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Abstract

The present paper investigates the influence of noise on the es-
timation results for max–plus–linear systems. These systems
are a suitable description for many processes modelled by dis-
crete event systems. It is shown that measurements corrupted
by gaussian noise lead to a bias in the estimated values. In
addition a correction factor is determined that attempts to com-
pensate this bias.

1 Introduction

The solution of automation tasks is typically based on a math-
ematical model that describes the process behaviour in an ad-
equate way. When considering processes in manufacturing or
chemical industry, it is observed that their behaviour can be
described by a sequence of discrete events that mark the transi-
tion from one processing step to another. Thus, a discrete event
model is appropriate to describe such processes. The system
behaviour is then represented by a Markov– or a Semi–Markov
chain, by timed automata or by timed Petri nets [2]. The fo-
cus of this contribution is on a particular class of timed Petri
nets where synchronization but no concurrency occurs, namely
the timed event graphs. In recent years, this particular Petri
net class has gained significant attention [1]. This is due to the
fact that the sequences of event times for such processes can be
described by equations which are linear in a particular algebra,
the so called Max–Plus algebra. The resulting equations exhibit
a structural equivalence to system descriptions from conven-
tional control engineering as transfer functions or state space
models. Thus, a system theory for these max–plus–linear sys-
tems has been developed [1] and various concepts well known
from control engineering have been adapted to this system class

in control design [7, 11] and diagnosis [9]. The application of
such methods requires a process model which can be obtained
by theoretical modelling or identification algorithms.

Identification by parameter estimation for max–plus–linear
systems has been considered in several publications using dif-
ferent approaches. The principle of estimating the system pa-
rameters has been adapted to discrete event systems in [5, 7]
and [10], where the prediction error of a model given by the
impulse response or in state space, respectively is minimized.
In contrast, state space models have been determined using the
system’s Markov parameters in [4]. In all these publications it
is assumed that the measurements are not corrupted by noise.
However, it is a known fact from identification of continuous
system models, that measurement noise may produce biases in
the estimates, leading to a discrepancy between estimated sys-
tem parameters and their corresponding true values [6]. This
paper investigates the influence of noise on the estimated val-
ues for max–plus–linear systems.

The following section briefly reviews the basic notions of max–
plus–linear systems. The estimation algorithm is then briefly
discussed, followed by the investigation on the influence of
noise. Finally, the results are illustrated in an example.

2 Max–Plus–linear systems

We consider in the sequel discrete event systems where the evo-
lution of the events is governed by synchronization effects and
no concurrency. The behaviour of these systems is completely
specified if the event occurrence times of each event and the
initial conditions are known. Thus, the time instant when event
ei occurs for thek–th time is denoted by the daterxi(k). Sim-
ilarly, the input event times are given byuj(k). A relation be-
tween the event timesx(k+1), x(k) ∈ IRn

max and the input event
timesu(k + 1) ∈ IRp

max, where IRmax = IR ∪ {−∞}, can then be



described by the following equation [1]:

x(k + 1) = A0⊗x(k + 1)⊕A1⊗x(k)⊕B0⊗u(k + 1) , (1)

whereA0, A1 ∈ IRn×n
max , B0 ∈ IRn×p

max . The operators⊕ and⊗
are the addition and multiplication operators of the max–plus
algebra and are defined by

x⊕ y = max(x, y) , x⊗ y = x + y

∀ x, y ∈ IRmax = IR ∪ {−∞}

The neutral elements of the max–plus addition and the max–
plus multiplication are−∞ = ε and0, respectively. Note that
ε is absorbing with respect to⊗. Matrix addition and multipli-
cation are defined similar to the conventional algebra:

P , Q ∈ IRn×p
max , (P ⊕Q)ij = Pij ⊕Qij ,

P ∈ IRn×p
max

Q ∈ IRp×q
max

, (P ⊗Q)ij =
p⊕

k=1

(Pik ⊗Qkj) .

Equation (1) can be used for parameter identification as will
be shown in the subsequent section. However, it is not suited
for system analysis or simulation. If(An

0 )ij = ε, ∀ i, j =
1, . . . , n, as will be assumed in the following considera-
tions, (1) can be transformed into a recursive evolution equa-
tion

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k + 1) , (2)

where

A = A∗
0 ⊗A1 , B = A∗

0 ⊗B0 and A∗
0 =

n−1⊕
k=0

Ak
0 .

The structural equivalence between (2) and the discrete time
state space equation makes it possible to adapt well known
concepts from system theory to this particular system class,
provided the model and its parameter can be determined. The
following section describes an identification procedure wich al-
lows the determination of the model parameters using event
time measurements. The model structure is assumed to be
known.

3 Parameter estimation by minimization of an
equation error

The following parameter estimation problem shall be consid-
ered:

Given the system model

x(k + 1) = A0 ⊗ x(k + 1)⊕A1 ⊗ x(k)⊕B0 ⊗ u(k + 1) ,

the input event timesu(k), k = 1, . . . , N , and the measure-
mentsx(k), k = 0, . . . , N , corrupted by noise, determine es-
timatesÂ0,ij , Â1,ij andB̂0,ij for those elementsA0,ij , A1,ij

andB0,ij of the system matrices that are different fromε such
that the equation error

ξ(k + 1) = x(k + 1)−
(
Â0 ⊗ x(k + 1)⊕ Â1 ⊗ x(k)⊕

⊕B̂0 ⊗ u(k + 1)
)

(3)

= x(k + 1)−
[

Â0 Â1 B̂0

]︸ ︷︷ ︸
=: Θ̂

⊗

 x(k + 1)
x(k)
u(k + 1)


︸ ︷︷ ︸
=: m(k + 1)

= x(k + 1)− Θ̂⊗m(k + 1)

is minimized and the estimated parametersÂ0,ij , Â1,ij and
B̂0,ij are as close as possible to the true system parameters
given byA0,ij , A1,ij andB0,ij . It is assumed, that it is known
which entries of the system matrices are equal toε and which
are not.

To solve this problem, first an estimate for the system parame-
ters is determined under the assumption that no noise is present.
Considering the given measurements ofx(k+1) andm(k+1),
the equation error matrix results in[

ξ(N) . . . ξ(1)
]

=

=
[

x(N) . . . x(1)
]
− Θ̂⊗

[
m(N) . . . m(1)

]
= X − Θ̂⊗M . (4)

The data matricesX andM contain the event times, whereas
Θ̂ = [Â0 Â1 B̂0] denotes the matrix of estimated parameters
based on the given measurements ofx andm.

The result is obtained [1, 3, 5, 7] by computing the greatest
solution of the inequality

X ≥ Θ⊗M (5)

which is given by

Θ̂ = X ⊗′
(
−MT

)
,

Θ̂ij =
N⊕

k=1

′( Xik︸︷︷︸
xi(k)

⊗′ −Mjk)︸ ︷︷ ︸
−mj(k)

)

=
N

min
k=1

(
xi(k)−mj(k)

)
(6)

where the operators “⊕′” and “⊗′” of the min–plus algebra [3]
correspond to conventional minimization and addition, respec-
tively. As shown in [7], this solution, determined in the absence
of noise by (6), has two particular properties

X = Θ̂⊗M , (7)

Θ̂ ≥ Θ . (8)

From (7) immediately follows that the equation errorξ(k) = 0,
∀ k = 1, . . . , N . However, the property (8) shows that an es-
timated parameter value may in general differ from the true



parameter value even if no noise is present. This issue has been
addressed in [10]. It was shown that the true parameter values
can be achieved by applying certain excitation signals to the
system. In the sequel it will be assumed that such signals can
be found and applied to the system, such that the estimation
would result in the true system parameters, that is,Θ̂ = Θ if
the measurements were not corrupted by noise. The influence
of measurement noise on the estimated values is now investi-
gated.

4 Influence of noise

Assume now that the measurementsxi andmj are corrupted
by noise

xi = xu,i + vi , mj = mu,j + wj ,

where the variablesxu andmu denote the undisturbed values
of the measurements andvi andwj are white gaussian noise
with meanµ and varianceσ2. The cross–correlation between
two different time measurements shall be zero. It should be
noted here thatxu andmu correspond to time instants and not
to the value of one of the system’s physical states. Noise in
time measurements could result for example from measuring
whether a fluid’s level in a tank has exceeded a certain thresh-
old – if the surface of the fluid is in motion, the measured time
instant is not the correct one. Noise can also occur due to quan-
tization of the measured event times.

Using the above assumptions, the estimate is obtained from (6)

Θ̂ij =
N

min
k=1

(
xi(k)−mj(k)

)
=

N
min
k=1

(
xu,i(k) + vi(k)−mu,j(k)− wj(k)

)
=

N
min
k=1

((
xu,i(k)−mu,j(k)

)
+

(
vi(k)− wj(k)

))
≥

N
min
k=1

(
xu,i(k)−mu,j(k)

)
+

N
min
k=1

(
vi(k)− wj(k)

)
.

Due to the assumption that the true system parameters are ob-
tained in the absence of noise, one obtains from the above con-
siderations

Θ̂ij ≥ Θij +
N

min
k=1

(
vi(k)− wj(k)

)
.

The expected estimated value then results from

E{Θ̂ij} ≥ Θij + E{
N

min
k=1

(
vi(k)− wj(k)

)
} (9)

sinceΘij is deterministic. Thus, it is concluded that the noise
may lead to biased estimated values. The bias depends on the
expected value E{minN

k=1

(
vi(k) − wj(k)

)
} and will be ana-

lyzed in more detail in the sequel.

For the computation of this expectation value, first the probabil-
ity density function (pdf ) of δ(k) = vi(k)−wj(k) is required.
If j = 1, . . . , n, or j = n+1, . . . , 2n, thenmj(k) corresponds

to the measurementxj(k) or xj(k−1), respectively, corrupted
by the noisewj(k). Since both variablesvi andwj are assumed
gaussian with meanµ and varianceσ2, and sincevi andwj are
independent by assumption, thepdf of δ(k) is also gaussian
with meanµδ = 0 and varianceσ2

δ = 2σ2:

fδ(δ) =
1

σδ

√
2π

e
− (δ − µδ)2

2σ2
δ =

1
2σ
√

π
e
− δ2

4σ2 .

If otherwisej = 2n + 1, . . . , 2n + p, thenmj(k) corresponds
to the input signaluj−2n which is assumed to be uncorrupted
by the noise such thatwj(k) = 0. Then,µδ = µ andσ2

δ = σ2.

The bias in equation (9) is the expectation value of a stochastic
variable obtained from the minimum ofN values ofδ. The
following theorem illustrates the dependence of this bias on
the varianceσ2 and the meanµ of the noise and the number of
measurementsN included in the estimation.

Theorem 4.1 Given the sequence of independent gaussian
random variablesδ(k) with meanµδ and varianceσ2

δ . Then,
there exists aK(N) such that

E{
N

min
k=1

(
δ(k)

)
} = µδ + σδK(N)

K(N) =
√

2

∞∫
−∞

βfminN
(β)dβ

whereβ is a random variable that results from the minimum of
N independent gaussian random variables with zero mean and
varianceσ2

β = 1
2 and thepdf of β is denoted byfminN

(β).

Proof: The expected value E{minN
k=1

(
δ(k)

)
} is given by [8]

E{α =
N

min
k=1

(
δ(k)

)
} =

∞∫
−∞

αfminN
(α)dα . (10)

Thus, in the first part of the proof thepdf fminN
(α) is deter-

mined. First the distribution functionFminN
(α) is considered.

ForN = 2 the distribution is given by [8]

Fmin2(α) = F (α) + F (α)− F (α)F (α)
= 2F (α)− F 2(α) = 1− (1− F (α))2 ,

whereF (α) = F (δ). Assume that

FminN
(α) = 1− (1− F (α))N (11)

holds for someN . Then,

FminN+1(α) = F (α) + FminN
(α)− F (α)FminN

(α)

= F (α) + 1− (1− F (α))N −
F (α)

(
1− (1− F (α))N

)
= F (α) + (1− F (α))

(
1− (1− F (α))N

)
= 1− (1− F (α))N+1 .



Thus, (11) holds for anyN ≥ 2. The desiredpdf can then be
determined from

fminN
(α) =

∂FminN
(α)

∂α

= N(1− F (α))N−1f(α) (12)

Thus,

∞∫
−∞

αfminN
(α)dα =

∞∫
−∞

αN(1− F (α))N−1f(α)dα .

Substitutingβ = α−µδ√
2σδ

one obtains

E{α} = µδ + σδ

√
2

∞∫
−∞

βN(1− F (β))N−1f(β)dβ .

= µδ + σδ

√
2

∞∫
−∞

βfminN
(β)dβ .

�

From the result of theorem 4.1 and (9) one concludes that

E{Θ̂ij} ≥ Θij + µδ + σδK(N)

≥ Θij +
√

2 σK(N) , j = 1, . . . , 2n , (13)

E{Θ̂ij} ≥ Θij + µ + σK(N) , (14)

j = 2n + 1, . . . , 2n + p ,

whereµ and σ2 are the mean and the variance of the mea-
surement noise, respectively. Note that the firstn columns of
Θ correspond toA0 whereas the columnsn + 1, . . . , 2n and
2n + 1, . . . , 2n + p correspond toA1 andB0, respectively.

The above equations hold if the system matrixA1 in (1) con-
tains no diagonal elements other thenε1, since only in this case
all δ(k) are independent. For the estimation of diagonal ele-
ments inA1, consecutive valuesδ(k) = vi(k)− vi(k− 1) and
δ(k − 1) = vi(k − 1) − vi(k − 2) are obviously not indepen-
dent such that the distributionFminN

cannot be computed as
in theorem 4.1. In contrast, the computation of the distribution
FminN

and the correspondingpdf requires the consideration
of the correlation coefficient of consecutive valuesδ(k) and
δ(k − 1).

The factorK(N) can be computed in advance, depending only
on the number of data sets used for the estimation of a partic-
ular parameter. It is given for theN = 2, . . . , 9, in table 1 and
for larger values ofN in figure 1.

From table 1 and figure 1 it is seen, thatK(N) is negative. The
absolute value ofK(N) increases with increasingN . How-
ever, the influence of new measurements added to the data set
decreases asN increases. SinceK(N) is negative, the noise

1Note that all diagonal elements ofA0 are equal toε. Otherwise there
would exist some indexj such(An

0 )jj 6= ε thus contradicting the assumption
from section 2.

N 2 3 4 5
K(N) −0.5642 −0.8463 −1.0294 −1.1630

N 6 7 8 9
K(N) −1.2672 −1.3522 −1.4236 −1.4850

Table 1:K(N) for N = 2, . . . , 9.

0 50 100 150 200

0

-1

-2

-3
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N

Figure 1:K(N) for N = 2, . . . , 200.

may lead to an underestimation of the system parameters. This
is an issue if the estimated model is used to design controllers
that compute the greatest input that must produce output sig-
nals below a certain threshold, thus attempting to solve the
zero–lateness problem [7]. An underestimation of a parameter
may lead to control signals that are issued too late to achieve
the given output time. To avoid underestimation, (13) and (14)
can be used to compute an upper bound for the system param-
eters:

A0,ij ≤ E{Â0,ij} −
√

2 σK(N) , (15)

A1,ij ≤ E{Â1,ij} −
√

2 σK(N) , (16)

B0,ij ≤ E{B̂0,ij} − µ− σK(N) . (17)

Using the right hand side of (15), (16) and (17) as estimation
result, an underestimation can be avoided. In addition, equa-
tion (17) shows that for particular values ofµ, σ andK(N) the
correction term in (17) is equal to zero. Thus, the correction of
Bij can also be made during the estimation, by adding an ap-
propriate bias to the measurements that shifts the noise mean to
the desired value and in addition using an appropriate number
of measurementsN in the estimation procedure.

5 Example

Consider now a manufacturing cell shown in figure 2, where
parts are delivered to the machine by a conveyor, machined
and released to an additional conveyor. The capacity of each
conveyor is limited to one part. The machine can process one
part at the same time. Figure 3 gives a discrete event model
that describes the system behaviour as a Petri net.

Let x1(k) be the time instant when thek–th part is loaded onto
the conveyor 1. Afterτ21 time units, this part is ready to enter
the machine. The daterx2(k) denotes the time when thek–th
part enters the machine. After the machining operation which
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Figure 2: Manufacturing cell.
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Figure 3: Petri net model of the manufacturing cell.

takesτ32 time units, the part is released to conveyor 2 at time
x3(k) reaching a final position on conveyor 3 afterτ43 time
units. From this final position, the part is picked up at time
x4(k). Conveyor 1 and 3 can receive a new part afterτ12 and
τ34 time units, respectively, whereas the machine must be pre-
pared for a new operation forτ23 time units. The input event
timesu1(k) andu2(k) correspond to the time instants when a
new part is available to be delivered for conveyor 1 or removed
from conveyor 3, respectively.

Using the above reasoning and the initial state of the system
described by the initial marking in the Petri net from figure 3,
the following max–plus–linear equations hold forx(k):

x1(k + 1) = τ12 ⊗ x2(k + 1)⊕ u1(k + 1)
x2(k + 1) = τ21 ⊗ x1(k)⊕ τ23 ⊗ x3(k)
x3(k + 1) = τ32 ⊗ x2(k + 1)⊕ τ34 ⊗ x4(k + 1)
x4(k + 1) = τ43 ⊗ x3(k)⊕ u2(k + 1)

These equations are of the structure given by (1)

x(k + 1) = A0 ⊗ x(k + 1)⊕A1 ⊗ x(k)⊕B0 ⊗ u(k + 1)

A0 =


ε τ12 ε ε
ε ε ε ε
ε τ32 ε τ34

ε ε ε ε

 , A1 =


ε ε ε ε
τ21 ε τ23 ε
ε ε ε ε
ε ε τ43 ε


B0 =

[
0 ε ε ε
ε ε ε 0

]T

.

The entries ofA0, A1 andB0 that are different fromε are un-
known and must be determined from measured event timesx
andu.

First an appropriate persistent excitation was designed using
the principles given in [10]. In order to illustrate the effect of

the noise, the parameters of the original system given in the
appendix were used in this design process to make sure, that
deviations in the estimated parameters are not due to a design
that results from overestimated parameters but only to the mea-
surement noise. The number of required measurements was set
toN = 8. In addition, it is assumed that the entries equal toε in
the matricesA0, A1 andB0 are known. Using the designed in-
put signals, the parameters estimated based on the uncorrupted
measurements are equal to the true system parameters.

Now, the measurementsx(k) corrupted by gaussian noise with
σ2 = 1 are considered. A sequence of estimatesÂ

(r)
0 , Â(r)

1 and

B̂
(r)
0 for the matricesA0, A1 andB0 is determined from

Â
(r)
0,ij =

r+8
min

k=r+1

(
xi(k + 1)− xj(k + 1)

)
,

Â
(r)
1,ij =

r+8
min

k=r+1

(
xi(k + 1)− xj(k)

)
,

B̂
(r)
0,ij =

r+8
min

k=r+1

(
xi(k + 1)− uj(k + 1)

)
,

r = 2, . . . , 1592 .

The matricesÂ0, Â1 andB̂0 are then computed as the average
from Â

(r)
0 , Â

(r)
1 andB̂

(r)
0 , respectively:

Â0 =


ε 1.2116 ε ε
ε ε ε ε
ε 1.2337 ε −0.1130
ε ε ε ε

 ,

Â1 =


ε ε ε ε

−0.9086 ε 0.1225 ε
ε ε ε ε
ε ε 0.2007 ε

 ,

B̂0 =
[
−1.4049 ε ε ε
ε ε ε −1.4229

]T

.

As the comparison with the original system parameters shows,
the noise leads to an underestimation in all estimated parame-
ters. Using the given noise varianceσ2 = 1 and the parameter
K(8) from table 1 one obtains with (15), (16) and (17) upper
bounds for the system parameters:

Â0c =


ε 3.2249 ε ε
ε ε ε ε
ε 3.2470 ε 1.9002
ε ε ε ε

 ,

Â1c =


ε ε ε ε

1.1047 ε 2.1358 ε
ε ε ε ε
ε ε 2.2139 ε

 ,

B̂0c =
[

0.0187 ε ε ε
ε ε ε 0.0007

]T

.

Figure 4 shows the simulation results obtained forx3(k) af-
ter transforming the implicit system equations (1) the into the



0 2 4 6 8 10

0

10

20

30

40

50

60

x (k)3

k
0 2 4 6 8 10

-4

-2

0

2

4

6

k

�x (k)3

Figure 4: Left: Simulation results obtained for the system(A,B) (−), (Â, B̂) (−−), and(Âc, B̂c) (−·). Right: Deviations to
the uncorrupted case without correction(−−) and with correction(−·).

evolution equation (2) using the parameters estimated based on
the uncorrupted data, the parameters estimated using the noisy
data and the parameters obtained from (15), (16) and (17). Note
that the negative entries different fromε in Â0, Â1 andB̂0 have
been set tozero to ensure their interpretability. In addition to
the event times, the right hand side of figure 4 displays the devi-
ations to the uncorrupted case. Obviously, the estimation based
on the noisy data leads to a system model which is ”faster”
than the original system, whereas the correction by (15), (16)
and (17) yields a ”slower” model.

6 Conclusions

The present paper addressed the issue of estimating the param-
eters of max–plus–linear systems when the measurements are
corrupted by gaussian noise. It was shown, that noise may lead
to biases in the estimated parameters resulting in an underesti-
mation of system parameters which may be an issue when com-
puting controllers that solve the zero–lateness problem. This
issue can be overcome by using a correction factor depending
on the noise variance and the number of measurements used
for identification to determine upper bounds for the system pa-
rameters.

A Original system parameters

τ12 = 3 τ21 = 1 τ23 = 1
τ32 = 2 τ34 = 1 τ43 = 2

x(0) =
[

0 0 0 0
]T
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