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Abstract

A theoretical framework is proposed to analyze the perfor-
mance of active queue management (AQM) protocols in TCP-
governed wireless networks. It is assumed that the TCP-
governed sources operate in the linear-increase-multiplicative-
decrease mode. A bottleneck network topology involving a
single router and multiple users is examined and it is shown
that the problem of synthesizing stabilizing AQM controllers is
equivalent to that of solving a class of bilinear matrix inequality
(BMI) problems. A series of such BMI formulations for a class
of AQM controllers is presented and it is observed that some
of these formulations can be recast as linear matrix inequality
(LMI) formulations, which can be solved efficiently.

Keywords: TCP, active queue management, wireless net-
works, LMI, and BMI

1 Introduction

1.1 Motivation

State-of-the-art Internet is a decentralized control system em-
ploying dynamic transmission control protocols at the sources
and dynamic queue management protocols at the routers. The
predominant transmission control protocol suites are variants
of TCP [13] whereas the predominant queue management pro-
tocol is RED [8]. TCP is known to yield poor performance for
streaming and real-time applications [3]. In addition, it scales
poorly with the network bandwidth-delay product [18]. How-
ever, since it governs over70% of the backbone data traffic, it
is not possible to supplant TCP with an entirely different trans-
mission protocol. A more realistic approach is to add a compu-
tationally inexpensive dynamic queue management functional-
ity to the routers so that the performance is improved at the cost
of relatively few changes to TCP. This functionality is referred
to asactive queue management(AQM); several examples of
the AQM controllers are described in [8, 11, 14, 17], and [18].

Currently, the AQM controller design mostly concerns generat-
ing a packet dropping policy since, as the congestion mitigation
action, TCP gives a drastic multiplicative decrease response to
the event of multiple packet drops. The prevalent AQM con-
trollers use a measure of the queue occupancy as the decision
variable and generate a packet dropping policy as the output.
So far, these controllers have addressed the need of wired in-
frastructure support only. Motivation of this paper is to explore

whether the wireless setting offers any rich trade-offs which
could be exploited in the AQM controller design.

1.2 Proposed Approach

We focus on a bottleneck topology in which a router on the path
of multiple users and derive an analytical fluid flow model, de-
fined by a set of ordinary differential equations, for the case in
which some of the links are wireless erasure channels. It has
been well observed that ”... in practice, increase in the con-
troller complexity unnecessarily outpaces increase in the plant
complexity, and the objective should be to minimize control sys-
tem complexity subject to the achievement of accuracy specifi-
cation in the face of uncertainty” [25, Ch. 10]. In sympathy,
this paper confines its attention to the class of AQM controllers
having aproportional-integral-derivative(PID) structure. We
show that the stability analysis problem can be formulated as a
bilinear matrix inequality(BMI) problem, which in some cases
gets reduced to solving alinear matrix inequality(LMI) prob-
lem, solution to which carries a lower computational complex-
ity. This paper is primarily intended to introduce a framework
and the underlying powerful robust control theoretic results can
be used to incorporate more sophisticated controller structures.

1.3 Organization of the Paper

The paper is organized as follows. Notation is introduced and
tabulated as and when necessary. Some standard stability con-
cepts are noted down in Section 2.2. A summary of the preva-
lent AQM protocols is presented in Section 2.3. A linearized
model of a bottleneck topology is derived in Section 3.1 and the
stability analysis problem is formulated in Section 3.2. A list
of BMI formulations is presented in Section 4 as a solution to
this problem. Conservativeness of this approach and the com-
putational complexity issues are commented upon in Section 5.
The paper is concluded in Section 6.

2 Preliminaries

2.1 Notation

Capital letter symbols, such asF and G, denote operators
whereas small letter symbols, such asx and y, denote real
signals which may possibly be vector valued or matrix val-
ued. The notation

.= stands for ’defined as’. The inner product
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Figure 1: Block diagram representation of the systemS. The
subsystemG(s) is linear time invariant whereas the subsystem
∆ is otherwise.

〈x, y〉 .=
∫ ∞

−∞
y(t)T

x(t) dt. The norm‖x‖ .= 〈x, x〉. The

vector space of signals for which the norm exists is denoted
Ln

2 . The vector spaceLn
2 is generally referred to asL2. Fourier

transform ofx is denoted̂x(·). The set of all integers is denoted
Z. Conjugate transpose of a vector or matrix(·) is denoted(·)∗;
its transpose is denoted(·)T . A matrix D ∈ Rn×n is said to
beHurwitz if each of its eigenvalues has a strictly negative real
part. A block diagonal matrixD ∈ Rn×n having entriesDii

on its diagonal is denoted diag(D11, D22, . . . , Dnn). An iden-
tity matrix is denotedI. Other terms not defined here may be
found in [20] and [24].

2.2 Stability and IQCs

In stability analysis, a given systemS is often decomposed into
two interconnected subsystems — a linear time invariant sub-
systemG in the feedforward path and an otherwise subsystem
∆ in the feedback path (see Fig. 1).

Definition 1 [Stability of a System]
The systemS is said to be stable if there exists a positive con-
stantC such that

∫ T

0

(|e1|2 + |e2|2
)
dt ≤ C

∫ T

0

(|v|2 + |w|2) dt

and if, in addition, the map(e1, e2) → (v, w) has a causal
inverse onL2. ¤

Definition 2 [IQC]
The pair of signalsw andv in the spaceL2 is said tosatisfy the
integral quadratic condition (IQC) defined byany measurable
Hermitian valued functionΠ if

∫ ∞

−∞

[
v̂(jω)
ŵ(jω)

]∗
Π(jω)

[
v̂(jω)
ŵ(jω)

]
dω ≥ 0. (1)

A bounded operatorG : L2 → L2 is said tosatisfy the IQC
defined byΠ if (1) holds for all pairs of signalsw andv in L2

with w
.= G(v). ¤

The following well known theorem characterizes stability of
the systemS in terms of IQC’s.

End host

Router

Data Path
Feedback Path

Figure 2: The bottleneck network topology shows a single
router on the data paths from multiple sources to multiple des-
tinations. The feedback path is drawn in dotted lines to indicate
that the feedback path may not necessarily be the same as the
feedforward data path.

Theorem 1 [IQC Stability Theorem, [20]]
GivenG(s) with no poles in the closed right halfs-plane and a
bounded causal operator∆. Suppose the following conditions
hold:

1. the systemS, with ∆ replaced byτ∆, is well posed for
all τ ∈ [0, 1];

2. the operatorτ∆ the satisfies IQC defined byΠ for all τ ∈
[0, 1];

3. it holds that
∫ ∞

−∞

[
Ĝ(jω)

I

]∗
Π(jω)

[
Ĝ(jω)

I

]
dω < 0.

Then the systemS is stable. ¤

A comprehensive introduction to robust stability and IQC’s is
given in [12] and [20].

2.3 Prevalent AQM Mechanisms

The simplest AQM controller is the bang-bang controller under
which a router chooses to drop an incoming data packet if its
buffer is full and chooses to serve it otherwise; this primitive
controller monopolized the market until the first improvements
were put forth by [8]. It is well known that bang-bang con-
trollers lead to large oscillations [1]; indeed, chaotic behavior
has been reported in [26]. To alleviate this problem, [8] pro-
poses RED which a preemptive randomized packet drop pro-
tocol. This protocol monitors the averaged queue-length and
marks packets with a probability if it exceeds a threshold; the
marking probability is a static and monotonically increasing
function of the average queue-length.

Tuning of the thresholds and the slope of increase parameters
remained a heuristic exercise, see e.g. [5] and [6], until a rig-
orous control theoretic interpretation of RED was established



by [11]; the main results therein are presented more informally
in [10]. It shows that RED amounts to using aproportional
(P) controller along with a low pass filter. A fuller analysis
of RED is given by [18] which effectively shows that the sta-
bility margin of a TCP/RED governed system reduces as the
delay-bandwidth product increases; a more specific character-
ization is given in [14]. Removal of the low pass filter from
the RED design yields the classical P controller which has a
higher closed loop bandwidth at the cost of reduced robustness
(see [7] and [11]). A standard improvement over a P controller
is a proportional-integral, i.e. PI, controller [2] and [11] has
proposed a PI controller. Atracking controller has been pro-
posed by [17]. Necessity of the derivative action in an AQM
controller was first identified by [16]. Other important works
include [9] and [19].

3 Model Description and Problem Formulation

3.1 Model Description

We consider the bottleneck network topology described in
Fig. 2; the mathematical notation is described in the Table 1.
The end hosts are assumed to operate in a linear increase mul-
tiplicative decrease mode. A link from a source to the router
can be either wired or wireless. Linearizing on the same lines
as [11], the linearized model on the operating point(r0, q0, p0)
is described by the following equations.

δ̇r(t) = − N

τ2µ
(δr(t) + δr̃(t− τ))

− 1
τ2µ

(δq(t)− δq̃(t− τ))

− τµ2

2N2
δp̃(t− τ) (2)

δ̇q(t) =
N

τ
δr̃(t)− 1

τ
δq(t) (3)

δr
.= r − r0, δq

.= q − q0, δp
.= p− p0, (̃·) .= ∆E(·),

where∆E is the erasure channel operator with‖∆E‖ ≤ 1. The
block diagram representation is shown in Figure 3.

3.2 Problem Formulation

Problem 1 Given the round trip time and the controller struc-
ture, derive the analytical conditions which must be satisfied by
a stabilizing AQM controller. ¤

We restrict the controller to be of PID form. The problem for-
mulation assumes that the round-trip timeτ is known at the
router. The assumption is realistic because the round trip time
information is available in the packet headers.

4 Main Result

4.1 Proportional Control Synthesis

When a P controller is used as an AQM controller,C(s) = kp

for somekp ∈ R. The controller synthesis problem is to find a

+

-
-

Figure 3: A linearized TCP model for the bottleneck topology
shown in Fig. 2. Note the dependency on the round trip time
τ . The AQM controller is represented byC(s). In the wired
setting,∆E is the identity operator.

kp that stabilizes the system described by (2) and (3). Now, the
controller output, viz.δp, can be seen to be

δp(t) = kpδq(t) =
[
0 kp

] [
δr(t)
δq(t)

]
.

Define the state of the systemx
.=

[
δr δq

]T
. Then, (2) and

(3) can be rewritten as

ẋ(t) = A0x(t) + (Ad + BK)x(t− τ) (4)

where

A0
.=

[− N
τ2µ − 1

τ2µ
N
τ − 1

τ

]
, Ad

.=
[− N

τ2µ
1

τ2µ

0 0

]
,

B
.=

[
− τµ2

2N2 0
]T

, K
.=

[
0 kp

]

It is well known that the time-delay system (4) is stable if

[
AT

0 P + PA0 + P1 P (Ad + BK)
(Ad + BK)T P −P1

]
< 0,

P > 0 andP1 > 0 [4]. This is a BMI with respect to the
variablesP, P1, andK. A wide range of controller synthesis
problems are formulated as BMI problems [23]. In general, the
BMI problems are NP-hard and several heuristic methods, such
as theDK-iteration, have been proposed to solve them. This
BMI, however, can be converted into an LMI. Multiply every
block entry of Eq (5) on the left and on the right byP−1 and
setQ = P−1, Q1 = P−1P1P

−1 andY = KP−1, then we
obtain the condition

[
A0Q + QAT

0 + Q1 AdQ + BY
QAT

d + Y T BT −Q1

]
< 0,

Q > 0 andQ1 > 0. Furthermore, the matrixQ should be diag-
onal and the matrixY should have the formY =

[
0 y

]
due

to the structure of the matrixK. This is an LMI with respect
to the variablesQ, Q1 andY . A proportional controllerkp can
be readily obtained by solving the above LMI.



Table 1: Table of Notation for the Network Topology

Symbol Meaning
r average transmission rate over an interval
q average queuelength over an interval
τ nominal round-trip time
µ link capacity
τp propogation delay
N number of active connections
p probability of a packet mark
∆E erasure channel operator

4.2 PID Controller Synthesis

When a PID controller is used as a AQM controller,C(s) =
kp + ki/s + kd s with kp, ki, kd ∈ R. The controller synthesis
problem is to find values of parameterskp, ki andkd that sta-
bilize the the system given by (2) and (3). Now, the controller
output, viz.δp can be seen to be

δp(t) = kp δq(t) + ki

∫ t

0

δq(ξ)dξ + kd δ̇q(t).

Define a new statex3(t) to beẋ3(t) = δq(t). Then,δp(t) can
be expressed as

δp(t) = kp δq(t) + ki x3(t) + kd δ̇q(t)

= kp δq(t) + kd

(
N

τ
δr(t)− 1

τ
δq(t)

)
+ ki x3(t)

=
[
kd kp ki

]



N
τ − 1

τ 0
0 1 0
0 0 1







δr(t)
δq(t)
x3(t)


 .

if we assume zero initial condition, that is,x3(0) = 0. If we

definex(t) =
[
δr(t) δq(t) x3(t)

]T
, the system (2) and (3)

can be rewritten as

ẋ(t) = A0x(t) + (Ad + BKC)x(t− τ) (5)

where

A0 =



− N

τ2µ − 1
τ2µ 0

N
τ − 1

τ 0
0 1 0


 , Ad =



− N

τ2µ
1

τ2µ 0
0 0 0
0 0 0


 ,

B =
[
− τµ2

2N2 0 0
]T

, K =
[
kd kp ki

]
,

C =




N
τ − 1

τ 0
0 1 0
0 0 1


 .

The system (5) is stable if
[
AT

0 P + PA0 + P1 P (Ad + BK)
(Ad + BK)T P −P1

]
< 0,

P > 0 andP1 > 0. This is a BMI with respect to the variables
P, P1, andK. With the same procedure as in the previous
section, we get the condition

[
A0Q + QAT

0 + Q1 AdQ + BY
QAT

d + Y T BT −Q1

]
< 0,

Q > 0 andQ1 > 0 whereQ = P−1, Q1 = P−1P1P
−1 and

Y = KCP−1.

4.3 PID Controller Synthesis for Erasure Channels

When a PID controller is used as a AQM controller,C(s) =
kp + ki/s + kd s and controller synthesis problem is to find
values of parameterskp, ki andkd which make the system (2)
and (3) stable. The control inputδp(t) for PID AQM controller
can be said

δp(t) = kp δq(t) + ki

∫ t

0

δq(ξ)dξ + kd δ̇q(t).

Define a new statex3(t) to beẋ3(t) = δq(t). Then,δp(t) can
be expressed as

δp(t) = kp δq(t) + ki x3(t) + kd δ̇q(t)

= kp δq(t) + kd

(
N

τ
∆E δr(t)− 1

τ
δq(t)

)
+ ki x3(t)

=
[

kdN
τ ∆E kp − kd

τ ki

]



δr(t)
δq(t)
x3(t)




=
[
kd kp ki

]



N
τ ∆E − 1

τ 0
0 1 0
0 0 1







δr(t)
δq(t)
x3(t)


 .

if we assume zero initial condition, that is,x3(0) = 0. If we

definex(t) =
[
δr(t) δq(t) x3(t)

]T
, the system (2) and (3)

can be rewritten as

ẋ(t) = (A0 + H0∆EE0)x(t) +
∆E (Ad + BK(C + H1∆EE1)) x(t− τ) (6)

where

A0 =



− N

τ2µ − 1
τ2µ 0

0 − 1
τ 0

0 1 0


 , Ad =



− N

τ2µ
1

τ2µ 0
0 0 0
0 0 0


 ,

H0 =




0
1
0


 , E0 =

[
N
τ 0 0

]
, B =



− τµ2

2N2

0
0


 ,

K =
[
kd kp ki

]
, C =




N
τ ∆E − 1

τ 0
0 1 0
0 0 1


 ,

H1 =
[
1 0 0

]T
, E1 =

[
N
τ 0 0

]
.

In PID case, we have additional uncertainty block∆2
E . By

defining∆4
.= ∆2

E , ∆(s) .= diag((e−sτI, ∆E I, ∆E) satis-
fies the IQC defined by

Π =
[

Π11 Π12

Π21 Π22

]
, (7)

Π11
.= diag(Q,X, x1, x2), Π12

.= diag(0, Y, 0, 0), Π21
.=

ΠT
12, Π22

.= −Π11. Using some algebraic operations, it can be
verified that the system is stable if
[
Ag Bg

I 0

]∗ [
0 P
P 0

] [
Ag Bg

I 0

]
+

[
Cg Dg

0 I

]∗
Π

[
Cg Dg

0 I

]



is strictly negative, where

Ag
.= A0, Bg

.=
[
0 I H0 BKH1

]
,

Cg
.=




I
0

E0

0


 , Dg

.=




0 0 0 0
Ad + BKC 0 0 0

0 0 0 0
E1 0 0 0


 .

This is a BMI with respect toP , Q, X, Y , x1, x2 andK.

5 Discussion

It may be observed that the delay-bandwidth product term and
the round trip time term enter the system matrices inversely.
This fact can be cleverly used in deducing stability margins.
A strength of IQC based approach is that it gives an elegant
decomposition of the robustness analysis problems for com-
plex systems, as is the case with the networks problems —
the non-LTI subsystems can bepulled outand their IQCs can
be combined in a relatively straightforward matter to form a
composite IQC for the overall system. For example, consider
the case where the overall uncertainty∆ comprises time-delay
and saturation nonlinearity. Then,∆ = diag

(
∆1, ∆2

)
where

∆1(s) = e−sτ and∆2(s) = sat(·) and that each subsystem,
∆i, satisfies the IQC defined by

Πi =
[

Πi(11) Πi(12)

Π∗i(12) Πi(22)

]
,

where the block structures are consistent with the size of the
subsystem∆i. Then the overall system∆ satisfies the IQC
defined by

Π =




Π1(11) 0 Π1(12) 0
0 Π2(11) 0 Π2(12)

Π∗1(12) 0 Π1(22) 0
0 Π∗2(12) 0 Π2(22)


 .

Now let us transform this frequency dependent condition to a
non-frequency dependent condition. If we define state space
realizations ofH(s) andG(s) to be

H(s) s=
[

Ah Bh

Ch Dh

]

G(s) s=
[

Ag Bg

Cg 0

]
=

[
A0 + Ad + BK Ad + BK

I 0

]
,

then we have a state space realization of the serial connection
of H(s) andG(s) expressed as

H(s)G(s) s=
[

Ā B̄
C̄ 0

]

where

Ā
.=

[
Ag 0

BhCg Ah

]
=

[
A0 + Ad 0

Bh Ah

]
+

[
B
0

] [
K 0

]
,

B̄
.=

[
Bg

0

]
=

[
Ad

0

]
+

[
B
0

]
K,

C̄
.=

[
DhCg Ch

]
=

[
Dh Ch

]
.

With this state space realization, the frequency dependent LMI
can be transformed to a frequency independent LMI

[
ĀT P + PĀ + C̄T QC̄ PB̄

B̄T P −Q

]
< 0

by Kalman-Yakubovich-Popov lemma and settingĝ(jω) =
Q > 0. This is a BMI with respect toP , Q andK.

Remark 1 In steady-state, a TCP governed source probes the
available network bandwidth via a linear-increase-multiple-
decrease (LIMD) protocol: in the linear increase mode, the
transmission rate increases linearly with time whereas in the
multiple decrease mode, it decreases by a proportionate amount
in response to a congestion notification event, such as a series
of packet drops [15]. The model used in this paper aims to rep-
resent the system behavior near the steady state regime and has
completely ignored the slow start and time out phenomena.¤

Remark 2 Designing a P controller is a static output feedback
problem. Whether the static output feedback problem can be
decided in time polynomial in the size of the problem data is
still an open problem. Hence, the LMI in (5) isnot equivalent
to the BMI in (5). Note that in deriving the LMI in (5), we
restrict matrixQ to be a diagonal matrix due to the structure
of the matrixK. By doing so, we do not search the set of all
pairs of control Lyapunov functions and stabilizing controllers.
Therefore, the LMI condition (5) for P controller synthesis is
conservative in the sense that no solution for LMI (5) does not
imply infeasibility of LMI (5), and there could be stabilizing
P controllers even if (5) is infeasible. The LMI condition (5)
can be numerically solved very efficiently using interior point
methods. ¤

Remark 3 Packet losses occur due to buffer overflows in the
wired setting. In the wireless setting, however, a packet can be
lost either due to a buffer overflow or due to channel fading.
This indicates that the wireless channel states should possibly
be a factor in the AQM controller design. Such a controller is
multi input multi output. Its inputs comprise the channel states
and a measure of the queue occupancy. Its outputs comprise the
packet dropping policy and, possibly, recommended transmis-
sion parameters. In contrast, in the wired setting, the controller
is single input single output. Per se, the problem of synthesiz-
ing transmit power allocation policies (see, e.g. [21]) can be
viewed as a MIMO AQM controller synthesis problem; how-
ever, its approach is based on queueing theory concepts and not
on feedback control theoretic concepts. The approach used in
this paper may serve to compliment the Lyapunov drift based
approach of [21] in deriving the transmit power allocation poli-
cies for mobile networks. ¤

6 Conclusion

We have proposed a theoretical framework to analyze the per-
formance of AQM protocols in TCP-governed wireless net-
works. We assumed that the TCP-governed sources operate in



the linear-increase-multiplicative-decrease mode. A bottleneck
network topology involving a single router and multiple users
is examined and it is shown that the problem of synthesizing
stabilizing AQM controllers is equivalent to that of solving a
class of BMI problems. A series of such BMI formulations for
a class of AQM controllers is presented and it is observed that
some of these formulations can be recast as LMI formulations,
which can be solved efficiently. We have illustrated the use of
integral quadratic constraints in addressing the model uncer-
tainties. Future directions are outlined.
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[1] K. Åström. Adaptive Control, Filtering, and Signal Pro-
cessing, volume 74 ofIMA Volumes in Mathematics and
its Applications. 1995.
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