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input, pole placement, Ackermann's formula In this paper the parameterization of state feedback gains for

pole placement for multi-input systems presented in Noddstr
Abstract and Norlander [9] is investigated and characterized. This pa-

) r?meterization gives an analytical expression for the feedback
The polg placement problem has been a subject for researciyhs that only involves the system matrices of the open loop
a long time. It is well known that state feedback control is

Hici hni for th le ol bl For sindl stem and two design parameters. The main result of the pa-
€ icient tec nique or the po ep acement problem. For singlga i that this parameterization covers every possible feedback
input systems this problem is well understood but for mult)-

. ) ain when all the open loop system poles should be modified. It
input systems the pole placement problem is more complex.

' . ; 0 contains a discussion on how the design parameters char-
this paper, a parameterization of state feedback gains for pQle

) . : derize the closed loop system.
placement is characterized with respect to completeness an
existence. This parameterization depends on two matrices tha€e paper is confined to a treatment of the continuous-time
can be regarded as design parameters. It is shown how thesiiate feedback control problem. However, since the discussion
gree of freedom in the pole placement problem for multi-inpiainly concerns algebraic properties, the results are valid for
systems is characterized by these two matrices. It turns @igcrete-time systems as well. With minor and obvious modifi-
that the properties of the parameterization depend on whethations they are also applicable to the observer design problem.

the characteristic polynomials of the open and the closed Io?ﬂe paper is organized as follows. In Section 2 a problem

systems_ are coprime or not. ".1 this paper the case when tti’(‘Jc"PFnuIr:ltion is given and necessary notations are introduced.
are coprime is emphasized. It is shown that for this case evedy,

‘ble feedback qai b ed in thi proposed parameterization of state feedback gains for pole
possible feedback gain can be parameterized in this way, %ﬁiement is presented in Section 3. In Section 4 the role of the

in this sense the parameterization is complete. The para Wo design parameters is discussed, and it is shown that the pa-

terization implies that a certain matrix is invertible. Necessafy . terization is complete when all poles are modified. Then
conditions for when this matrix is invertible are given in terms, <o tion 5 the existence of parameterized feedback Qains is
of the two design parameters. investigated, and some necessary conditions are given.

1 Introduction 2 Problem formulation

Statg fgedbgck control of Imegr systems can be dete",mnedé)(ynsider the continuous-time multi-input linear time-invariant
specifying different control objectives. Well known design ag; stem with the dynamic state equation
proaches like pole placement and LQ control are presente Yn

most textbooks on the subject. While the LQ control frame d
L - . - —ux(t) = Az(t Bu(t 1
work is independent of the number of inputs, there is a signif- dtx( ) 2(#) + Bu(?), @)
icant difference between the single-input and the multi-inpfp, vectorsz(t) € R" andu(t) € R™ for every fixedt, and
case for the pole placement approach. The reason for thigi$,stant matriced c R™*" andB € R™*™. Without I(;ss of

that in the multi-input case, the feedback gain matrix is Ngknerality, the matris3 is assumed to have full (column) rank.
uniquely determined by the desired closed loop pole locations.

This implies that further design objectives can be stated; @&fundamental importance for the behavior of the system (1)
for instance [8], [7] and [13] for some different approachd§ the location of its poles,e., the eigenvalues of the matrik,
where other design objectives are combined with pole plad#ven by the zeros of the characteristic polynomial

ment. However, opposite to the single-input case, there seems A o

to be a lack of explicit expressions for state feedback gains for ~ @(5) = det(s] —A) = 5" +a1s""" + - +an.  (2)

pole placement in the multi-input case, and oSt expressiQhs; jnstance, the location of the poles determines entirely
given require that the system is transformed to some cerRRether the system (1) is asymptotically stable, marginally sta-



ble or unstable. Therefore it is desirable to be able to modifyrroughout this paper the system (1) is assumed to be control-

the location of the poles using state feedback control: lable.
u(t) = —Lax(t), LeR™ ™. (3) Polynomials with a matrix in the argument will be used in the
Let sequel. For instance, fex-) in (4) we may write
JAN n n— —
p(s) =s" +p1s" '+ 4 pa, 4) p(A) = A" 4+ p A" o gl
wherep; € R fori = 1,...,n, be the desired characteristic

polynomial of the closed loop system. The problem is now t9sing the concept of Kronecker product, seg.[3], we have
find a feedback gain matrik so that the characteristic polyno-

mial of the closed loop system coincide with (4) when the con- p(A)B =¢€[(1—a)® L], (6)
trol law (3) is applied to (1). Thatislet(sI — A+ BL) = p(s)
should hold. In the single-input case:.(= 1) the feedback
gain, which is a row vector, is uniquely determined fi{y),
and there are several analytic expressions for it, for instance

Ackermann’s formula and the Bass-Gura formula [4]. Inth@ The parameterized state feedback gains

multi-input case, however, the feedback gain is not uniquely

determined by(s), and none of the mentioned formulas arBn explicit parameterization of the feedback gain for the multi-
applicable. In what follows, an analytic parameterization JfPut state feedback pole placement problem is given by the

the feedback gain for the multi-input case will be given. Fdpllowing theorem:

convenience, though, some notations will first be introduced. ] ]
Theorem 3.1 ([9], [10]) Let p(s) be a given monic polyno-

The characteristic polynomiadgs) andp(s) will be associated mjal, /7 € R"*™ a matrix such thatlet(sI — M) = p(s),
to vectors whose entries are the coefficients of the polynomiglgq et € R *" satisfy the equation

respectively:

and
AC=C[Ka®I]. (@)

[Ky® I,] T =TM. (8)
(427 Pn
a2 |, 72 ||, arer™ If the productCr is nonsingular, then
a1 P det(sI — A+ BL) = p(s),

Compare with equations (2) and (4) and note the reverse order ) ,
of the coefficients imy andr. with A and B as in Equation(1) and

To further abbreviate the notations, the standard ON-base vec- L= [el ® I,,] T(CT)'p(A). )
tors inR™ will be denoteck; fori =1,...,n,i.e,alattheth
entry and zeros elsewhere. Especially=[0 ... 0 1]T Proof See [9] or [10]. [ ]

will be used frequently. The square & n) matrix, with ones
in all entries of the first subdiagonal and zeros elsewhere, will

be denoted/. ThusJ = [es ... ¢, 0]. Theidentity ma- The theorem states that the closed loop system has the desired

trix will be denoted!, and an index marks the size of it (foryoles under the mentioned assumptions. The feedback gain is
instance[,, is them x m identity matrix). thus given by (9).

To any monic polynomial, a companion matrix can be assgg justify that (9) truly is a closed form expression for the feed-
ciated. Theright companion matricesissociated ta(s) and pack gain, the following lemma states an explicit expression for
p(s) are the matrixT.
KaéJ—ozeZ and KWéJ—ﬂef. )
Lemma 3.2 ([9], [10]) All solutions to(8) are
An important property of companion matrices (which explains

the association to polynomials) is that Loxn—1(M)
det(sI — K,) =a(s) and det(sI — K;) = p(s). r= (10)
Lox1(M)
A fundamental result in linear system theory is that an arbi- Lo

trary characteristic polynomial for the closed loop system ¢
be achieved by state feedback control if and only if the op
loop system is controllable.e., if and only if the controllabil- j
ity matrix, €, has full rank. The controllability matrix of the X;(s) 24y Zpksj—k7 (11)
system (1) is defined as =1

a . i
gﬂ]erexj(-),j =1,...,n — 1 are polynomials defined as

2 (B AB ... A"'B]. (5) and wherely € R™*" is an arbitrary matrix.



Remark An equivalent definition of the polynomialsin (11)is4 Characterization of the feedback gain param-
the recursive formula eterization

xo(s) = 1, x;(s) 2 sxjo1()+pj, j=1,...,n—1. The discussion here is confined to the case wiiehanda(s)
are coprimei.e., when all poles of the system (1) are modified.
m Thisis precisely the case when the magr{d) is nonsingular,
which is of great importance in what follows.

The parameterization in Theorem 3.1 and Lemma 3.2 seems to
Proof See [10]. m offer two design parameters, the matridédsandI’y. While the

choice ofM is restricted by the propertiet(sl — M) = p(s),

I'g is more of a free parameter. Indeed, when using the param-

eterization to generate a feedback gain, the malfixan be
Remark In the single-input case, where = 1, I'g willbe @ chosen as a first step, leavifig as the only design parameter
row vector and” will be a squarer x n matrix, which will be jn sycceeding steps. It may seem that the only functioi/of
nonsingular for an appropriate choicelaf and M. Further- s that its eigenvalues are the desired poles of the closed loop
more, the controllability matrix will be a squarex n matrix, system. However, the role of matri is a little more involved

which is nonsingular since the open loop system is assumeq{an that, as is stated in the following theorem:
be controllable. Then (9) turns to

Theorem 4.1 Let the polynomiap(s) and the matrixM be
given according to the conditions in Theorem 3.1p() and

gs = det(sI — A) are coprime, and if there exists a feedback
gain L given by(9), then the matricesA — BL and M are
S|m|lar.

L=elT(CD) " p(A) = el 'p(A),

which is recognized as Ackermann’s formula (see for instan¢
Kailath [4] Section 3.2).

Applying Lemma 3.2 to (9) yields the somewhat more ConV(Ie?emark This means that there exists a nonsingular matrix
bplyIng y such that'~'(A — BL)T = M. It also means thatt — BL

nient expression and M have the same Jordan form. [ |

L =To(CT)~'p(A). (12)

When the results in Theorem 3.1 and Lemma 3.2 originalﬁlee Appendix for a proof of Theorem 4.1.

were presented in [9], the right companion mafkix was used Thus, the matrix\/ determines the Jordan form of the closed
instead ofM in the right hand side of (8). A possible choicdoop system matrixd — BL. In fact, one possible choice is
that works in most cases is of course to 36t= K. How- to let A/ be the desired real Jordan form af— BL. This
ever, by allowing any\/ satisfyingdet(sI — M) = p(s), the restricts which matrice8/ that are feasible for the parameter-
results in Theorem 3.1 and Lemma 3.2 become more genejadtion when there are multiple poles among the desired poles
see Theorem 4.1 and the following discussion. of the closed loop system. While the algebraic multiplicity of a

The parameterization of state feedback gains given in Theorgﬁ?'red closed loop system pole can be arbitrarily highgthe
(P]@etnc multiplicityis restricted. Particularly, the latter cannot

3.1 and Lemma 3.2 gives rise to a number of questions. In(}) her than th b finputs. Exactly how hiah
subsequent sections some of these questions are discusse Fopgher than the numboer of INputs. Exactly how high geo-
tric multiplicities that are possible depends on the control-

instance, how efficient is the parameterization? That is, d
the parameterization cover all possible feedback gains? If n ility indices as described by Rosenbrock’s control structure
eorem [12] (see for instance Section 7.2.2 in Kailath [4], or

which feedback gains can, or cannot, be parameterized in tion 3.1 in K 5
way? These questions are discussed in Section 4. ection 3.1 in Kgera [5]).

The matricesV/ andTl’, in the feedback gain parameterizatiorl(vith cal(_:u_lations very similar to the on(_e§ in the proof of Theo-
may both be regarded as design parameters. The restriclion 4.1itis possible to show tha#(4)) " CT'is the solution
det(sI — M) = p(s) perhaps suggests thaf should be cho- 10 a certain linear matrix equation.

sen in a first turn, leavin@, as the free design parameter. In

Section 4 it is shown that this is a reasonable procedure. Tmma 4.2 ([10]) If the polynomialsa(s) = det(sl — A)
next question then is hol, should be chosen. The paramand p(s ) = det(s] — M) are coprime, then the product
eterization relies on the existence of the invef@E) !, so a (p(A4)) " ! @I is the unique solution to the equation

first matter of interest is to choo$g so thatCI' is nonsingular.

This is a nontrivial issue. In Section 5 the existencé@if) ' AX — XM = BTy, (13)

is discussed, and some necessary conditions for the existence
are presented. with matricesC, I' andI'y according to(5) and Lemma 3.2.



Proof See [10]. B with M; andM; in (12) give

le{l 2 1} andLQ:[l 2 0}’

Notice thatCl’ need not to be nonsinguldp(A)) ™" CT is the 001 001

unique solution of (13) anyway. Linear matrix equations of . . . -

the type (13) are called Sylvester equations, and have b%%%pejctl\;;elyé th |s_read|1Iy3ver|(1;|(ter(?‘1e: (S‘}r{ . IA Z %LLl)
used quite frequently in linear control theory, like in the the2-e (‘; N k+ 7 2)A_ (‘ELL) _ar11 atank(—I—A+BL,)
ory for observers (see.g. Luenberger [6] or O'Reilly [11]). = 2Mdran (-I-A+BLy) =1 °
Sylvester equations also have been used for pole placement of

multi-input systemsd.g. in Bhattacharyya and de Souza [1]). o ]

Lemma 4.2 will be used to show that the parameterization pre?€ parameterization is quite successful whgn) andp(s)

sented here is complete in the case whés) anda(s) are are coprime. However, the situation is less favorable for the
coprime. case whenu(s) = det(sI — A) and the desired characteristic

polynomial p(s) arenot coprime. This is mainly due to the

Theorem 4.3 Every feedback gairl, such thata(s) = fact thatp(A), that is a part of the parameterization, is singu-
det(sI — A) andp(s) = det(sI — A + BL) are coprime, & when some eigenvalue of coincides with some zero of

can be parameterized as in Theorem 3.1 and Lemma 3.2. p(s). A more thorough characterization of the parameteriza-
tion is presented in Norlander [10], where the case wh(@h
anda(s) are not coprime is discussed.

See Appendix for a proof of Theorem 4.3.

Hence, the parameterization is complete for the case when_ all . .
the poles of (1) are modified — complete in the sense that ev§y On the _eXlStence of the parameterized feed-
possible feedback gain can be generated by (9) and appropriate Pack gains

choices of the matrices/ andL'o. The parameterization of feedback gain matrices for pole place-

Theorems 4.1 and 4.3 indicate how the design paramétersment presented in Theorem 3.1 and Lemma 3.2 relies on the
andT', should be used. The choice &f has relevance when invertability of the matrixCT.

p(s) has multiple zeros, since then. there are several pOSSiH)er CT to be invertible it must have rank There are several
Jordan forms ford — B.L' OnceM is chosen, and thus theways to write the produdil’, and below we will elaborate on
Jordan form ofd — BL is determinedl’, can be.usgd 10 g€N-yhis in order to give necessary conditions for nonsingularity. A
erat_e all, and only those, feedback gainthat will yield that well known property (see for instance [2]) is thatk CT' <
particular Jordan form ofl — BL. min(rank €, rankI"). Thus obvious necessary conditions for
A simple example illustrates how the parameterization can bensingularity ofCI is thatrank € = n and thatrank I' = n.
used. Due to the controllability assumption it holds thahk C = n.
However, some basic manipulations of the prodiictreveals

Example 4.1Consider the third order system with two inputsstronger conditions, which offer a nice interpretation in terms
of linear system theory.

d 010 0 0 )

S e =Ax+Bu, A=|0 0 0|, B=|1 o], Introduce the matrix

dt 000 0 1

Pn—1 e D1 1

with all poles in the origin. Assume thais) = (s + 1)? A : 210
is the desired characteristic polynomiak., the closed loop = J
system should have a triple pole in -1. There are two possible n1
Jordan forms forA — BL, depending on whether one or two 1 0 - 0

eigenvectors ofl — BL are desired. The choices i o .
i.e, a Hankel matrix in the coefficients gf-). ThenI' can be

-1 1 0 -1 1 0 factorized as
My=]1]0 -1 1|, My=1]0 -1 0],
0 0 -1 0 0 -1 Lo
ToM
correspond to these two cases respectively, according to Theo- I'= & I,] : - (14)
rem 4.1. The choicé/f; = —I3 would correspond to having FOM"—l

three eigenvectors of — B, and this is not possible to obtain
by state feedback according to Rosenbrock’s control structL1re .
he matrix

theorem [12]. Using [II ® I,,,] is square and has full rank, Sowill have

full rank if and only if the second matrix in (14) has full rank.
1 0 0 The second matrix is recognized as the observability matrix for
o= ’ the pair(T'y, M).



It is now possible to write the produ€f” as allowed to be varied. The matri@" then depends linearly on
I'g, and thuslet CI" is a polynomial in the entries dfy. Now,

Iy CI' is singular exactly whedet CI" = 0, but since there exist
ToM matricesI’y for which det CT" # 0, due to the continuity of

Cr =€ [I1® L] : polynomialsdet CT" = 0 will hold for almost all matriceg.
r M"—l In this sense the nonsingularity 61" is generic. Particularly,

0 if CI' is singular forI'§, every neighborhood of; contains

JI& matricesl’y for which CT" is nonsingular.
= [Bly ABTy, ... A""'BIy][I®1,] _
: 6 Conclusions
Mn—l

(15) A somewhat modified version of the parameterization of state

feedback gains for pole placement in [9] has been presented
The matrix U MT ... (MmHT ] has full rank. The and characterized in terms of complgter)ess_ and eX|sten.ce It
expression (15) shows that necessary conditions for the n§AS Peen shown that the parameterization is complete in the
singularity of CT" are that(A, BT',) is controllable and that €aS€ when all poles of the open loop system should be mod-

(T, M) is observable. 1T has full rank(A, BT,) is con- ified. The parameterization _mvolves t\_/vo design parameters.
trollable if and only if (4, B) is controllable. There are no One of these, a square matrix, determines the Jordan form of

restrictions on the rank df, though. In fact, by choosing, (he closed loop system matrix — BL, while the other one

as a rank one matrisi,e, [y = ¢7Z for some vectorg and is an almost free design parameter, which. can be used to

~&, it is sufficientto have(A, Bq) controllable and~Z, M) meet additional control objectives (see for instance Chapter 7 in
1 9,

observable foT" to be nonsingular. This of course reducekl0))- The existence of parameterized feedback gains has also

the system to a “single-input” system and it is only apphcabFéee” discussed, and some necessary conditions on the design
when the system matrix is cyclic. parameters have been formulated.

The discussion so far leads to the following lemma: .
Appendix

Lemma 5.1 The matrixCT" is nonsingular only i A, BT'0) is  Proof of Theorem 4.1 The proof is based on the fact that it

controllable and(I'y, M) is observable. can be shown thal’~*(A — BL)T = M holds forT =
(p(A))~! €. The inverse of(A) exists sincep(s) anda(s)

Itis stressed that these conditions are necessary, but not sefé coprime. The existence ofiagiven by (9) implies that the

cient, which is illustrated in the following example. matrix CT" is nonsingular. A straightforward calculation gives

Example 5.1Reconsider the system in Example 4.1, and as- (e1)~! p(4)(A — BL) (p(A)) "' €T
sume again that(s) = (s + 1)? is the desired characteristic

polynomial of the closed loop system. First, notice that the = (CI')™' (ACT — p(A)BL (p(A))~" GF)
choice M3 = —I5 is ruled out by Lemma 5.1, since the pair 1 T o
(T'o, —1I3) is unobservable for evety, € R?*3. With = (CT) ™" (ACT — p(4)B [en, ® [] T)
= (€)' (€[Ka® | —€[(r—a)el ®I,| T)
-1 1 0
My= |0 -1 0 and Ty = [911 g12 913} (GF) 1€[K7r m] = (G ) 1GFM:M,
0 0 -1 g21 g22 G23|’

which proves the theorem. The last few steps made use of (6),
the conditions in Lemma 5.1 are satisfied exactly whdd)and (8). u
911923 — g13921 # 0. However,

det CT' = g11(g11923 — 913921), ) ) )
Proof of Theorem 4.3 First notice that, according to (12) and

so in caseg;; = 0 CI' becomes singular, even though.emma 4.2, the parameterized feedback gain can be written
911923 — 913921 # 0. o asL =TyX, whereX is the unique solution to the Sylvester
equation (13). Now let.* be any feedback gain for which
a(s) = det(sI — A) andp(s) = det(sI — A + BL) are
It should be pointed out that, for the case whefs) = coprime. With the particular choicd/ = A — BL* and
det(sI — A) and the desired characteristic polynomiéd) are T'y = L*, the identity matrix/ is obviously a solution to (13).
coprime, the matriXCI" is nonsingular for almost eveily, and Also, X = I is the unique solution, and thus the parameterized
any feasiblel/. The reason for this is that according to Thefeedback gain i€ = I'yX ! = L*. This proves the theorem,
orem 4.3 there exist matriced andI'y for which CI" is non- since this holds for every sudti. |
singular. Say that the (feasible) matd{ is fixed andl'y is
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