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Abstract

The pole placement problem has been a subject for research for
a long time. It is well known that state feedback control is an
efficient technique for the pole placement problem. For single-
input systems this problem is well understood but for multi-
input systems the pole placement problem is more complex. In
this paper, a parameterization of state feedback gains for pole
placement is characterized with respect to completeness and
existence. This parameterization depends on two matrices that
can be regarded as design parameters. It is shown how the de-
gree of freedom in the pole placement problem for multi-input
systems is characterized by these two matrices. It turns out
that the properties of the parameterization depend on whether
the characteristic polynomials of the open and the closed loop
systems are coprime or not. In this paper the case when they
are coprime is emphasized. It is shown that for this case every
possible feedback gain can be parameterized in this way, and
in this sense the parameterization is complete. The parame-
terization implies that a certain matrix is invertible. Necessary
conditions for when this matrix is invertible are given in terms
of the two design parameters.

1 Introduction

State feedback control of linear systems can be determined by
specifying different control objectives. Well known design ap-
proaches like pole placement and LQ control are presented in
most textbooks on the subject. While the LQ control frame
work is independent of the number of inputs, there is a signif-
icant difference between the single-input and the multi-input
case for the pole placement approach. The reason for this is
that in the multi-input case, the feedback gain matrix is not
uniquely determined by the desired closed loop pole locations.
This implies that further design objectives can be stated; see
for instance [8], [7] and [13] for some different approaches
where other design objectives are combined with pole place-
ment. However, opposite to the single-input case, there seems
to be a lack of explicit expressions for state feedback gains for
pole placement in the multi-input case, and most expressions
given require that the system is transformed to some certain

form.

In this paper the parameterization of state feedback gains for
pole placement for multi-input systems presented in Nordström
and Norlander [9] is investigated and characterized. This pa-
rameterization gives an analytical expression for the feedback
gains that only involves the system matrices of the open loop
system and two design parameters. The main result of the pa-
per is that this parameterization covers every possible feedback
gain when all the open loop system poles should be modified. It
also contains a discussion on how the design parameters char-
acterize the closed loop system.

The paper is confined to a treatment of the continuous-time
state feedback control problem. However, since the discussion
mainly concerns algebraic properties, the results are valid for
discrete-time systems as well. With minor and obvious modifi-
cations they are also applicable to the observer design problem.

The paper is organized as follows. In Section 2 a problem
formulation is given and necessary notations are introduced.
The proposed parameterization of state feedback gains for pole
placement is presented in Section 3. In Section 4 the role of the
two design parameters is discussed, and it is shown that the pa-
rameterization is complete when all poles are modified. Then
in Section 5 the existence of parameterized feedback gains is
investigated, and some necessary conditions are given.

2 Problem formulation

Consider the continuous-time multi-input linear time-invariant
system with the dynamic state equation

d

dt
x(t) = Ax(t) + Bu(t), (1)

with vectorsx(t) ∈ Rn andu(t) ∈ Rm for every fixedt, and
constant matricesA ∈ Rn×n andB ∈ Rn×m. Without loss of
generality, the matrixB is assumed to have full (column) rank.

Of fundamental importance for the behavior of the system (1)
is the location of its poles,i.e., the eigenvalues of the matrixA,
given by the zeros of the characteristic polynomial

a(s)
4
= det(sI −A) = sn + a1s

n−1 + · · ·+ an. (2)

For instance, the location of the poles determines entirely
whether the system (1) is asymptotically stable, marginally sta-



ble or unstable. Therefore it is desirable to be able to modify
the location of the poles using state feedback control:

u(t) = −Lx(t), L ∈ Rm×n. (3)

Let
p(s)

4
= sn + p1s

n−1 + · · ·+ pn, (4)

wherepi ∈ R for i = 1, . . . , n, be the desired characteristic
polynomial of the closed loop system. The problem is now to
find a feedback gain matrixL so that the characteristic polyno-
mial of the closed loop system coincide with (4) when the con-
trol law (3) is applied to (1). That is,det(sI−A+BL) = p(s)
should hold. In the single-input case (m = 1) the feedback
gain, which is a row vector, is uniquely determined byp(s),
and there are several analytic expressions for it, for instance
Ackermann’s formula and the Bass-Gura formula [4]. In the
multi-input case, however, the feedback gain is not uniquely
determined byp(s), and none of the mentioned formulas are
applicable. In what follows, an analytic parameterization of
the feedback gain for the multi-input case will be given. For
convenience, though, some notations will first be introduced.

The characteristic polynomialsa(s) andp(s) will be associated
to vectors whose entries are the coefficients of the polynomials
respectively:

α
4
=

an

...
a1

 , π
4
=

pn

...
p1

 , α, π ∈ Rn.

Compare with equations (2) and (4) and note the reverse order
of the coefficients inα andπ.

To further abbreviate the notations, the standard ON-base vec-
tors inRn will be denotedei for i = 1, . . . , n, i.e., a 1 at theith
entry and zeros elsewhere. Especiallyen =

[
0 . . . 0 1

]T

will be used frequently. The square (n × n) matrix, with ones
in all entries of the first subdiagonal and zeros elsewhere, will
be denotedJ . ThusJ =

[
e2 . . . en 0

]
. The identity ma-

trix will be denotedI, and an index marks the size of it (for
instance,Im is them×m identity matrix).

To any monic polynomial, a companion matrix can be asso-
ciated. Theright companion matricesassociated toa(s) and
p(s) are

Kα
4
= J − αeT

n and Kπ
4
= J − πeT

n .

An important property of companion matrices (which explains
the association to polynomials) is that

det(sI −Kα) = a(s) and det(sI −Kπ) = p(s).

A fundamental result in linear system theory is that an arbi-
trary characteristic polynomial for the closed loop system can
be achieved by state feedback control if and only if the open
loop system is controllable,i.e., if and only if the controllabil-
ity matrix, C, has full rank. The controllability matrix of the
system (1) is defined as

C
4
=

[
B AB . . . An−1B

]
. (5)

Throughout this paper the system (1) is assumed to be control-
lable.

Polynomials with a matrix in the argument will be used in the
sequel. For instance, forp(·) in (4) we may write

p(A) = An + p1A
n−1 + · · ·+ pnI.

Using the concept of Kronecker product, seee.g. [3], we have

p(A)B = C
[
(π − α)⊗ Im

]
, (6)

and
AC = C

[
Kα ⊗ Im

]
. (7)

3 The parameterized state feedback gains

An explicit parameterization of the feedback gain for the multi-
input state feedback pole placement problem is given by the
following theorem:

Theorem 3.1 ([9], [10]) Let p(s) be a given monic polyno-
mial, M ∈ Rn×n a matrix such thatdet(sI − M) = p(s),
and letΓ ∈ Rnm×n satisfy the equation[

Kπ ⊗ Im

]
Γ = ΓM. (8)

If the productCΓ is nonsingular, then

det(sI −A + BL) = p(s),

with A andB as in Equation(1) and

L =
[
eT
n ⊗ Im

]
Γ(CΓ)−1p(A). (9)

Proof See [9] or [10]. �

The theorem states that the closed loop system has the desired
poles under the mentioned assumptions. The feedback gain is
thus given by (9).

To justify that (9) truly is a closed form expression for the feed-
back gain, the following lemma states an explicit expression for
the matrixΓ.

Lemma 3.2 ([9], [10]) All solutions to(8) are

Γ =


Γ0χn−1(M)

...
Γ0χ1(M)

Γ0

 , (10)

whereχj(·), j = 1, . . . , n− 1 are polynomials defined as

χj(s)
4
= sj +

j∑
k=1

pksj−k, (11)

and whereΓ0 ∈ Rm×n is an arbitrary matrix.



Remark An equivalent definition of the polynomials in (11) is
the recursive formula

χ0(s)
4
= 1, χj(s)

4
= sχj−1(s) + pj , j = 1, . . . , n− 1.

�

Proof See [10]. �

Remark In the single-input case, wherem = 1, Γ0 will be a
row vector andΓ will be a squaren× n matrix, which will be
nonsingular for an appropriate choice ofΓ0 andM . Further-
more, the controllability matrix will be a squaren× n matrix,
which is nonsingular since the open loop system is assumed to
be controllable. Then (9) turns to

L = eT
nΓ (CΓ)−1

p(A) = eT
nC−1p(A),

which is recognized as Ackermann’s formula (see for instance
Kailath [4] Section 3.2). �

Applying Lemma 3.2 to (9) yields the somewhat more conve-
nient expression

L = Γ0(CΓ)−1p(A). (12)

When the results in Theorem 3.1 and Lemma 3.2 originally
were presented in [9], the right companion matrixKπ was used
instead ofM in the right hand side of (8). A possible choice
that works in most cases is of course to setM = Kπ. How-
ever, by allowing anyM satisfyingdet(sI − M) = p(s), the
results in Theorem 3.1 and Lemma 3.2 become more general;
see Theorem 4.1 and the following discussion.

The parameterization of state feedback gains given in Theorem
3.1 and Lemma 3.2 gives rise to a number of questions. In the
subsequent sections some of these questions are discussed. For
instance, how efficient is the parameterization? That is, does
the parameterization cover all possible feedback gains? If not,
which feedback gains can, or cannot, be parameterized in this
way? These questions are discussed in Section 4.

The matricesM andΓ0 in the feedback gain parameterization
may both be regarded as design parameters. The restriction
det(sI −M) = p(s) perhaps suggests thatM should be cho-
sen in a first turn, leavingΓ0 as the free design parameter. In
Section 4 it is shown that this is a reasonable procedure. The
next question then is howΓ0 should be chosen. The param-
eterization relies on the existence of the inverse(CΓ)−1, so a
first matter of interest is to chooseΓ0 so thatCΓ is nonsingular.
This is a nontrivial issue. In Section 5 the existence of(CΓ)−1

is discussed, and some necessary conditions for the existence
are presented.

4 Characterization of the feedback gain param-
eterization

The discussion here is confined to the case whenp(s) anda(s)
are coprime,i.e., when all poles of the system (1) are modified.
This is precisely the case when the matrixp(A) is nonsingular,
which is of great importance in what follows.

The parameterization in Theorem 3.1 and Lemma 3.2 seems to
offer two design parameters, the matricesM andΓ0. While the
choice ofM is restricted by the propertydet(sI −M) = p(s),
Γ0 is more of a free parameter. Indeed, when using the param-
eterization to generate a feedback gain, the matrixM can be
chosen as a first step, leavingΓ0 as the only design parameter
in succeeding steps. It may seem that the only function ofM
is that its eigenvalues are the desired poles of the closed loop
system. However, the role of matrixM is a little more involved
than that, as is stated in the following theorem:

Theorem 4.1 Let the polynomialp(s) and the matrixM be
given according to the conditions in Theorem 3.1. Ifp(s) and
a(s) = det(sI−A) are coprime, and if there exists a feedback
gain L given by(9), then the matricesA − BL and M are
similar.

Remark This means that there exists a nonsingular matrixT
such thatT−1(A − BL)T = M . It also means thatA − BL
andM have the same Jordan form. �

See Appendix for a proof of Theorem 4.1.

Thus, the matrixM determines the Jordan form of the closed
loop system matrixA − BL. In fact, one possible choice is
to let M be the desired real Jordan form ofA − BL. This
restricts which matricesM that are feasible for the parameter-
ization when there are multiple poles among the desired poles
of the closed loop system. While the algebraic multiplicity of a
desired closed loop system pole can be arbitrarily high, thege-
ometric multiplicityis restricted. Particularly, the latter cannot
be higher than the number of inputs. Exactly how high geo-
metric multiplicities that are possible depends on the control-
lability indices as described by Rosenbrock’s control structure
theorem [12] (see for instance Section 7.2.2 in Kailath [4], or
Section 3.1 in Kǔcera [5]).

With calculations very similar to the ones in the proof of Theo-
rem 4.1 it is possible to show that(p(A))−1

CΓ is the solution
to a certain linear matrix equation.

Lemma 4.2 ([10]) If the polynomialsa(s) = det(sI − A)
and p(s) = det(sI − M) are coprime, then the product
(p(A))−1

CΓ is the unique solution to the equation

AX −XM = BΓ0, (13)

with matricesC, Γ andΓ0 according to(5) and Lemma 3.2.



Proof See [10]. �

Notice thatCΓ need not to be nonsingular,(p(A))−1
CΓ is the

unique solution of (13) anyway. Linear matrix equations of
the type (13) are called Sylvester equations, and have been
used quite frequently in linear control theory, like in the the-
ory for observers (seee.g. Luenberger [6] or O’Reilly [11]).
Sylvester equations also have been used for pole placement of
multi-input systems (e.g. in Bhattacharyya and de Souza [1]).
Lemma 4.2 will be used to show that the parameterization pre-
sented here is complete in the case whenp(s) and a(s) are
coprime.

Theorem 4.3 Every feedback gainL, such that a(s) =
det(sI − A) and p(s) = det(sI − A + BL) are coprime,
can be parameterized as in Theorem 3.1 and Lemma 3.2.

See Appendix for a proof of Theorem 4.3.

Hence, the parameterization is complete for the case when all
the poles of (1) are modified — complete in the sense that every
possible feedback gain can be generated by (9) and appropriate
choices of the matricesM andΓ0.

Theorems 4.1 and 4.3 indicate how the design parametersM
andΓ0 should be used. The choice ofM has relevance when
p(s) has multiple zeros, since then there are several possible
Jordan forms forA − BL. OnceM is chosen, and thus the
Jordan form ofA− BL is determined,Γ0 can be used to gen-
erate all, and only those, feedback gainsL that will yield that
particular Jordan form ofA−BL.

A simple example illustrates how the parameterization can be
used.

Example 4.1Consider the third order system with two inputs

d

dt
x = Ax + Bu, A =

0 1 0
0 0 0
0 0 0

 , B =

0 0
1 0
0 1

 ,

with all poles in the origin. Assume thatp(s) = (s + 1)3

is the desired characteristic polynomial,i.e., the closed loop
system should have a triple pole in -1. There are two possible
Jordan forms forA − BL, depending on whether one or two
eigenvectors ofA−BL are desired. The choices

M1 =

−1 1 0
0 −1 1
0 0 −1

 , M2 =

−1 1 0
0 −1 0
0 0 −1

 ,

correspond to these two cases respectively, according to Theo-
rem 4.1. The choiceM3 = −I3 would correspond to having
three eigenvectors ofA−BL, and this is not possible to obtain
by state feedback according to Rosenbrock’s control structure
theorem [12]. Using

Γ0 =
[
1 0 0
0 0 1

]
,

with M1 andM2 in (12) give

L1 =
[
1 2 1
0 0 1

]
and L2 =

[
1 2 0
0 0 1

]
,

respectively. It is readily verifieddet(sI − A + BL1) =
det(sI−A+BL2) = (s+1)3, and thatrank(−I−A+BL1) =
2 andrank(−I −A + BL2) = 1. ◦

The parameterization is quite successful whena(s) andp(s)
are coprime. However, the situation is less favorable for the
case whena(s) = det(sI − A) and the desired characteristic
polynomialp(s) are not coprime. This is mainly due to the
fact thatp(A), that is a part of the parameterization, is singu-
lar when some eigenvalue ofA coincides with some zero of
p(s). A more thorough characterization of the parameteriza-
tion is presented in Norlander [10], where the case whenp(s)
anda(s) are not coprime is discussed.

5 On the existence of the parameterized feed-
back gains

The parameterization of feedback gain matrices for pole place-
ment presented in Theorem 3.1 and Lemma 3.2 relies on the
invertability of the matrixCΓ.

For CΓ to be invertible it must have rankn. There are several
ways to write the productCΓ, and below we will elaborate on
this in order to give necessary conditions for nonsingularity. A
well known property (see for instance [2]) is thatrank CΓ ≤
min(rankC, rank Γ). Thus obvious necessary conditions for
nonsingularity ofCΓ is thatrank C = n and thatrank Γ = n.
Due to the controllability assumption it holds thatrank C = n.
However, some basic manipulations of the productCΓ reveals
stronger conditions, which offer a nice interpretation in terms
of linear system theory.

Introduce the matrix

Π
4
=


pn−1 · · · p1 1

... · · · 1 0

p1 · · · · · ·
...

1 0 · · · 0

 ,

i.e., a Hankel matrix in the coefficients ofp(·). ThenΓ can be
factorized as

Γ =
[
Π⊗ Im

]


Γ0

Γ0M
...

Γ0M
n−1

 . (14)

The matrix
[
Π⊗ Im

]
is square and has full rank, soΓ will have

full rank if and only if the second matrix in (14) has full rank.
The second matrix is recognized as the observability matrix for
the pair(Γ0,M).



It is now possible to write the productCΓ as

CΓ = C
[
Π⊗ Im

]


Γ0

Γ0M
...

Γ0M
n−1



=
[
BΓ0 ABΓ0 . . . An−1BΓ0

] [
Π⊗ In

]


In

M
...

Mn−1

 .

(15)

The matrix
[
In MT . . . (Mn−1)T

]T
has full rank. The

expression (15) shows that necessary conditions for the non-
singularity of CΓ are that(A,BΓ0) is controllable and that
(Γ0,M) is observable. IfΓ0 has full rank(A,BΓ0) is con-
trollable if and only if (A,B) is controllable. There are no
restrictions on the rank ofΓ0, though. In fact, by choosingΓ0

as a rank one matrix,i.e., Γ0 = qγT
0 for some vectorsq and

γT
0 , it is sufficientto have(A,Bq) controllable and(γT

0 ,M)
observable forCΓ to be nonsingular. This of course reduces
the system to a “single-input” system and it is only applicable
when the system matrixA is cyclic.

The discussion so far leads to the following lemma:

Lemma 5.1 The matrixCΓ is nonsingular only if(A,BΓ0) is
controllable and(Γ0,M) is observable.

It is stressed that these conditions are necessary, but not suffi-
cient, which is illustrated in the following example.

Example 5.1Reconsider the system in Example 4.1, and as-
sume again thatp(s) = (s + 1)3 is the desired characteristic
polynomial of the closed loop system. First, notice that the
choiceM3 = −I3 is ruled out by Lemma 5.1, since the pair
(Γ0,−I3) is unobservable for everyΓ0 ∈ R2×3. With

M2 =

−1 1 0
0 −1 0
0 0 −1

 and Γ0 =
[
g11 g12 g13

g21 g22 g23

]
,

the conditions in Lemma 5.1 are satisfied exactly when
g11g23 − g13g21 6= 0. However,

detCΓ = g11(g11g23 − g13g21),

so in caseg11 = 0 CΓ becomes singular, even though
g11g23 − g13g21 6= 0. ◦

It should be pointed out that, for the case whena(s) =
det(sI −A) and the desired characteristic polynomialp(s) are
coprime, the matrixCΓ is nonsingular for almost everyΓ0 and
any feasibleM . The reason for this is that according to The-
orem 4.3 there exist matricesM andΓ0 for which CΓ is non-
singular. Say that the (feasible) matrixM is fixed andΓ0 is

allowed to be varied. The matrixCΓ then depends linearly on
Γ0, and thusdetCΓ is a polynomial in the entries ofΓ0. Now,
CΓ is singular exactly whendetCΓ = 0, but since there exist
matricesΓ0 for which det CΓ 6= 0, due to the continuity of
polynomialsdet CΓ 6= 0 will hold for almost all matricesΓ0.
In this sense the nonsingularity ofCΓ is generic. Particularly,
if CΓ is singular forΓ∗0, every neighborhood ofΓ∗0 contains
matricesΓ0 for whichCΓ is nonsingular.

6 Conclusions

A somewhat modified version of the parameterization of state
feedback gains for pole placement in [9] has been presented
and characterized in terms of completeness and existence. It
has been shown that the parameterization is complete in the
case when all poles of the open loop system should be mod-
ified. The parameterization involves two design parameters.
One of these, a square matrix, determines the Jordan form of
the closed loop system matrixA − BL, while the other one
is an almost free design parameter, whiche.g. can be used to
meet additional control objectives (see for instance Chapter 7 in
[10]). The existence of parameterized feedback gains has also
been discussed, and some necessary conditions on the design
parameters have been formulated.

Appendix

Proof of Theorem 4.1 The proof is based on the fact that it
can be shown thatT−1(A − BL)T = M holds for T =
(p(A))−1

CΓ. The inverse ofp(A) exists sincep(s) anda(s)
are coprime. The existence of aL given by (9) implies that the
matrixCΓ is nonsingular. A straightforward calculation gives

(CΓ)−1
p(A)(A−BL) (p(A))−1

CΓ

= (CΓ)−1
(
ACΓ− p(A)BL (p(A))−1

CΓ
)

= (CΓ)−1
(
ACΓ− p(A)B

[
eT
n ⊗ Im

]
Γ
)

= (CΓ)−1
(
C

[
Kα ⊗ Im

]
Γ− C

[
(π − α)eT

n ⊗ Im

]
Γ
)

= (CΓ)−1C
[
Kπ ⊗ Im

]
Γ = (CΓ)−1CΓM = M,

which proves the theorem. The last few steps made use of (6),
(7) and (8). �

Proof of Theorem 4.3 First notice that, according to (12) and
Lemma 4.2, the parameterized feedback gain can be written
asL = Γ0X, whereX is the unique solution to the Sylvester
equation (13). Now letL∗ be any feedback gain for which
a(s) = det(sI − A) and p(s) = det(sI − A + BL) are
coprime. With the particular choiceM = A − BL∗ and
Γ0 = L∗, the identity matrixI is obviously a solution to (13).
Also,X = I is the unique solution, and thus the parameterized
feedback gain isL = Γ0X

−1 = L∗. This proves the theorem,
since this holds for every suchL∗. �
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