reno TCP
produces rapidly varying transmission rates due to its window
based nature [9, 1]. Thus it is not well suited for video de-
livering since it requires a large playout buffer at the receiver
to provide a smooth video playback [5]. A congestion con-
trol algorithm well suited for video delivering should provide a
smooth dynamics of the transmission rate and be able to share
the network capacity with Reno sources, i.e. it has to be Reno
friendly.

The concept ofslow responsive algorithmhas been recently
introduced to deal with applications such as video streaming
where a relative smooth sending rate is of importance [8].
However, recent works indicate that TCP can be still used to
transport video contents (see [10]) if the playback buffer is
enough wide [5]. In particular, experiments illustrated in [5]
show that even if quality fluctuations provided by Reno TCP or
TFRC lie in the same range, Reno TCP generates a playback
delay 3 times larger than the one provided by TFRC.

Many control algorithms have been proposed that try to em-
ulate the ”long-term” behavior of the Reno algorithm with a
more moderate rate dynamics [6, 16, 17, 3, 11]. The most con-
sidered among them is the TCP Friendly Rate Control (TFRC)
[6], which exploits the equation model of the Reno throughput
developed in [15] to compute the transmission rate. In this way,
the TFRC sender computes the transmission rate as a nonlinear
function of the average loss rate, which is supplied by the re-
ceiver as feedback report. From a control theoretic perspective,
TFRC employs astatic nonlinearcontroller to regulate the in-
put rate of a data connection, which is a time delay system [12].
In [3] the rate based algorithms proposed in [16, 6] and the win-
dows based algorithms proposed in [1, 2] have been tested in
the presence of dynamic network conditions to show that algo-
rithms that do not employ the self-clocking principle [9] may
exhibit a huge settling time, that is, they may require many
RTTs to adapt the input rate to the bandwidth available in the
network. Moreover, to recover the disastrous effects due to the
violation of the self-clocking principle, an enhanced version of
the TFRC algorithm has been also proposed in [3]. This paper
proposes a new rate-based algorithm to be used in a general
video delivering system. The proposed Adaptive Rate Control
(ARC) algorithm is based on a mechanism to estimate both
the used bandwidth and the queue backlog in an end-to-end
fashion. It has been designed starting from the control theo-
retic analysis developed in [12], which shows that it is possible
to design a stable and efficient congestion controller by fol-
lowing the Smith principle. ARC has been compared with the
TCP Friendly Rate Control (TFRC) over single bottleneck and
multi-hop scenarios, using thens-2 simulator [14]. Main re-
sults that have been found are that ARC: (1) is more friendly
than TFRC towards Reno; (2) remarkably improves the good-
put with respect to TFRC and Reno TCP in the presence of
lossy links; (3) provides no rate oscillations in the presence of
stationary network load; (4) exhibits a less oscillating rate dy-
namics with respect to Reno TCP.

The paper is organized as follows: Section 2 summarizes the
theoretical results that have been used as starting points for de-
signing ARC; Section 3 describes ARC; Section 4 shows sim-
ulation results and, finally, the last section draws the conclu-
sions.



2 Control theoretical background

The ARC algorithm proposed in this paper has been designed
starting from the theoretical results derived in [12], which show
that a data connection is a time delay system that can be effi-
ciently controlled by following the Smith principle. In partic-
ular, to provide stability and high utilization of the bottleneck
link depicted in Fig. 1, the following rate-based control equa-
tion (1) should be employed:

r(t) = k[w(t)− q(t− Tfb)−
∫ t

t−RTT

r(τ)dτ ]+ (1)

where: [x]+ = max{0, x}; r(t) is the transmission rate;w(t)
represents a threshold for the queue length;

∫ t

t−RTT
r(τ)dτ

represents the packets sent by the source and not yet acknowl-
edged by the receiver, i.e. the outstanding packets;Tfw is
the forward delay that models the propagation from the sender
to the the bottleneck;Tfb is the backward delay that mod-
els the time that the feedbackq(t), which is supplied by the
bottleneck, needs to reach the destination and then back to
the source;q(t) is the bottleneck queue backlog that is re-
ceived by the sender after the delayTfb; k is the propor-
tional gain that relates the transmission rater(t) to the quantity
[w(t)−q(t−Tfb)−

∫ t

t−RTT
r(τ)dτ ]. It is easy to give an intu-
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Figure 1: Schematic of a connection.

itive interpretation of the Eq. (1): the transmission rater(t) is
proportional, via the constantk, to the difference between the
thresholdw(t) and the sum of the bottleneck backlogq(t−Tfb)
with the number of outstanding packets

∫ t

t−RTT
r(τ)dτ . From

Eq. (1) it turns out that when the number of outstanding pack-
ets plusq(t− Tfb) is greater or equal tow, then the computed
transmission rate is zero. This implies that the number of out-
standing packets can never exceedw. It is also interesting to
observe that the Eq. (1) can be viewed as the rate based ver-
sion of the classic sliding window control. In fact, dividing
both sides of Eq. (1) byk, the sliding window control equation
∆W = r/k is easily obtained. This result will be exploited
later to define a proper dynamic setting ofw(t), which mimics
the Reno behavior and provides friendliness. Moreover, Eq. (1)
can provide a steady state queue length equal to0 by setting the
control windoww as follows:

w = B · (mRTT +
1
k

) (2)

whereB is the bottleneck available bandwidth andmRTT is
the minimumRTT [12]. An important feature of the setting
(2) is that it clears out all the buffers along the connection path,
thus improving statistical multiplexing of flows going through
FIFO buffers and increasing fairness in bandwidth allocation.

3 The Adaptive Rate Control algorithm

The starting point of the ARC design is the result that Eq. (1) is
the rate based form of the classic sliding window control [12],
which is employed by Reno TCP and its variants [1, 9]. In par-
ticular, we propose to set the control windoww(t) in Eq. (1) by
following the linear increase behavior of the Reno congestion
avoidance phase. Moreover, we propose to adaptively setw(t)
after congestion by taking into account an end-to-end estimate
of the available bandwidth as dictated by Eq. 2. It follows a de-
scription of the main functionalities implemented at the ARC
sender and receiver.

3.1 The sender

This section reports details of ARC functionalities imple-
mented at the sender side. The ARC sender computes the
transmission rater using the Eq. (1) in an end-to-end fash-
ion. In order to perform this task, the sender (1) estimates the
queue backlog, (2) properly manages the control windoww(t)
to obtain friendliness towards Reno, (3) implements a timeout
mechanism to react also to strong network congestion.

3.1.1 Queue backlog estimation

In order to estimate the queue backlog in end-to-end fashion,
we propose to consider the relation between the queuing time
Tq, the queue length and the queue depletion rateB, which is:

q(t− Tfb) = B · Tq.

The queuing delay can be computed by monitoring the(RTT )
via packet time stamping. In fact, the difference between the
actualRTT and the minimumRTT provides an estimate of
the queuing time:

Tq = RTT −mRTT.

3.1.2 Updating the Control Window

The algorithm used to update the control windoww is crucial
to provide friendliness towards Reno TCP sources. For that
purpose, we choose to increase the control windoww in Eq.
(1) by following a linear pattern that is analogous to the TCP
Reno linear increasing behavior during the congestion avoid-
ance phase. In particular, when the queue backlog estimate is
less than theqthresh and no losses are reported, the control
windoww is linearly increased as follows:

w(t) = w(t0) +
t− t0

α
(3)

where, t0 is the time of the last window update andα is a
multiplicative constant (a typical value is 0.3s). We choose
α = 0.3s, which gives a windowW that is incremented by
1 packets every300ms. Network congestion is discovered
when packets are lost or when the estimated backlog exceeds
a thresholdqthresh (in the sequel we will assumeqthresh
equal to 10 packets). In particular, when queue backlog esti-
mate exceedsqthresh, the control windowW is kept constant



and equal to the value it has reached, whereas, when losses
are detected, the control windowW is set using the Eq. (2)
to ensure queues depletion. It is important to observe that the
proposed additive increase mechanism is equivalent to the addi-
tive phase used by Reno during the congestion avoidance phase
but it is not equivalentto additively increase the input rate as
proposed in [11]. In fact, it has been shown that a simple
Additive Increase/Multiplicative Decrease(AIMD) rate con-
trol algorithm, which additively increases the transmission rate
to grab the available bandwidth and multiplicatively reduces
the sending rate when a congestion happens, cannot guaran-
tee friendliness towards Reno connections since an AIMD rate
mechanism does not mach an AIMD window mechanism [4].

3.1.3 Reaction to timeout expiration

A timeout is scheduled to happen if no reports are received
within a time interval equal to2 · SRTT , where SRTT is the
Smoothed RTT that is computed accordingly to the algorithm
described in [9]. When a timeout expires the control window
w is set accordingly to Eq. (2).

3.2 The Receiver

The role of the receiver is to feed the sender with feedback
reports, which indicate the bandwidth used by the flow and po-
tential packet losses. Reports are sent at least every SRTT, or
every time a loss is detected, or during the first round trip time
when an estimate of the round trip time is not available. A
loss is inferred when a hole in the sequence of received pack-
ets is detected. When losses are detected the receiver stamps
the number of lost packets into the report. Regarding the mea-
surement of the used bandwidth, every SRTT, a sample of used
bandwidth is computed as:B(k) = D(k)

T (k) , whereD(k) is the
amount of data received during the lastSRTT = T (k). Since
network congestion is due to the low frequency components of
the used bandwidth [13], we average theB(k) samples using
a discrete-time filter obtained by discretizing via bilinear trans-
formation a first order low pass filter with time constantτ [7].

4 Performance evaluation

In this section, the proposed algorithm is investigated via com-
puter simulations usingns-2 [14] and a comparison with the
enhanced version of TFRC proposed in [3] is also carried out.
TFRC parameters have been set as suggested in thens-2 pack-
age [14]. The following ARC parameters have been chosen:
k=0.5s−1, α = 0.3s, qthresh = 10 packets. Both single bot-
tleneck and multihop topologies are simulated in the presence
of cross and reverse traffic. In all considered scenarios TCP
sinks implement the delayed ACK option [1], Packets are 1500
Bytes long, the connections are greedy and bottleneck queues
are set equal to the bottleneck bandwidth times the maximum
round trip time, which is equal to 250ms.

4.1 Single bottleneck scenario

The considered single bottleneck topology is depicted in Fig. 2.
It consists of a single bottleneck link shared byN Reno TCP
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Figure 2: Single bottleneck scenario.

sources, one UDP source andM rate-based sources. On the
reverse path 10 Reno TCP sources send data. Round trip times
of theN Reno connections [M rate-based connections] going
along the forward path are uniformly spread from250/Nms
to 250ms [250/Mms to 250ms]. Round trip times of the
10 Reno TCP connections feeding the backward path are uni-
formly spaced in the interval [25ms,250ms]. All the TCP
sources start data transmission at the timet = 0s whereas the
rate-based sources start data transmission att = 10s. Simula-
tions last 1000s unless otherwise specified.

4.1.1 Ten rate-based connections and one ON-OFF UPD
source

This section investigates the behavior of 10 ARC or 10 TFRC
rate-based flows in the presence of abrupt changes of the avail-
able bandwidth. We consider the single bottleneck scenario in
Fig. 2, where the bottleneck capacity is 10Mbps. The ON-OFF
UDP source transmits at 5 Mbps during the ON period that
lasts 200s and is silent during the OFF period that lasts 200s.
The 10 Reno TCP sources feeding reverse traffic are turned off
to focus on the interaction with the UDP traffic. Figs. 3 (a)
and (b) show the transmission rates of ARC and TFRC respec-
tively. The main result of this investigation is that the rate of
the ARC flows are close to each other and track the bandwidth
left unused by the UDP source, whereas the rates of the TFRC
flows exhibit a much more oscillating behavior with respect to
ARC rates. To compare the fairness in bandwidth allocation
provided by TFRC and ARC, we have reported the Jain fair-

ness indexF.I. =
(
∑10

i=1
bi)

2

10·
∑10

i=1
bi

2
, wherebi is the throughput of

the ith connection. The Jain fairness index belongs to the in-
terval [0, 1]. An index equal to one indicates maximum degree
of fairness. Fig. 4 shows the Jain fairness index during the
simulation. During the first200s, TFRC exhibits a significant
degree of unfairness. At the end of the simulation the fairness
index of TFRC reaches the acceptable value of0.9 whereas
ARC reaches the value0.9 beforet = 100s and the maximum
value aftert = 200s.
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Figure 3: Ten connections sharing a 10Mbps bottleneck with
UDP traffic: (a) the 10 connections are ARC; (b) the 10 con-
nections are TFRC.

Figure 4: Fairness Index of 10 ARC or TFRC connections shar-
ing a 10 Mbps bottleneck with an UDP source.

4.1.2 Four rate-based and four Reno connections

In this section, the single bottleneck scenario in Fig. 2 is con-
sidered to evaluate the burstiness obtained using ARC, TFRC
or Reno TCP. The Reno reverse traffic is turned ON and the bot-
tleneck capacity is set equal to 2Mbps. Two scenarios are con-
sidered: in the first, four ARC sources share the bottleneck with
four Reno sources; in the second four TFRC sources share the
bottleneck with four Reno sources. Fig. 5 shows the transmis-
sion rates of four ARC or TFRC or Reno TCP sources. Figs. 5
shows that ARC and TFRC provide a smoother data delivering
with respect to Reno TCP.
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Figure 5: Sending rates obtained when 4 rate-based sources
share a 2 Mbps bottleneck with 4 Reno sources: (a) ARC; (b)
TFRC; (c) Reno TCP.

4.2 Multihop scenario

To investigate the ARC algorithm in a scenario that better mod-
els the real Internet, we consider the multihop topology de-



picted in Fig. 6. It is characterized by: (1)N hops; (2) one
persistent connectionC1 going through all theN hops; (3)2N
persistent sources of cross trafficC2−C2N+1 transmitting data
over every single hop. The simulation lasts 110s during which
the cross traffic sources always send data. The connectionC1

starts data transmission at timet = 10s. The round trip prop-
agation time of the longC1 connection is 250ms whereas the
round trip propagation times of the connectionsC2-C2N+1 are
equal to 50ms. The capacity of the entry/exit links is 100Mbps,
the capacity of the links between the routers is 1Mbps. Notice
that this is a worst case scenario for the sourceC1 since: (1)
it starts data transmission when all the network bandwidth has
been grabbed by the cross traffic sources; (2) it has the longest
RTT and experiences drops at all the hops it goes through on
both the forward and backward path.
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Figure 6: Multihop scenario.

We consider the following four scenarios:

Scenario 1. The crossC2-C2N+1 sources are controlled by
Reno TCP whereas theC1 connection is controlled by TFRC,
ARC or Reno, respectively. This scenario aims at comparing
TFRC, ARC and Reno behaviors when going through an Inter-
net dominated by Reno traffic. Fig. 7 (a) depicts the goodput
of theC1 connection when it is controlled by TFRC, ARC or
Reno algorithm and goes through multiple congested gateways
in the presence of Reno cross traffic. It shows that goodputs
decrease when the number of traversed hopsN increases and
that ARC exhibits the largest goodput forN > 3. This means
that ARC is able to grad a reasonable share of available band-
width when competing with Reno TCP flows.
Scenario 2. The sources of cross trafficC2-C2N+1 are con-
trolled by TFRC, ARC or Reno, whereas theC1 connection
is Reno. This scenario is useful to investigate the friendliness
of ARC or TFRC towards Reno. Fig. 7 (b) reports the good-
puts of theC1 Reno connection when going through multiple
congested gateways in the presence of Reno or TFRC or ARC
cross traffic. It turns out that Reno TCP achieves a very poor
goodput in the presence of TFRC cross traffic, that is, TFRC
does not seem to be friendly towards Reno in this scenario.
Moreover, theC1 Reno connection achieves the largest good-
put when the cross traffic is provided by ARC sources. This
investigation along with the previous one shows that a connec-
tion controlled by the ARC algorithm is not only able to grab
its bandwidth share when competing with many Reno sources
(see Fig. 7 (a)) but also that cross traffic controlled by ARC is
friendlier than TFRC and Reno itself towards Reno (see Fig. 7

(b)).
Scenario 3.All traffic sources are controlled by the same con-
trol algorithm. This is a homogeneous scenario, which is use-
ful to evaluate TFRC, ARC and Reno in absolute terms. Fig.
7 (c) shows that in the presence of homogeneous cross traf-
fic, the connectionC1 achieves the worst goodput when it is
controlled by TFRC whereas ARC and Reno achieve similar
goodputs when the number of considered hops is larger than3.
This means that the TFRC cross traffic is too much aggressive
and does not allow theC1 connection to achieve its bandwidth
share, which means that TFRC is less fair than Reno TCP and
ARC.
Scenario 4.We consider the multihop scenario depicted in Fig.
6 where the last hop connecting theSink1 is a lossy wireless
link, N = 10 and theC2-C2N+1 cross traffic is Reno. Wireless
losses affect the link in both directions. We assume an uniform
independent packet loss distribution. We vary the packet loss
probability of the wireless link from 0 to 10%. TheC1 connec-
tion is controlled by TFRC, ARC or Reno. Fig. 7 (d) shows the
goodputs provided by Reno, ARC and TFRC. Both Reno and
TFRC provide a very low goodput, whereas ARC provides an
improvement of the goodput up to1300%.

5 Conclusion

In this paper we have proposed an adaptive rate-based al-
gorithm for Internet congestion control which is particularly
suited for video delivering. The algorithm has been designed
by following control theoretical results developed in [12] and
proposes to estimate the connection available bandwidth and
its path backlog in an end-to-end fashion. Simulation results
have shown that ARC: (1) is more friendly than TFRC towards
Reno; (2) remarkably improves the goodput with respect to
TFRC and Reno TCP in the presence of lossy links; (3) pro-
vides no rate oscillations in the presence of stationary network
load; (4) exhibits a less oscillating rate dynamics with respect
to Reno TCP.
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