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Abstract

We establish a connection between two well developed re-
search areas, robust control and planning systems. The dis-
count factors used in Markov Decision Process (MDP) mod-
els of time-critical planning are derivable from frequency
domain concepts of performance and uncertainty used in
robust control. The controls framework makes it possible
to move beyond merely justifying the discount factor to-
wards synthesis approaches for designing the right discount
factor for a given problem.

1 Introduction and Background

Increasing interest in the development of real-time plan-
ning systems has led to a desire to merge ideas from the
fields of planning, operations research, and controls engi-
neering. Planning systems are typically modeled as Markov
Decision Processes (MDPs), with the plan objective to max-
imize the expected discounted reward. Such an objective
usually leads to computationally intractable dynamic pro-
grams, due to the high complexity of the cost-to-go compu-
tation (i.e., it is NP-complete).

One approach to address the complexity problem is to
emulate Model Predictive Control (MPC) as applied in the
area of continuous dynamical systems. In the MPC frame-
work, a plan is generated which projects into a significant
future time horizon, but only the first components of it
are executed. After this, the plan is regenerated using the
same technique with the most current available information.
Control engineers have developed tools within this MPC
framework [2, 7] that allow them to synthesize controllers
that achieve the performance objective robustly [10, 4].

Within the literature of Discrete Event Systems[3], tech-
niques have been proposed to address the complexity issues
of solving MDP-type planning problems. It has been found
that the use of “discount factors” —that is, the practice of
exponentially discounting future value— are often benefi-
cial to efficiently finding a good solution. However, apply-
ing such discount factors has been justified ad-hoc, based
on the intuitive nature of the practice. It has been sub-
sequently shown that the discount factor aids in the con-
vergence of certain fixed-point algorithms for solving the
underlying DP[1, 6].

In this paper, we cast a canonical problem in dynami-
cal planning systems into the framework of “classical” dy-

namics control problems. In this framework, we adapt
the tools of robust performance to the canonical dynami-
cal planning problem. This allows for an interpretation of
events in the future horizon from a frequency bandwidth
perspective. Specifically, we show that the discount factors
normally used in MDPs can be interpreted as the perfor-
mance and robustness bandwidths of the control system.
This makes it possible to move beyond justifying the dis-
count factor toward synthesis approaches for designing the
right discount factor for a given problem.

The paper is organized as follows. Section 2 formulates
a time-critical, dynamic planning system, and discuss how
such problems can be cast as an optimal control problem.
Section 3 reviews some robust control theory pertaining to
a formal definition of robust performance. We analyze the
robustness of planning systems for ideal plant dynamics in
Section 4, and suggest a strategy for robust planning in
Section 5. This control strategy is applied to a routing
problem in Section 6. Finally, we make some observations
and conclusions in Section 7.

2 Planning System Formulation

Many plans can be characterized by accomplishment of
partial objectives which lead to the main objective. If the
main objective maximizes “value,” then such a character-
ization accrues value for every partial objective achieved.
Often, we would like to capture the timeliness of achieving
partial objectives—typically, the sooner, the better.

The framework of Markov decision processes (MDPs) [1,
8, 5] is useful for formalizing this discussion of planning
systems. To capture timeliness, a discount factor, γ ≤ 1,
has been used to quantify the rate at which value, V, decays.
This suggests a value function of the form

V =

〈 ∞∑
t=0

γt v(t)

〉
(1)

where v(t) is the value accrued in time step t, and <>
represents expected value.

As discussed in the introduction, such time-criticality is
found in the MDP literature. Also, on-line planning tech-
niques [6] are designed to replan periodically to exploit new
information. Such approaches are analogous to those of
Model Predictive Control (MPC), which involves periodic
updates to the plan. We propose that a control theoretic
view of planning provides unique and useful insights by fo-
cusing attention on the structure of the uncertainty arising
from measurement errors and unmodeled dynamics.

The objective of robust, optimal control design is to find



a control policy, c, to minimize an objective function, J , in
the presence of disturbance, u. The system diagram which
captures the principal elements of the formulation is shown
in Figure 1.

Figure 1: System diagram for planning system

To make the connection from the MDP value maximiza-
tion problem to an objective function minimization problem
we work with potential value, y, rather than captured value,
v. The value captured at a given time, (i.e. v(t) of equation
(1)), leads to a reduction in the potential value, y(t). Thus,
a good plan is one which drives the potential value to zero
(i.e. by acquiring it). The change in potential value at a
given time, ẏ(t), is the reduction in potential value achieved
by executing the plan,

ẏ(t) = u(t)− v(t) ≤ 0 (2)

where v is planned value capture, and u is the execution
error in the value capture. In this context, execution errors,
u, model the failure to capture planned value and therefore
are bounded by the planned value, v. Thus, performance
can be expressed in terms of how the controller drives the
output signal to zero remaining value, which is analogous to
the standard disturbance rejection formulation of classical
control. The associated optimal control problem seeks the
optimal control policy, c∗ such that

c∗ = arg inf
c=f(x)

sup
‖u‖<1

∫ ∞

−∞
J(x, c, u)dt (3)

where x is the system state.

Solving this dynamic program is typically not feasible, of-
ten due to the sheer complexity of x. A common approxima-
tion is to solve the problem using Model Predictive Control
(MPC), which makes some assumptions about disturbances
into the future, defining a predictor model. Based on the
predictor model, we may define a policy, c, in terms of time,
t, rather than state, x. Only the beginning of this solution
is used, and then a new optimization problem is solved,
taking advantage of new information which has meanwhile
become available. Although a closed-loop predictor is the-
oretically preferable, algorithmic inefficiencies often make
an open-loop predictor more practical. This is particularly
true when the system contains nonlinearities [9].

Note that the control policy, c, shown in Figure 1 has two
time indices, t, and τ . This is a somewhat unique aspect of
planning systems, since the control does not simply involve

the actions executed time, t, but also those anticipated for
future times, τ (i.e. planning time).

The MPC approximation modifies (3) into the following
problem

c(t, τ) = c∗t (τ)

c∗t (τ) = arg inf
c∗(τ)

sup
u∈U

∫ ∞

t

J(x, c∗, u)dτ (4)

where U represents the set of allowable disturbances, and
c∗t is a single plan generated at time t. Thus, the problem of
control synthesis becomes one of selecting J appropriately.

2.1 Issues in Controller Synthesis

Perhaps the most important benefit to a control theoretic
view of dynamic planning is one of perspective. Control
theory provides powerful tools for engineers to explicitly
account for system performance and model uncertainty. In
particular, frequency domain techniques allow us to specify
“where” system performance is important and “where” un-
certainties are likely to lie (in the frequency domain). Often,
performance is important at “low” frequencies (below some
threshold of interest), and the uncertainties are present at
“high” frequencies. Such an analysis is practical because it
can often be done with only a rough understanding system
components which ignores the dynamical details.

These considerations generically hold true for time-
critical planning systems as well. We will show how the
Discounted Markov Decision Process objective (1) can be
derived from control theoretic performance notions. To pro-
ceed with this, we must conduct a more formal performance
and robustness analysis in the planning domain. First, how-
ever, we review some of the tools of analysis.

3 Concepts from Robust Control

The theory of robust control provides us with a solid
framework to discuss performance of uncertain systems, and
to design feedback strategies which achieve this performance
robustly. We review some elements of the theory pertaining
to robust performance. For more comprehensive reviews on
the subject, see [10, 4].

3.1 Performance Measures

Many control problems can be cast mathematically as
disturbance rejection problems (i.e. keeping some norm of
a set of relevant signals small). Given the size of a dis-
turbance signal, the relevant problems are (a) to compute
the associated influence on the controlled output (the anal-
ysis problem), and (b) to ensure that the influence is kept
small enough so that the design requirements are met (the
synthesis problem). For linear, time invariant systems the
influence is represented by the system induced gain defined
as:

sup
‖u‖<1

‖y‖

Where u is the disturbance signal to be “rejected”, and y is
the output signal we want to isolate from the disturbance.



In general, a control system cannot reject disturbances
at all frequencies. Thus, control engineers design a perfor-
mance filter, hp, to preferentially reject disturbances in the
feedback signal (i.e. the output) within the dynamic range
of the plant. Typically, hp takes the form of a low-pass
filter, passing all output below some cutoff frequency.

3.2 Robustness and the Small Gain Theorem

To account for the inevitable incompleteness and uncer-
tainty in system modeling, control engineers often define a
range of possibilities for the unmodeled dynamics (called an
uncertainty model). Achieving the required performance for
all of these possibilities yields a “robust controller”. There
are several approaches to defining the range of possible mod-
els. When the uncertainty is dominated by sensor errors and
neglected high frequency dynamics, a multiplicative uncer-
tainty model, as shown in Figure 2, is appropriate for syn-
thesis and analysis. Specifically, the uncertainty is modeled
as Wu∆.

Figure 2: Typical model of a system with multiplicative
uncertainty and feedback control.

The Wu block in Figure 2 is a filter on the command sig-
nal which defines the frequency content of the uncertainty,
∆. Typically, Wu takes the form of a high-pass filter which
is commensurate with the uncertainty associated with sen-
sor errors and high-frequency unmodeled dynamics. The
uncertainty, ∆, is bounded, ‖∆‖ < 1, but otherwise arbi-
trary. A well known result in control theory states that the
closed loop system will be stable for all (bounded) ∆’s if it
is stable for ∆ = 0 and the following condition on closed
loop induced gain:

sup
‖zi‖<1

‖zo‖ < 1.

This result is usually referred to as the “small-gain” theo-
rem.

3.3 Robust Performance

The control objectives are achieved reliably when the sys-
tem is stable and performance requirements are met for all
values of ∆. This condition is referred to as robust perfor-
mance. A sufficient condition for robust performance is that

the system is stable for ∆ = 0 and the following induced
norm condition is verified

‖y‖∞ < 1 and ‖zo‖∞ < 1 (5)

for any bounded inputs, ‖u‖ < 1 and ‖zi‖ < 1. We will
use this test of robust performance in the development that
follows.

4 Planning System Robust Performance
Analysis

Figure 3 shows the planning system of Figure 1 with fil-
ters attached to the output signal, y, and plan signal, c. To
satisfy the performance and robustness conditions of equa-
tion (5), we minimize the system “gain” from the distur-
bance signal u to the filtered output signal, yf , and the
filtered plan signal, cf . For convenience, we choose the ∞-
norm to measure the system gain.

Figure 3: Planning system with filtered outputs

4.1 Performance Filter on the Output Signal

The performance requirements of the system are encoded
in the performance filter. The timeliness present in equa-
tion (1) indicates that plan quality is not only a matter of
how small the potential value, y gets, but how quickly it
is driven to zero. From a controls perspective, the perfor-
mance filter accomplishes this by emphasizing disturbances
rejection at frequencies where the filter gain is large and
ignoring disturbances where the filter gain is small. The
filter used, hl, is a first order, anti-causal, low pass filter of
bandwidth a, which has the following transfer function,

hl =
s

s− a
.

Such a filter is stable, anti-causal provided that a > 0.
Note that we have access to the entire signal y(t), via our
predictive model, so an anti-causal filter does not violate
physical causality. An anti-causal low pass will prefer value
acquisition for short times in the future to value acquisition
in the far future (i.e. sooner is better than later). The
output of the filter can then be written:

yf (t) = hl ∗ y = a

∫ ∞

t

y(τ)ea(t−τ)dτ (6)

This is analogous to the discounted value of (1) as found
in the MDP literature. Our interpretation of this as a low-



pass, anti-causal filter on the output signal is novel, how-
ever.

Integrating by parts in (6) produces

yf (t) = −y(τ)ea(t−τ)
∣∣∣∞
t

+
∫ ∞

t

ẏ(τ)ea(t−τ)dτ

= y(t) +
∫ ∞

t

(u(τ)− v(τ))ea(t−τ)dτ (7)

If t0 is the current time, we can derive an upper bound for
the filtered signal for times t greater than t0.

Lemma 1: A filtered signal, yf , which arises from the
action of a stable, anti-causal filter (6) on a signal obeying
(2), has the property

yf (t) ≤ yf (t0) ∀t > t0. (8)

Proof: Differentiating (7) with respect to time, and substi-
tuting the definition of ẏ from (2) produces

d

dt
yf (t) = a

∫ ∞

t

(u(τ)− v(τ))ea(t−τ)dτ

The first two terms cancel, and the integrand is negative from

(2). Thus, the sign of dyf/dt is negative if a > 0, which comes

from the stability of filter.

4.2 Robustness Filter on the Plan Signal

Recall that the plan signal, c, is a function of two vari-
ables, the time t at which the plan is generated, and the
time index along the plan, τ . Unmodeled dynamics in the
system are excited by two high frequency phenomena: (a)
Plan variability, or how fast the plan changes in t for any
given τ , (b) Plan complexity, or how much the plan changes
in t for any given τ . Robustness requires penalties to both
high variability and high complexity, which is accomplished
using a two-dimensional, anti-causal, high-pass filter, hh.
This has the following form in the Laplace domain:

hh =
s1s2

(s1 − a)(s2 − b)

where s1 and s2 are the Laplace variables associated with
the time variables, t, and τ , respectively.

In the MPC framework, the recomputation at time t0 can
introduce discontinuities, which leads to some extra terms
in the filtered plan, cf = hh ∗ c of the following form:

cf (t, τ) =
∫∞

t

∫∞
τ

[
∂
∂t

∂
∂τ c(σ, ε) + ∂

∂τ ∆t0(τ)δ(σ − t0)+
∂
∂t∆τ0(t)δ(ε− t0) + ∆t0,τ0δ(σ − t0, ε− t0)

]
ea(t−σ)eb(τ−ε)dεdσ

(9)

where the ∆ discontinuity factors1 are,

∆t0(τ) =
{

c(t+0 , τ)− c(t−0 , τ), τ > t0
0, otherwise

∆τ0(t) =
{

c(t, τ+
0 )− c(t, τ−0 ), t > τ0

0, otherwise

∆t0,τ0 = c(t+0 , τ+
0 )− c(t−0 , τ−0 )

1Not to be confused with the ∆ uncertainty block of Figure 2

For all times τ before t, the plan has already executed.
Therefore, ∂c/∂τ = 0 for τ < t. Also, for all t > t0 our
assumption is that the plan is executed as planned at t0;
thus,

∂

∂t

∂

∂τ
c(t, τ) = 0 for {t > t0,∀τ} or, {τ < t}. (10)

Lemma 2: A filtered signal, cf , which arises from the
action of a 2D, anti-causal, high-pass filter (9) on a plan
signal obeying (10), can be expressed

cf (t, τ) =
∫ t0

t

∫ t0

t

∂2

∂t∂τ
c(σ, ε)ea(t−σ)eb(τ−ε)dεdσ +

b

∫ ∞

t0

∆t0(ε)e
a(t−t0)eb(τ−ε)dε (11)

Proof: Substituting (10) into (9) shows that cf = 0 unless
t ≤ t0 and τ > t. Elsewhere, we can break up the integral in (9)
into two components: for τ < t0 and for τ > t0 in the following
manner:

cf (t, τ) =
∫ t0

t

∫ t0

t
∂2

∂t∂τ
c(σ, ε)ea(t−σ)eb(τ−ε)dεdσ+∫ t0

t

∫∞
t0

[
∂

∂τ
∆t0(ε)δ(σ − t0)+

∆t0,τ0δ(σ − t0, ε− t0)] e
a(t−σ)eb(τ−ε)dεdσ

Applying integration by parts to the second integral, and using
the properties of the δ-function we obtain the desired result as
follows:∫ t0

t

∫∞
t0

[
∂

∂τ
∆t0(ε)δ(σ − t0)+

∆t0,τ0δ(σ − t0, ε− t0)] e
a(t−σ)eb(τ−ε)dεdσ

=
∫∞

t
∂

∂τ
∆t0(τ)ea(t−t0)eb(τ−ε)dε + ∆t0,τ0ea(t−t0)eb(τ−t0)

= b
∫∞

t0
∆t0(ε)e

a(t−t0)eb(τ−ε)dε

Equation (11) composes the filtered plan as the sum of
two terms, the first depending on past decisions and the
second depending on future decisions.

5 Controller Synthesis

As stated in Section 2 we seek an approximate real-time
solution to the dynamic optimal control problem using the
approach of model predictive control. For robust perfor-
mance, as defined in (5), we develop a plan which minimizes
‖[yf (t), cf (t, τ)]‖∞ where:

‖[yf (t), cf (t, τ)]‖∞ = max (‖yf (t)‖∞, ‖cf (t, τ)‖∞)

In what follows, we derive formulas to compute online
‖yf (t)‖∞ and an upper bound on ‖cf (t, τ)‖∞.

We consider the performance term, yf , first, and then
the robustness term, cf . Based on the upper bound derived
in Lemma 1, the infinity norm of yf (t) is minimized when
yf (t0) is minimized. Substituting the current time, t0, into
equation (7), we obtain

yf (t0) = y(t0) +
∫ ∞

t0

(u(τ)− v(τ))ea(t0−τ)dτ

Note that the first term, y(t0), is independent of the plan
due to causality of the system dynamics, and that t0 is a



constant. Therefore, yf (t0) is minimized when the following
expression is minimized

JP =
∫ ∞

t0

(u(τ)− v(τ))e−aτdτ (12)

Next we consider the robustness term. The ∞-norm in
the planning space is defined as

‖cf (t, τ)‖∞ = sup
t

sup
τ
|cf (t, τ)|.

At time t0 we would like to minimize this norm as a func-
tion of the future plan. To make the computation more
tractable, we will instead minimize an upper bound, which
is a conservative approach. The triangle equality applied to
the result in Lemma 2, (11), yields

|cf (t, τ)| <
∫ t0

t

∫ t0

t

| ∂

∂t

∂

∂τ
c(σ, ε)|ea(t−σ)eb(τ−ε)dεdσ +

b

∫ ∞

t0

|∆t0(ε)|ea(t−t0)eb(τ−ε)

Since the first term only depends on the past plan (again due
to causality), it becomes a constant, K, in our optimization,
producing

‖cf (t, τ)‖∞ < K + sup
t<t0

sup
τ>t0

∫ ∞

t0

|∆t0(ε)|ea(t−t0)eb(τ−ε)dε

< K + sup
τ>t0

∫ ∞

t0

|∆t0(ε)|eb(τ−ε)dε.

where t = t0 gives the greatest possible value in the second
term. To implement the maximization at an arbitrary time,
t0, we determine the plan that minimizes this upper bound,
i.e., we find the plan for τ > t0 such that

JR = sup
τ>t0

∫ ∞

t0

|∆t0(ε)|eb(τ−ε)dε (13)

is minimized.

The conditions (12) and (13), coupled with the goal of ro-
bust performance as defined in (5) provide the appropriate
guidance with which to design the controller. In the con-
text of the current planning system domain, we presume
that there is an algorithm available to solve the system in
(4). The issue is to define the objective function, J to be
minimized. We simply take the sum of the performance and
robustness terms for this minimization. For an optimization
performed at time t0, this produces the following expression
for J :

J =
∫

Jt0(x, c, u)dτ =
〈∫ ∞

t0

(u(τ)− v(τ))e−τ/τpdτ+

α

∫ ∞

t0

|∆t0(τ)|e−τ/τrdτ

〉
(14)

where α is a tuning parameter and we presume that plant
models can provide v and ∆ as a function of c and x, and
<> indicates an expected value.

Remarks: The MPC implementation achieves perfor-
mance by minimizing the filtered value (12). The low-pass
filter encodes a discount factor analogous to that found

in the objective of Discounted Markov Decision Processes
(MDP) in equation (1). These two can be related by setting
γ = e−a and u = 0. This derivation shows how the dis-
count factor of MDP can be interpreted as a performance
bandwidth requirement. Further, the robustness require-
ment (13), is achieved by minimizing the discounted change
in plan. Such a robustness discount factor represents the
“bandwidth” of the uncertain dynamics.

6 A Vehicle Routing Problem Application

In this section, we apply the concepts from the previous
sections to the problem of planning the routes of multiple
delivery vehicles. The output of the routing process is an
ordered list of activities in time and space for multiple ve-
hicles. There are multiple activity types with uncertainty
(e.g. on-time pick-up and delivery), and various constraints
handled by the optimization algorithm. The plans are ex-
ecuted in a high-fidelity simulation environment, which ac-
counts for traffic constraints and vehicle dynamics. The
planning is done in a dynamic, on-line fashion, analogous
to MPC.

As shown in (14), the robustness criterion is highly de-
pendent upon computing the plan difference ∆t0 from the
previous plan. In the context of discrete-event systems, this
is subject to interpretation since the “plan” may not live in
an obvious metric space. The plan difference metric used in
the current study is shown in Figure 4. It essentially maps
the difference from the previous plan into the net Euclidean
distance between associated points.

Figure 4: Definition of the planning and robustness compo-
nents of objective, J .

To assess our controller, we compare our robust plan gen-
erator to those which use a discounted value for performance
only (but ignore robustness). These are (a) A performance-
only “fast” controller with a relatively small timescale τp

(α = 0), (b) A performance-only “slow” controller with a
relatively larger timescale τp (α = 0), and (c) A robust con-
troller (α 6= 0) at the “fast” timescale τp. We find that
there are significant benefits to using a robust planner in
the presence of uncertainty.

Figure 5 shows the statistical long-time performance of
the three controllers, computed from approximately 100
Monte Carlo trials. The robust controller achieves the best



statistical value capture, and is followed by the “slow” con-
troller and then by the “fast” controller. Apparently, the
performance-only controller loses efficiency in the face of
uncertainty. However, the “slow” controller does better in
the long term than the “fast” controller.

Figure 5: Performance statistics of long term value for the
controllers tested: slow(blue), fast(green), and robust(red).

Figure 6 shows the response time of the three controllers.
The response time is measured in terms of the lag in sec-
onds from the time a disturbance is detected by the control
system to the time that the system executes a plan action to
mitigate the disturbance. The response time of the “fast”
controller and the robust controller are approximately the
same, and both are considerably faster than the “slow” con-
troller. Thus, the better performance achieved by the ro-
bust controller in the long-term does not entail a sacrifice
in response time.

Figure 6: Peformance statistics for short term value for
the controllers tested: slow (blue), fast (green), and robust
(red). The shaded region shows the spread of results for
various trials.

7 Conclusions

In this paper we have established a connection between
two well developed research areas, robust control and plan-
ning controllers for Markov Decision Processes.

A canonical time-critical planning system is defined in
the context of classical continuous-time systems. Some ex-
tensions are necessary to capture the fact that the plans are
made into the future, using estimates at the current time.
The system is set up such that the initial value represents
“potential” value of the system, which the planning system
attempts to capture by driving the value to zero. This is
analogous to classical systems which reject disturbances by

driving their output to zero.

Motivated by performance and robustness analysis of
classical systems, we apply filters to the output and plan
signals. We show that minimizing the infinity norm of the
output filtered by an anti-causal, first order, low pass filter
is equivalent to minimizing the aggregate discounted future
value. (Note that the use of an anti-causal performance fil-
ter does not affect the causality of the plant or the control
system.)

The robustness condition for classical control involves a
penalty on high frequency control actions. The analogous
condition for our canonical MDP planning system is a dis-
counted cost on future variations in the plan. The cost
is highest for events planned to occur close to the time of
planning and lower for events farther in the future.

These concepts have been applied to a dynamic vehicle
routing problem with uncertainty and time-criticality. The
robust control synthesis strategy described here produces
results with good performance in both long term and short
term, beyond that achievable without explicitly considering
robustness.
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