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Abstract

The paper presents some results concerning fault diagnosis for
dynamic processes using dynamic system identification and
disturbance de–coupling techniques. The first step of the con-
sidered approach consists of exploiting input–output descrip-
tions of the monitored system. In particular, the disturbance
term of that model can be used to take into account unknown
inputs affecting the system. The next step of the scheme leads
to define a set of relations that can be used as residual signals
since they are insensitive to the disturbance term. The pro-
posed fault diagnosis scheme has been tested on an real indus-
trial chemical process in the presence of sensor, actuator and
component faults. The results and concluding remarks have
been finally reported.

1 Introduction

Since the early 1970’s, the problem of reliable fault diagnosis
in dynamic processes has received great attention and a wide
variety of robust approaches has been proposed and developed.
Recently, different analytical redundancy–based methods have
been developed to diagnose faults in linear, time-invariant, dy-
namic systems and a wide variety of model–based approaches
has been proposed [12].

There are different model–based approaches to the fault diag-
nosis problem [9], namely parameter identification [15], parity
equations [10], methods in frequency [4] or in state–space do-
main, such as diagnosis observers [8] and Kalman filters.

Even if analytical redundancy methods have been recognised as
a powerful and effective technique for detecting faults, the gen-
eration of robust residuals is a critical issue because of the pres-
ence of unavoidable modelling uncertainty. The main problem
regarding the reliability of fault diagnosis schemes consists of
the modelling uncertainties which are due, for example, to pro-
cess noise, parameter variations and non–linearities.

Model–based methods use a model of the monitored process
in order to produce the symptom or residual generator. If the
system is not complex and can be described accurately by the
mathematical model, fault detection is directly performed by
using a simple geometrical analysis of residuals. In real indus-
trial systems however, since the modelling uncertainty is un-
avoidable, the design of a robust fault diagnosis scheme should
consider the modelling uncertainty with respect to the sensitiv-
ity of the faults. Several papers addressed this problem. For
example, optimal robust parity relations were proposed in [10],
and the threshold selector concept was introduced in [6]. One
other promising approach is the decoupling between distur-
bances and residuals achieved by means of a proper observer
scheme and design [2, 12]. This approach requires the knowl-
edge of a model of the process under investigation and, in par-
ticular, of the disturbance distribution matrix. Thus, modelling
[2] or identification [14, 7] procedures can be defined to esti-
mate the disturbance distribution matrix .

A different approach is exploited in the present work. In par-
ticular, it is assumed that an input–output discrete–time linear
dynamic model (obtained by modelling or identification pro-
cedures) can describe the data measured from the monitored
system. Moreover, in this model, a disturbance term is intro-
duced to take into account any unknown (or non–measurable)
inputs of the real process. By exploiting this disturbance vec-
tor, a set of parity relations can be designed to generate resid-
ual signals for the detection of faults affecting input and output
process measurements. Such residual generator is insensitive
to disturbance signal.

The paper is organised as follows. In Section 2 the problem
statement is given and described from a mathematical point of
view. The robust fault diagnosis scheme is then presented in
Section 3. In Section 4, a chemical industrial process used
to test the proposed methodology is presented and the results
concerning the diagnosis of faults are also reported. Finally,
conclusions reported in Section 5 close the paper.



2 Mathematical description

This section addresses the mathematical description of the sys-
tem under diagnosis and the problem of robust fault detection.
In the general framework of linear and time–invariant systems,
a discrete–time, input–output model as in Figure (1) has been
considered

y∗(t) = Gu(z) u∗(t) + Gd(z) d(t), t ≥ 0 (1)

wherey∗(t) ∈ <m is the output vector andu∗(t) ∈ <r is
the control input vector. The termd(t) ∈ <p describes distur-
bances (measurement noise, un–modelled dynamics, etc.) af-
fecting the process.Gu(z) andGd(z) represent the discrete
transfer matrices from inputs to outputs and from disturbances
to outputs, respectively;z is the forward shift operator,i.e.
z y(t) = y(t + 1).

Figure 1: The monitored system.

The model description in Eq. (1) assumes fault–free system
operations and working conditions. As depicted in Figure (1),
additive fault occurrence can be modelled by means of the fol-
lowing relations{

u(t) = u∗(t) + fu(t)
y(t) = y∗(t) + fy(t) (2)

where fu(t) and fy(t) are the actuator and sensor additive
faults, respectively. These vectors may be modelled by step and
ramp signals in order to describe the presence of bias or drift
on the measurements (abrupt and slowly developing faults).
Signalsu(t) andy(t) represent the input and output measure-
ments, respectively, which have been used for the fault detec-
tion task.

Therefore, by neglecting actuator and sensor dynamics, under
fault–free assumptions (1),u(t) = u∗(t) andy(t) = y∗(t).

It is worthwhile noting how the case ofcomponent faultscan-
not be described by Eqs. (2). On the other hand, by assum-
ing general detectability conditions [2], faults affecting output
measurementsy(t) can be successfully detected by monitoring
bothu(t) andy(t) signals.

3 Residual Generation

Residuals can be generated using different approaches. In this
work, a parity relation scheme is exploited to generate residual
signals which are insensitive to a disturbance signal affecting
the process under investigation.

In order to introduce and present the residual generation prob-
lem, ar inputsu(t), two outputy1(t), y2(t) (m = 2) system (1)
with one disturbanced(t) signal (p = 1) is considered in this
paper. In particular, the model under investigation is depicted
in Figure (2).

However, it is worth noting that one cannot de–couple more
disturbancep (or fault) signals than the number of outputsm

minus one. In particular, in the present work, as an application
example with two outputs and one disturbance has been con-
sidered, no design freedom are left for fault isolation [1]. On
the other hand, in general, the de–coupling of multiple distur-
bance signals may lead to significant problems,i.e. unstable
filters and poor noise attenuation.

The extension of the procedure to an arbitrary numberp > 1
of disturbances or faults will be studied in further works. How-
ever, the problem of the sensitivity and robustness in the pres-
ence of multiple unknown inputs requires more investigations,
as well [1].

Figure 2: The considered system under diagnosis.

In this case, the system represented in Figure (2) is described
by the following relations

{
y1(t) = G(1)

u (z) u(t) + G
(1)
d (z) d(t)

y2(t) = G(2)
u (z) u(t) + G

(2)
d (z) d(t), t ≥ 0

(3)

whereG(i)
u (z) and G

(i)
d (z) (i = 1, 2) represent the discrete

transfer matrices and the discrete transfer functions from the
inputs to theith output and from the disturbance to theith out-
put, respectively.

The transfer matrices and the transfer function described in (3)
can be written in polynomial forms by defining the following
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where the functionsN (i)
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(i)
d (z) and Di

(u)(z), D
(i)
d (z)

with (j = 1, . . . , r) are relative prime polynomials represent-
ing the numerators and the denominators in descending powers
of the shift operatorz, respectively.

From Eqs. (3), by eliminating the unknown signald(t), the
following relation is obtained
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Relation (5) can be simplified if an multiple input–single out-
put ARMAX (Auto–Regressive Moving Average eXogenous)
model structure [11] is assumed for the models described by
Eqs. (3). In this case, in fact, it can be assumed thatD
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D
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d (z) = D(1)(z) andD
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(2)
d (z) = D(2)(z), with

degreesni (i = 1, 2), and the corresponding numerators have



degreesni − 1. Therefore, Eq. (5) can be rewritten as
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wherer(t) represents the residual function computed from the
considered system model. Moreover, by using the following
notation
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relation (6) can be rewritten in the matrix form

r(t) =
[

y1(t) y2(t) u(t)
]  Cy1(z)

Cy2(z)
Cu(z)

 = 0 (8)

for t ≥ 0.

Under the previous assumptions, it can be easily verified that
Eq. (6) represents acausalfilter. However it can be noted that
causality conditions are not required if the residual generator
of Eq. (6) is used for off–line or batch fault detection oper-
ations. However, in order to make the filter causal, the filter
polynomials can be written in terms ofz−1, which of course is
possible.

Relation (6) has been computed under fault–free conditions.
Therefore, according to the Eqs. (2), faults affecting the mon-
itored system can be detected,e.g., by comparing the robust
residual functionr(t) with a fixed thresholdε according to the
simplethreshold logicgiven below{

|r(t)| ≤ ε for fault–free case,
|r(t)| > ε for faulty cases.

(9)

If the test is positive (i.e. the threshold is exceeded by the resid-
ual function|r(t)|), it can be hypothesised that a fault is likely.
There are many ways of defining residual functions and deter-
mining thresholds [2]. As an example, in relations (9) the resid-
ual function has been chosen as a norm of the residualr(t) and
the thresholdε can be fixed as a constant positive value under
fault–free conditions.

Let us denote withny = n1 + n2 − 1 the degree of the poly-
nomialCyi

(z) whose coefficients are contained into the vector
cyi , (i = 1, 2) and withnu = n1 + n2 − 2 the maximal degree
of the polynomial vectorCu(z), whose coefficients arecu.

It is worth noting how Eq. (8) leads to an overdetermined set
of N − n1 − n2 + 1 linear equations, whereN is the number
of considered samples, which can be expressed as [5]

[
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]  cy1

cy2
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 = 0, (10)

where
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and
U(N) = [U1(N), . . . , Uj(N), . . . , Ur(N)] , (12)

with
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...
...
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for j = 1, . . . , r.

From Equations (10), (11) and (12), it follows that it must be
N ≥ 4(n1 + n2)− 2 in order to avoid unwanted linear depen-
dence relationships due to limitations in the dimension of the
involved vector spaces in relation (10).

By introducing the covariance matrix of the multivariate pro-

cess
[

y1(·), y2(·), u1(·), . . . , ur(·)
]T

, defined as

Σ̂N =
1

N − n1 − n2 + 1
[

Y1(N) Y2(N) U(N)
]T ×

×
[

Y1(N) Y2(N) U(N)
]
, (14)

relation (10) can be rewritten as

r(t) = Σ̂N

 cy1

cy2

cu

 = 0. (15)

It is important to note that Eq. (15) can be used for fault detec-
tion purpose. In fact, when the process inputs are persistently
exciting of sufficient order, under fault–free conditions, matrix

Σ̂N is singular and the vector
[

cy1 cy2 cu

]T
represents

its null space andr(t) = 0. On the other hand, when a fault
occurs, relation (15) does not hold since matrixΣ̂N is not sin-
gular.

Instead of monitoringr(t), as reported in (9), a different resid-
ual function may be represented [3] by the minimal singular
valueσ(·) of the matrixΣ̂N , i.e. σ(Σ̂N ). The fixed thresholdε
is related to the minimal singular value ofΣ̂N matrix computed
in fault–free conditions. Therefore, the fault detection criterion
may consist of performing a test by monitoring the changes of
σ(Σ̂N ), as follows{

σ(Σ̂N ) ≤ ε for fault–free case
σ(Σ̂N ) > ε for faulty cases

(16)

for increasing values ofN . The thresholdε is fixed on the basis
of the value ofσ(Σ̂N ) in fault–free conditions. In such a case,
this value is differently affected by noise and non–linearity of
the process.

It is worth noting that the fault detection method described by
Eq. (16) does not depend on the model parameters of the pro-
cess under diagnosis since it is based only on the check of the



singularity of Σ̂N matrix. Relation (16) can be therefore ex-
ploited for both model–based andmodel–freefault detection.

However, if there is more than on fault in the process, relation
given by Eq. (16) cannot be exploited for isolation purpose.
On the other hand, under this condition, the relation of Eq. (8)
could be modified for obtaining isolation properties [10, 2].

4 Chemical Process Fault Diagnosis

The aim of the study presented in this paper is to develop a gen-
eral procedure for the diagnosis of faults in a chemical process.
In particular, the monitored process is a real Continuous Stir-
ring Tank Reactor (CSTR), where the reaction between reac-
tant and product is exothermic. The main variables are: reactor
temperatureT (t), feed stream reactant concentrationCaf (t),
volumetric flow rateF (t) (volume/time), reactor reactant con-
centrationCa(t) and reactor impurity concentrationsd(t).

The process objective is to maintain the reactor concentration
Ca(t) controlling the coolant flowq(t) ( l

min ) in despite of re-
actor impurity concentrationd(t). The importance of this case
study is that there are many examples of reactors in industry
like polymerisation reactor [13]. Some of them with complex
kinetic but with similar properties behaviour as examined in
this paper. The CSTR model with cooling jacket is shown in
Figure (3).

Figure 3: Schematic of the CSTR process.

The system hasr = 3 control inputs u(t) =
[q(t), Caf (t), F (t)]. Two output measurements (m = 2),
Ca(t) = y1(t) (concentration,mol

l ) andT (t) = y2(t) (tem-
perature, Kelvin degrees) can be acquired from the plant de-
picted in Figure (3). The disturbanced(t) vector (p = 1) rep-
resents reactor impurities and fouling [13]. Constant physical
properties and constant boundary pressures of all input and out-
put streams are assumed. Both process normal operating time
series and faulty data have been measured from the real pro-
cess. A sampling rate of6s was used to acquire a number of
N = 7500 actual data sequences. The measurements acquired
from the actual chemical process have been modified for pro-
prietary reasons.

The CSTR process is affected by several faults. Some of these
faults are known, and other are unknown. Abrupt failure dy-
namics can be associated with a step change in process vari-
ables. On the other hand, slow developing faults can be asso-
ciated with an increase in the variability of some process vari-
ables,e.g.a slow drift in the reaction kinetics.

In this work, two fault cases regarding(a) the coolant flow
q(t) actuator and(b) the output temperatureT (t) sensor for
the measurement ofy2(t) have been considered. Figure (4)
sketches the simplified block diagram of the process.

Therefore, in such fault scenario, in order to successfully per-
form the fault detection task, two output measurements,y1(t)

Figure 4: Block diagram of the CSTR process.

andy2(t), are exploited.

They are shown in Figures (5(a)) and (5(b)), where continu-
ous lines represent the fault–free signals while the dashed ones
depict the faulty signals. Both the faults affect the output mea-
surements starting at the instantt = 400.

(a) (b)

Figure 5: (a) The first and (b) the second monitored process
outputs.

It is important to note that, in general, in order to achieve
the maximal fault detection capability, the measurement cor-
responding to the most sensitive outputyi(t) to a fault signal
has to be selected. Moreover, with reference to this case study,
two signals are enough to accomplish fault isolation, as well
[14].

Hence, the design of the residual generators presented in Sec-
tion 3 requires the knowledge of two ARMAX MISO (three in-
puts and one output) models (3). Thei–th submodel (i = 1, 2)
is driven by bothu(t) andd(t) and gives thei–th outputyi(t).

The residual signalr(t) in Eq. (8) can be generated and there-
fore the threshold test (9) may be performed. For the consid-
ered subsystemsny1 = ny2 = 6 andnu = 5 sincen1 = 3 and
n2 = 4.

Figure (6(a)) depicts the value of the residualr(t) computed
in faulty conditions (dashed line) which is compared with the
value ofr(t) itself in healthy conditions (continuous line).

A fault fy(t) of 10% on the maximal value ofy2(t) signal
causes a change in the residualr(t) computed by relation (8).

In order to determine the threshold above which the fault is
detectable, the simulation of different amplitude faults signals
has to be performed since the threshold value depends on the
residual amounts. In the test (9), aε = 5 × 10−5 can be fixed
according to the maximal value assumed by|r(t)| in fault–free
conditions. Moreover, such faultfy(t) also affects the value of
the minimal singular value of̂ΣN , as depicted in Figure (6(b)).

The value of the residualσ(Σ̂N ) computed in faulty conditions
(dashed line) by using a growing window is compared with its
value in healthy conditions (continuous line). The threshold
in Eq. (16) was fixed in fault-free conditions as well as by
imposing an acceptable false–alarms rate.

The starting value ofN = 50 was used to calculatêΣN matrix.

The fixed thresholdε = 4 × 10−5 was chosen in relation (16)
according to the minimal singular value ofΣ̂N matrix com-



(a) (b)

Figure 6: (a) The residual signalsr(t) computed from Eq. (8)
and (b) from relation (15).

puted in fault–free conditions.

Finally, Table (1) summarises the performance of fault detec-
tion techniques and collects the minimal detectable fault on the
sensorT (t) (fy(t)) and the actuatorq(t) (fu(t)) signals, when
the value ofr(t) in Eq. (8) andσ(Σ̂N ) are monitored, respec-
tively.

The minimal detectable fault values in Table (1) are expressed
as percentage of the maximal signal values and are relative to
the case in which the occurrence of a fault must be detected as
soon as possible.

Residual type fu(t) fy(t)
r(t) of Eq. (8) 30% 15%

σ(Σ̂N ) 6% 3%

Table 1: Minimum detectable faults.

The minimal detectable faults obtained by using test (16) are
lower than the ones obtained by means of test (9). This im-
provement was obtained by an increased computational cost
and the complexity of the fault detection technique. Moreover,
the improved fault sensitivity of the covariance matrix eigen-
value is due to the fact that it relies on a series of observations
rather than a single one, thus involving residual filtering.

From a physical point of view, the presented fault cases involve
a change in both the reactor temperatureT (t) measurement and
the actuator signalq(t). The significant effect of these faults
is therefore to induce a change in the coolant water flow rate.
By means of the control inputu1(t) = q(t), the control loop
tries to compensate for the variation and the temperature in the
reactor tends to return to its setpoint. Diagnosing such a fault
could be a challenging task, since fault effects are hidden by
the control loop system.

The detection capabilities of the proposed strategy for iden-
tification and diagnosis of faults on the sensors and related
problems appear to be promising for diagnostic applications
to chemical processes.

5 Conclusion

The complete design procedure for the fault diagnosis of an
industrial chemical process was described in this work. The
fault detection task is performed by using a residual genera-
tion method via a parity relation scheme with a disturbance
de–coupling approach. The proposed method may not require

any physical knowledge of the process under observation since
a model of the monitored system can be obtained by means
of system identification scheme. The presented residual gen-
eration procedure was tested by using data from an industrial
chemical process. As an example, actuator and sensor faults
on the process were considered. The results obtained by this
approach show the effectiveness of the proposed fault detec-
tion method. In the first stage of this work, a multiple input
and two output model in the presence of one disturbance signal
was considered in order to sketch the fault diagnosis approach.
Moreover, measurement noise signals, were not taken into ac-
count. Finally, investigations regarding the isolation of multi-
ple faults and studies concerning residual generator robustness
properties will be addressed by future works.

References

[1] Sergio Beghelli, Roberto Diversi, Silvio Simani, and Um-
berto Soverini. Identification of residual generators for
fault detection in multivariable systems.Automatica,
2003. (submitted).

[2] J. Chen and R. J. Patton.Robust Model–Based Fault Di-
agnosis for Dynamic Systems. Kluwer Academic, 1999.

[3] E. Y. Chow and A. S. Willsky. Analytical redundancy
and the design of robust detection systems.IEEE Trans.
Automatic Control, 29(7):603–614, July 1984.

[4] X. Ding and P. M. Frank. Fault detection via factorization
approach.Syst. Contr. Lett., 14(5):431–436, 1990.

[5] R. Diversi, R. Guidorzi, U. Soverini, and P. Castaldi.
Blind identification of SIMO FIR systems. In N. E. Mas-
torakis, editor,Recent advances in signal processing and
communications, pages 60–64. World Scientific & Engi-
neering Society Press, 1999.

[6] A.E. Emami-Naeini, M.M. Akhter, and M.M. Rock. Ef-
fect of model uncertainty on failure detection: the thresh-
old selector. IEEE Trans. on Automatic Control, 33(2),
1988.

[7] C. Fantuzzi, S. Simani, and S. Beghelli. Robust fault di-
agnosis of dynamic processes using parametric identifi-
cation with eigenstructure assignment approach. In IEEE
CSS, editor,CDC’01, pages 155–160, Orlando, Florida,
U.S.A, December, 4–7 2001. 2001, 40th IEEE Confer-
ence on Decision and Control.

[8] P. M. Frank. Fault diagnosis in dynamic systems using
analytical and knowledge based redundancy: A survey
of some new results.Automatica, 26(3):459–474, May
1990.

[9] P. M. Frank, Steven X. Ding, and Birgit K̈opper-Seliger.
Current Developments in the Theory of FDI. InSAFE-
PROCESS’00: Preprints of the IFAC Symposium on Fault
Detection, Supervision and Safety for Technical Pro-
cesses, volume 1, pages 16–27, Budapest, Hungary, 2000.



[10] J. Gertler.Fault Detection and Diagnosis in Engineering
Systems. Marcel Dekker, New York, 1998.

[11] L. Ljung. System Identification: Theory for the User.
Prentice Hall, Englewood Cliffs, N.J., second edition,
1999.

[12] R. J. Patton, P. M. Frank, and R. N. Clark, editors.Is-
sues of Fault Diagnosis for Dynamic Systems. Springer–
Verlag, London Limited, 2000.

[13] E. L. Russell, L. H. Chiang, and R. D. Braatz.Data-
Driven Techniques for Fault Detection and Diagnosis
in Chemical Processes. Advances in Industrial Control.
Springer–Verlag, London, UK, 2000.

[14] S. Simani, C. Fantuzzi, and S. Beghelli. Diagnosis tech-
niques for sensor faults of industrial processes.IEEE
Transactions on Control Systems Technology, 8(5):848–
855, September 2000.

[15] A. S. Willsky. A survey of design methods for failure
detection in dynamic systems.Automatica, 12(6):601–
611, November 1976.


	Session Index
	Author Index



