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Abstract

A semi-physical model aimed for detection of incipient
faults in electrical motors is presented. In order to gain
high sensitivity to faults a physical model is combined
with a black-box model based on Adaptive Network-
based Fuzzy Inference System (ANFIS) as a corrective
term. The method is applied to vacuum cleaner motors.
The architecture and hybrid learning procedure is
presented. In the first step, parameters of the physical
model are identified by simple least-squares method.
Then, the modelling error is compensated by adaptive
network learning procedure. This way, the meaning of
the physical parameters can be preserved. Diagnostic
results show higher sensitivity to faults, which enables
reliable fault detection. Consequently, false and missed
alarm ratio is reduced as well.

1 Introduction

Competition on the market is forcing the production
companies to steadily increase the product quality and
reliability. The trends lead to 100% product quality
assurance, which leads to reduced service costs.

This paper addresses modelling of vacuum cleaner
motors produced by company Domel, which is among
greater European manufacturers. The unit consists of a
universal motor and an air turbine as load. The
production line is highly automated. Priority is given to
quality assurance by means of elaborated statistical
procedures for quality control of final products. A future
modernisation plan includes automatic quality testing of
single units at the end of the production line, which
would eliminate all defective units.

The prototype system for final quality control of vacuum
cleaner motors consists of several functionally different
modules [6] (mechano-electrical model, vibration
analysis, noise analysis, commutation analysis). In
sequel, semi-physical modelling of vacuum cleaner
motors for diagnostic purposes is discussed in more
detail.

Some model-based solutions for fault detection of
electrical motors are known from the literature [1,2,7].
However, they are usually limited to nominal physical
models and rely on parameter estimation techniques. But
when motors are driven by AC voltage, changes in
magnetic field imply non-linear characteristics that are
not considered correctly, leading to large modelling error.
Consequently, only larger faults can be reliably detected.

A way to increase sensitivity to faults is to use a
mathematical model made of two parts, i.e. a physical
model and a corrective term that accounts for unmodelled
non-linear magnetic characteristic of rotor and stator. The
identification of such a hybrid model is based on learning
procedure known from adaptive networks. The structure
is usually known in advance, while the parameters are
determined by optimisation on input-output data of the
process [5]. In the given example, the Adaptive-Network-
based Fuzzy Inference System (ANFIS) [4] was chosen
due to its relatively simple implementation in practice.

The paper is organised as follows. Second chapter
describes the ANFIS method with the hybrid learning
procedure. It is followed by modelling of the vacuum
cleaner motor in the third chapter. Physical model, as
well as the principle of modelling error compensation, is
given. Diagnostic results are presented in the fourth
chapter. Conclusions follow at the end.



2 Adaptive Network-based Fuzzy
Inference System - ANFIS

2.1 ANFIS Structure

Let’s assume a system with two inputs x and y and one
output z=f. The system can be described by two fuzzy
rules of first-order Sugeno-Takagi type:

® ifxisA;andyis B; then fj=px+qy+r;
o ifxisA,andyis B, then f=pyx+qy+tr;

The same system can be represented as an Adaptive-
Network-based Fuzzy Inference System (ANFIS) as
shown on Figure 1 [4].
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Figure 1: ANFIS example

Adaptive nodes include parameters and are denoted as
squares. In the learning procedure, the parameters change
accordingly. Fixed nodes are denoted as circles and have
no parameters. Their function is to perform the
predefined operation. The structure is a 5-layer adaptive
feedforward network. The functions of layers and
particular nodes are as follows:

Layer 1: Each node i in this layer is adaptive with
membership function:

011 =H, (x) (1)

O is a degree of membership for variable x to

i

linguistical terms A;, which are described by their
membership functions. Functions g, (x) are usually

defined as Bell functions:

zuA, (X) = b, (2)

where {a; b; c;} denote parameters of adaptive nodes and
are called premise parameters.

Layer 2: Each node i in this layer is a fixed node denoted
as I1, which output is the product of all inputs:

Wy =4, (x)- iy (Y) 3)

The output w; represents the weight of the decision rule.
In general, minimum operator is also possible.

Layer 3: Each node i in this layer is a fixed node denoted
as N, which normalises the weight of the decision rule
according to the sum of all weights:

_ w,
W= 4)
S
The outputs are normalised weights of decision rules.

Layer 4: Each node i in this layer is adaptive with
function:

O/ =w.fi=w,(px+qy+r), ©

where {p; g, r;} denote parameters of the adaptive node i
and are called consequent parameters.

Layer 5: The only node in this layer is a fixed node
denoted as X, which calculates the output as the sum of
all inputs:

O} =f=>wf ©6)

The adaptive network with such structure is functionally
equal to the classical representation of the fuzzy
inference system [4].

2.2 Hybrid learning procedure

It is obvious from the given structure (eq. 5), that the
output of the system is a linear combination of
consequent parameters:

f=wx)p, + (W y)q, +(W)r,

_ _ _ (7N
+(W,x)p, + (W, 1)q, +(W,)r,

These parameters can easily be identified by simple least-
squares method [4]. In matrix form, the equation can be
written as:

AX =B (8)

where B stands for input vector, 4 denotes the matrix of
linear input equations, and X represents an unknown
vector of consequent parameters. The estimates are then
given by:

X=A"A)"4"B. )

Parameters of non-linear conditional part are identified
by gradient method [4]. If & denotes a premise parameter
in layer 1 of the network, the change can be defined as:

Ao =— &—E (10)
do

where E stands for output error and 7 for learning rate,
which can be further expressed as:



ne— (11

3 [ 2
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where k is the step size (length) of each gradient
transition in the parameter space and affects the speed of
convergence. Small k£ closely approximates the gradient
path, but leads to slow convergence. On the other hand,
large k leads to fast convergence, but causes oscillations

around the optimum. The problem is solved by simple
heuristic rules [4].

The overall learning procedure is as follows [4]. First, at
each iteration step, consequent parameters are identified
by least-squares method based on given input-output
data. Then, gradient method is used for identification of
premise parameters in non-linear part based on current
output error (back-propagation).

3 Vacuum cleaner motor

3.1 Description

Vacuum cleaner motor is a single-phase commutation
motor whose construction and working principle are the
same as in DC motors. It is also referred to as universal
motor because it can run under AC and DC voltage
supply. Owing to the fact that stator and rotor windings
are serially connected and load current flows through the
excitation windings, the largest motor torque is achieved.
This electric motor has also a big start-up torque. The
main weak point is commutation, i.e. problems of
sparking and brush wear, which seriously affect the
device lifetime.

Main parts of the vacuum cleaner motor are shown in
Figure 2. Fan impeller with nine shovels mounted on
motor’s shaft generates airflow through the hole in the
cover. The diffuser directs then the airflow through the
orifice between stator in order to cool the motor. The
nominal rotational speed of those motors is 550 Hz.
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Figure 2: Components of the vacuum cleaner motor

3.2 Physical model

Physical laws governing the motor are given by the
following equations:

electrical part:
. . di(r)
u(®)=i(t)R, +R)+K-i(t)- w(t)+(L,+L,) 7 (12)
mechanical part:
J%zlf-iz(t)—M0 -M,0(t) - M,0(t), @>0 (13)

The meaning of parameters is as follows: R, and R, stand
for stator and rotor resistances, L, and L, are stator and
rotor inductances, K represents magnetic flux coefficient,
and J is inertia constant. Air turbine as load is
characterised by dry friction M), viscous friction M;, and
turbulent friction M, coefficients.

Supply voltage u(?) represents process input. The two
states, current i(?) and rotational speed ax?), are
measurable and represent system outputs. The electrical
wiring is given in Figure 3. As stator and rotor windings
are serially connected, only joint resistance R and
inductance L can be identified.

series field

Figure 3: Motor wiring

The motor is driven by AC voltage with a profile suitable
for stimulating all the dynamical modes of the system.
Then, all parameters are identified by least-squares
method in continuous time domain. The measurements
are sampled at 10 kHz and filtered by low-pass
Butterworth filter with cut-off frequency of 250 Hz. The
comparison between physical model and actual
measurements is given in Figure 4. Here, RMS value of
current () and rotational speed axt) are shown.

Modelling error is defined as a difference between
measured and predicted output of the system:

€electrical = l(t) - lm(t) and

€mechanical = a)(t) - wm(t) (14)

The results show error to signal ratio of roughly 20% for
electrical part and 5% for mechanical part. While the
accuracy of the mechanical model is acceptable, the
obtained electrical model is unacceptable for diagnostic
purposes [3]. It is assumed that such a big error is caused



by unmodelled non-linear magnetic characteristic (i.e.
hysteresis, magnetic saturation) as the motor is driven by
AC voltage. For simplicity, only electrical model will be
elaborated.
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Figure 4: Physical model validation
a) electrical part, b) mechanical part

3.3 Compensation of modelling error

To achieve higher fault sensitivity, the compensation of
modelling error can be employed [3]. This is done by
combining the physical model with a black-box model
based on ANFIS introduced in the previous chapter. By
keeping the nominal model description, physical
parameters are preserved that are necessary for fault
isolation [3]. The main problem of fault detection is
caused by non-structured modelling error with unknown
parameters and unfamiliar theoretical background. In this
case, a parallel hybrid model seems suitable for on-line
compensation in real time [8].

The principle of compensation of the modelling error is
shown in Figure 5. The necessary inputs to the adaptive
network are process input, model output, and modelling
error (residual). During learning stage, the actual residual
is used, while during on-line usage, the predicted error is
utilised. Otherwise, error caused by faulty behaviour

could also be compensated, which would make some
faults undetectable.

Learning

u y

Process

Usage

Process

Figure 5: Principle of modelling error compensation

3.4 Hybrid model

In the given case, supply voltage u(?), current i(z) and
rotational speed @(?#) were chosen as inputs to the
adaptive network, while modelling error of the current
was chosen as output. Preliminarily, several delayed
inputs were also considered due to the expected
nonlinearity with memory (i.e. hysteresis). However,
acceptable model accuracy was achieved by simple static
relation.

Three membership functions were chosen for each input,
resulting in the following ANFIS model structure:

¢ number of nodes: 91

e number of consequent parameters: 108

e number of premise parameters: 27

e number of fuzzy decision rules: 27

The resulting hybrid model is identified in two steps.
Firstly, parameters of the physical model are estimated by
simple least-squares method. Then, a learning procedure
for adaptive networks (Section 2.2) is applied in order to
compensate errors resulting from nominal model (eq. 12).



4 Diagnostic results

4.1 Validation

Validation was performed on a series of 10 motors.
Figure 6 shows time plots of electrical part for the fault-
free motor with its predicted hybrid model output and the
resulting residual e.
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Figure 6: Validation of the hybrid model

Results show that error to signal ratio reduces to less than
1% roughly. It is important to note that model parameters
are identified once per motor type and that the model
prediction is then used in fault detection.

4.2 Fault detection

The same hybrid model is further applied to the motor
with a fault in electrical part (sparking of the brushes).
Only abrupt faults are considered, as the purpose of the
diagnostic system is to detect inherent faults at the end of
the production line. The output is shown in Figure 7.

Results show that the model discrepancy increases more
then 10-times and can therefore be used as a reliable
feature for fault detection. Other faults were also tested
(rotor unbalance, bad bearings) and similar results were
obtained.
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Figure 7: Hybrid model applied to faulty motor

5 Conclusions

Model-based fault detection of vacuum cleaner motors is
presented. Fault detection relies on energy balance
conservation laws. Discrepancy between measured and
predicted values reflect the presence of a fault. Any
modelling error directly affects sensitivity to faults.

To account for unmodelled non-linear characteristics, the
principle of compensating the modelling error by ANFIS
is chosen. Diagnostic results on real devices show
significant reduction of the modelling error, which
enables higher fault sensitivity. Consequently, false and
missed alarm ratio is reduced as well.

However, good excitation during the learning phase at
each change of the motor type is required, which
stimulates all the dynamical modes of the system. Also,
the isolation ability is limited to either electrical or
mechanical part. To some extend, further differentiation
is then possible by employing classical parameter
estimation techniques.
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