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Abstract Identification by parameter estimation for max—plus—linear

. . . _ systems has been considered in several publications using dif-
The present paper investigates the influence of noise on thefé,Fént approaches. The principle of estimating the system pa-

tlmat|on.results for ma}x—plus—lmear systems. These SySteFHﬁweters has been adapted to discrete event systems in [5, 7]
are a suitable deSCI‘IptIO!’I for many processes modelled by dalﬁ' [10], where the prediction error of a model given by the
crete eve'nt syst.ems. Itis shovyn that measqrements Corruqf‘ﬁéulse response or in state space, respectively is minimized.
by gaussian noise lead to_a bias in the estimated values. IA ontrast, state space models have been determined using the
addition a gorr_ectlon factor is determined that attempts to cogiistem's Markov parameters in [4]. In all these publications it
pensate this bias. is assumed that the measurements are not corrupted by noise.
However, it is a known fact from identification of continuous
1 Introduction system models, that measurement noise may produce biases in
) . ] ] the estimates, leading to a discrepancy between estimated sys-
The solution of automation tasks is typically based on a mata, parameters and their corresponding true values [6]. This

ematical model that describes the process behaviour in an gdser investigates the influence of noise on the estimated val-
equate way. When considering processes in manufacturing,@g oy max—plus—linear systems.

chemical industry, it is observed that their behaviour can be

described by a sequence of discrete events that mark the trahBe following section briefly reviews the basic notions of max—
tion from one processing step to another. Thus, a discrete eydfg—linear systems. The estimation algorithm is then briefly
model is appropriate to describe such processes. The systi¢gussed, followed by the investigation on the influence of
behaviour is then represented by a Markov— or a Semi-Markig@ise. Finally, the results are illustrated in an example.

chain, by timed automata or by timed Petri nets [2]. The fo-

cus of this contribution is on a particular class of timed Petpi  Max—Plus—linear systems

nets where synchronization but no concurrency occurs, namely

the timed event graphs. In recent years, this particular Paife consider in the sequel discrete event systems where the evo-
net class has gained significant attention [1]. This is due to théion of the events is governed by synchronization effects and
fact that the sequences of event times for such processes canteoncurrency. The behaviour of these systems is completely
described by equations which are linear in a particular algebsgecified if the event occurrence times of each event and the
the so called Max—Plus algebra. The resulting equations exhibitial conditions are known. Thus, the time instant when event
a structural equivalence to system descriptions from conven-occurs for thet—th time is denoted by the datey(k). Sim-
tional control engineering as transfer functions or state spalesly, the input event times are given by (k). A relation be-
models. Thus, a system theory for these max—plus—linear siygeen the eventtimegk+1), z(k) € R[, and the input event
tems has been developed [1] and various concepts well kndiwnesu(k + 1) € R? _, where R,, = RU {—oc}, can then be
from control engineering have been adapted to this system class



described by the following equation [1]: andB, ;; of the system matrices that are different frerauch
that the equation error

z(k+1)=A@z(k+1)® A ®x(k) ® Booulk+1), (1) R R

fh+1) = alk+1) — (Ao Ra(k+1)® A ® 2(k)@

whereAy, A; € RV", By € RIZP. The operatorsy and®

are the addition and multiplication operators of the max—plus ®Bo @ u(k + 1)) 3)
algebra and are defined by

zk+1)—[ Ay Ay By @ | x(k)

r®y=max(z,y), TRY=r+y

Vz,y € Rpw=RU{—o0} —.0 - -

The neutral elements of the max—plus addition and the max—
plus multiplication are-co = ¢ and0, respectively. Note that
cis absorblng_wnh r.es.pectt@. Matrix ad@uon and multipli- s minimized and the estimated parametér@j, ALU and
cation are defined similar to the conventional algebra: Bom' are as close as possible to the true system parameters
given by Ag ;;, A1,;; and By ;;. Itis assumed, that it is known

=a(k+1)—O0@m(k+1)

nxp L. — .. ..
P,QeRLY, (P®Q)y = Pj®Qy, which entries of the system matrices are equal &md which
P e RXP 2 are not.
Q € RPX4 (P® Q)u = (Pir ® Qk]) . . i .
max k=1 To solve this problem, first an estimate for the system parame-

ters is determined under the assumption that no noise is present.

Equation (1) can be used for parameter identification as Winsidering the given measurements 0+ 1) andm(k+1),
be shown in the subsequent section. However, it is not suitgd equation error matrix results in

for system analysis or simulation. (f43);; = ¢, V i,j =

1,...,n, as will be assumed in the following considerai &(N) ... &(1) | =
tions, (1) can be transformed into a recursive evolution equa- ~
pons. (1) qua-_ (o) . 2 ]-8@[mV) ... m()]
- X-O0oM. (4)
zk+1) = Az(kh)@oBouk+1), 2)

'[he dqta rpatriceé( and M contain the event times, whereas
where © =[Ay A1 Byl denotes the matrix of estimated parameters
based on the given measurements ahdm.

n—1
A=A;® A, B=A'®B, and A= @Ag ) The result is obtained [1, 3, 5, 7] by computing the greatest
k=0 solution of the inequality

. . . X > oM 5
The structural equivalence between (2) and the discrete time - ® ©)

state space equation makes it possible to adapt well knoRich is given by
concepts from system theory to this particular system class, R
provided the model and its parameter can be determined. The 0 = X (—MT) ,

following section describes an identification procedure wich al- N
lows the determination of the model parameters using event @lj _ @/( Xix @ —My) )
time measurements. The model structure is assumed to be 1 Y =
known. zi(k)  —my(k)
N
o o = min (z;(k) — m;(k) (6)
3 Parameter estimation by minimization of an k=1
equation error where the operators’” and “®’” of the min—plus algebra [3]

. N .correspond to conventional minimization and addition, respec-
The following parameter estimation problem shall be cons@- . . . . .
ered: Ively. As shown in [7], this solution, determined in the absence
' of noise by (6), has two particular properties

Given the system model

X = 0aM, )
zk+1)=A@z(k+1)d A @a(k)® By@u(k+1), 6 > ©o. (8)
the input event times(k), £ = 1,..., N, and the measure- From (7) immediately follows that the equation er¢ok) = 0,
mentsz(k), k = 0,..., N, corrupted by noise, determine es¥ k = 1,..., N. However, the property (8) shows that an es-

timatesAg ;;, A1;; and By ,; for those elementsl, ;;, A, ,; timated parameter value may in general differ from the true



parameter value even if no noise is present. This issue has bieethe measurement; (k) or z;(k — 1), respectively, corrupted
addressed in [10]. It was shown that the true parameter vallgshe noisev; (k). Since both variables; andw; are assumed
can be achieved by applying certain excitation signals to thaussian with meap and variance?, and since); andw; are
system. In the sequel it will be assumed that such signals éadependent by assumption, tbéf of 6( ) is also gaussian
be found and applied to the system, such that the estimatigith meanu; = 0 and variancer? = 202

would result in the true system parameters, thaBis= O if

the measurements were not corrupted by noise. The influence (6= ps)? 62
of measurement noise on the estimated values is now investi- f5(6) = 1 e 20§ — 1 e 402
gated. o5V 2m 207
_ If otherwisej = 2n +1,...,2n + p, thenm, (k) corresponds
4 Influence of noise to the input signak;_»,, which is assumed to be uncorrupted

by the noise such that. (k) = 0. Then,u; = 1 ando? = o2.
Assume now that the measuremenisandm; are corrupted y i (F) Ho =H 9% =0

by noise The bias in equation (9) is the expectation value of a stochastic
variable obtained from the minimum df values ofs. The
Ti = Ty,i + Vi, mj = My ; +W;j , following theorem illustrates the dependence of this bias on

the variancer? and the meap of the noise and the number of
where the variables,, andm, denote the undisturbed Value?neasurementy included in the estimation.

of the measurements ang andw; are white gaussian noise

with mean. and variancer®. The cross—correlation bewVeenl’heorem 4.1 Given the sequence of independent gaussian
two different time measurements shall be zero. It should P

¥hdom variables)(k) with meanu; and variances2. Then
noted here that,, andm,, correspond to time instants and no{ (k) His 6 '

here exists a such that
to the value of one of the system’s physical states. Noise In (W)
time measurements could result for example from measuring

whether a fluid’s level in a tank has exceeded a certain thresh- E{I,?:i{l (0(k)} = ps+0sK(N)

old — if the surface of the fluid is in motion, the measured time

|_rlsta}nt is not the correct one. quse can also occur due to quan- K(N) = V2 / B fuinn (8)dB
tization of the measured event times.

Using the above assumptions, the estimate is obtained from . . .
g P vgl?])ereﬁ is a random variable that results from the minimum of

~ N N independent gaussian random variables with zero mean and
©i = i (zi(k) - mj(k)) varianceag = % and thepdf of 5 is denoted byfiin, (5).
N
= min (zui(k) +0i(k) = mu;(k) = w; (k) Proof: The expected value{Eing_, (5(k))} is given by [8]
N
= min ((2u,i (k) = mu (k) + (vi(k) —w;(K))) N 7
Y N Ela—min (01)) = [ afminy(a)da.  (10)
> min (2y,i(k) = mu,; (k) +min (v;(k) = w;(k)) . B =

Due to the assumption that the true system parameters are giS: in the first part of the proof theif f..in () is deter-

tained in the absence of noise, one obtains from the above c%”ed First the distribution functiofi,i,, () is considered.
For N = 2 the distribution is given by [8]

siderations
A N Fniny(@) = F(a) + F(a) = F(a)F(a)
O 2 O+ min (w(k) — w;(k) — 2F(a)— F*(a) = 1 — (1 F(a))?,
The expected estimated value then results from whereF (o) = F(§). Assume that
~ N
B{Os} = O+ Efpin (k) —wi(R)} () Friny (@) = 1= (1= F(a))? 1)

holds for someV. Then,
since®;; is deterministic. Thus, it is concluded that the noise

may lead to biased estimated values. The bias depends on the. () = F(a)+F (@) = F(Q) Foiny ()
AN N 41 miny minyN

expected value fnin;_, (v;(k) — w;(k))} and will be ana- Pla) 41— (1— Fla) —
lyzed in more detail in the sequel. o (a) ( (a EV)

. : : , . F(a)(1= (1= F(a)™)
For the computation of this expectation value, first the probabil- N
ity density function pdf) of (k) = v; (k) — w;(k) is required. = Fla)+ (1= F(a)(1-(1-F)")

(

Ifj=1,...,n,0rj =n+1,...,2n, thenm,;(k) corresponds = 1-(1-F(a)NT.



Thus, (11) holds for anw > 2. The desirecdf can then be
determined from

a miny
frin (@) = mina(®)
= NO-F@)"'fa)  (12)
Thus,
/ A fminy (@)da = / aN(1 - F(a)N 1 f(a)da .
Substitutings = % one obtains
Bla}) = ws+osv3 [ AN(L=F(3)¥ (35

s + 053 / Bfmin (8)d8 .

O

From the result of theorem 4.1 and (9) one concludes that

E{éu} > O+ ps +osK(N)
> 0 +V20K(N),j=1,....2n, (13)
E{é”} > @ij —l—,u—&—aK(N) , (14)

j=2n+1,....2n+p,

N 2 3 4 5
K(N) || —0.5642 | —0.8463 | —1.0294 | —1.1630
N 6 7 8 9
K(N) || —1.2672 | —1.3522 | —1.4236 | —1.4850

Table 1. K(N)for N =2,...,9.
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N
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Figure 1: K(N) for N = 2, ..., 200.

may lead to an underestimation of the system parameters. This
is an issue if the estimated model is used to design controllers
that compute the greatest input that must produce output sig-
nals below a certain threshold, thus attempting to solve the
zero—lateness problem [7]. An underestimation of a parameter
may lead to control signals that are issued too late to achieve
the given output time. To avoid underestimation, (13) and (14)
can be used to compute an upper bound for the system param-
eters:

where ;x and o2 are the mean and the variance of the mea-

surement noise, respectively. Note that the firstolumns of Aoij = E{IZ}O’U} ~V20K(N), (1%)
© correspond tod, whereas the columns + 1,...,2n and A < E{A;) - \/§aK(N) , (16)
2n+1,...,2n + p correspond tol; and By, respectively. Boi < E{Bo,z‘j} i~ oK(N) . (17)

The above equations hold if the system matfixin (1) con-
tains no diagonal elements other thénsince only in this case
all 6(k) are independent. For the estimation of diagonal el
ments inA;, consecutive value¥ k) = v;(k) — v;(k — 1) and
d(k —1) =v;(k — 1) —v;(k — 2) are obviously not indepen-
dent such that the distributiof,,,;,,, cannot be computed as
in theorem 4.1. In contrast, the computation of the distributi
Fin, and the correspondingdf requires the consideration
of the correlation coefficient of consecutive valugé) and
d(k—1).

The factorK (V) can be computed in advance, depending on?y
on the number of data sets used for the estimation of a par@nsider now a manufacturing cell shown in figure 2, where
ular parameter. It is given for th& = 2,...,9, intable 1 and parts are delivered to the machine by a conveyor, machined
for larger values ofV in figure 1. and released to an additional conveyor. The capacity of each
conveyor is limited to one part. The machine can process one
part at the same time. Figure 3 gives a discrete event model
a{d;gértdescribes the system behaviour as a Petri net.

Using the right hand side of (15), (16) and (17) as estimation
result, an underestimation can be avoided. In addition, equa-
fion (17) shows that for particular values@fc and K (V) the
correction term in (17) is equal to zero. Thus, the correction of
B;; can also be made during the estimation, by adding an ap-

ropriate bias to the measurements that shifts the noise mean to
He desired value and in addition using an appropriate number
of measurement®’ in the estimation procedure.

Example

From table 1 and figure 1itis seen, that/V) is negative. The

absolute value of< (N) increases with increasingy. How-

ever, the influence of new measurements added to the dat

decreases a¥ increases. Sinc& (N) is negative, the noise Let z; (k) be the time instant when the-th part is loaded onto
INote that all diagonal elements ¢fy are equal tas. Otherwise there the conveyor 1. Aftery, time units, this pqrt is ready to enter

would exist some index such(Ag);; # e thus contradicting the assumptionthe machine. The daten (k) denotes the time when thie-th

from section 2. part enters the machine. After the machining operation which




Figure 3: Petri net model of the manufacturing cell.
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Figure 2: Manufacturing cell.
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the noise, the parameters of the original system given in the
appendix were used in this design process to make sure, that
deviations in the estimated parameters are not due to a design
that results from overestimated parameters but only to the mea-
surement noise. The number of required measurements was set
to N = 8. Inaddition, itis assumed that the entries equalito

the matricesd,, A; and B, are known. Using the designed in-

put signals, the parameters estimated based on the uncorrupted
measurements are equal to the true system parameters.

Now, the measuremenigk) corrupted by gaussian noise with
o2 = 1 are considered. A sequence of estimat§s, A'” and
B((f) for the matricesdy, A; and By is determined from

A(T T-‘TS

0 = o ek 1) -2k + 1)),
A(r r—&:S

Al,ij = kr:n;_r:l (ﬂ?z(k? +1) - a:j(k‘)) )

A (r T-&TS

By = nin (zi(k+1) —uj(k+ 1)),

r=2,...,1592.

The matricesd,, A; and B, are then computed as the average

takesrss time units, the part is released to conveyor 2 at timgom A(()T)’ AY) andéér), respectively:

x3(k) reaching a final position on conveyor 3 aftag time

units. From this final position, the part is picked up at time [e 12116 ¢ « 1

x4(k). Conveyor 1 and 3 can receive a new part aftgrand i - € € € €

T34 time units, respectively, whereas the machine must be pre- oo e 12337 ¢ —-0.1130 |’

pared for a new operation fops time units. The input event e € € €

timeswu; (k) andugy(k) correspond to the time instants when a r c e c e .

new part is available to be delivered for conveyor 1 or removed A —0.9086 & 0.1225 ¢

from conveyor 3, respectively. A = . . I

Using the above reasoning and the initial state of the system L e ¢ 02007 e |

described_ by the initial marking in the Petri net from figure 3, A [ 14049 & e 17

the following max—plus—linear equations hold fe(ik): By = I c & —1.4929
n(b+1) = ma@n(k+)Sulk+1) As the comparison with the original system parameters shows,
z2(k+1) = 721 @a1(k) D 23 @ 23(k) the noise leads to an underestimation in all estimated parame-
z3(k+1) = T3oQ0x2(k+1) D134 Qua(k+1) ters. Using the given noise variangé = 1 and the parameter
ik +1) = 7i3@as(k)®us(k+1) K(8) from table 1 one obtains with (15), (16) and (17) upper

These equations are of the structure given by (1)

rk+1)=A)@x(k+1)® A @x(k) ® By ®@u(k+1)

Ap =

By =

The entries of4,, A; and B, that are different fromx are un-
known and must be determined from measured event times L

andu.

M M M M

[0
€

T12 € €&
€ E €
T32 & T34
€ E €
E € €

e ¢ 0

aAlz

9
721

€

g ¢

g Ta23
€ e €

E T43

bounds for the system parameters:

[ e 32249 ¢ ¢
i - e € € €
e = e 3.2470 ¢ 1.9002 | °
| € ¢ € € ]
[ € € e €]
A 1.1047 & 2.1358 ¢
Alc = )
£ € € €
i e € 22139 € |
BO _ 0.0187 ¢ ¢ € r
¢ € e e 0.0007

First an appropriate persistent excitation was designed uskigure 4 shows the simulation results obtained fg(k) af-
the principles given in [10]. In order to illustrate the effect ofer transforming the implicit system equations (1) the into the
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Figure 4: Left: Simulation results obtained for the systetB) (—), (A, B) (——), and(A,, B,) (—-). Right: Deviations to
the uncorrupted case without correctign—) and with correctior{—-).

evolution equation (2) using the parameters estimated based [} C. Cassandras and S. Laforturietroduction to Discrete
the uncorrupted data, the parameters estimated using the noisy Event System&luwer Academic, Boston, 1999.

data and the parameters obtained from (15), (16) and (17). Note ) .

that the negative entries different franin Ao, A, andB, have 3] R. Cuninghame-GreeMinimax Algebravolume 166 of
been set tacero to ensure their interpretability. In addition to Lecture Notes in Economics and Mathematical Systems
the event times, the right hand side of figure 4 displays the devi- SPringer-Verlag, Berlin, 1979.

ations to the uncorrupted case. Obviously, the estimation bas?ﬂ B. De Schutter. Max—Algebraic System Theory for Dis-

on the noisy data leads to a system model which is "faster” * ot Eyent SystemsPhD thesis, Katolieke Universiteit
than the original system, whereas the correction by (15), (16) Leuven, Departement Elektrotechniek Leuven, 1996.
and (17) yields a "slower” model.
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puting controllers that solve the zero—lateness problem. Thig] E. Menguy, J. L. Boimond, L. Hardouin, and J. L. Ferrier.
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for identification to determine upper bounds for the system pa-  10(4):347-368, 2000.

rameters.
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