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Abstract

The fixed poles for the problem of Disturbance Rejection
by Measurement Feedback are geometrically and struc-
turally characterized (in terms of invariant zeros and non
controllable poles) for systems which are globally observ-
able but without any controllability assumption and the
dual case, system globally controllable but without any
observability assumption.

Keywords: Linear multivariable systems, Geometric
Control, Disturbance Rejection, Fixed Dynamics

1 Introduction

This paper deals with the Disturbance Rejection prob-
lem by (dynamic) Measurement Feedback, here noted as
DRMF (see for instance [11] and [13]) in the case when
the system can be uncontrollable but under some observ-
ability asumptions. As shown in [6] and[2], there exists
a set of Fixed Poles, here noted as FP, for this problem,
namely poles which are present in any output feedback
closed loop system that rejects the disturbance, what-
ever be the way used to find the compensator. In [6], the
authors consider just the poles in the transfer function
matrix from the control input to the measured output.
In [2], a more general notion of poles is used: the set of
all the internal dynamics present in any feedback system
solution through the overall state representation, but
considering state descriptions which are globally mini-
mal(i.e.controllable and observable) with respect to both
input signals (control input and disturbance) and both
output signals (controlled output and measurement).

In this paper, we propose geometric and structural (in
terms of invariant zeros and uncontrollable poles of some
subsystems) characterizations of the DRMF fixed poles
in the more general case of (possibly) non controllability
but considering global observability from the measure-
ment and controlled output. Those results can easily be
dualized to the case of (possibly) non observability but
considering controllability restriction from the joint con-
trol and disturbance inputs. We also propose “optimal”
solutions to the DRMF problem in terms of the FP, i.e.,
solutions for which all the poles, other than the FP, can
be freely assigned. The characterization of “optimal”
solutions in terms of pole placement is a stronger result
than the previous ones concerning internal stability and
pole shifting (see [13] and [7]). Indeed, solutions insur-
ing internal stability, in general are not optimal in the
sense of pole placement. The key notions behind our re-
sults are those of self-bounded and self-hidden invariant
subspaces as introduced by [1].
The paper is organized as follows. Section 2 is devoted

to some basic notions. In Section 3 the problem is stated
and Section 4 gathers our main new result. The last
section is devoted to concluding remarks.

2 Notation

We consider here linear time-invariant systems
(A,B,C,D,E) described by: ẋ(t) = Ax(t) +Bu(t) +Dh(t)

z(t) = Ex(t)
y(t) = Cx(t)

(1)



where x(t) ∈ X ≈ Rn is the state, u(t) ∈ U ≈ Rm is
the control input, h(t) ∈ H ≈ Rq is the disturbance in-
put, z(t) ∈ Z ≈ Rr is the output to be controlled and
y(t) ∈ Y ≈ Rp is the measured output. The same no-
tation is used for maps and their matrix representations
in particular bases A : X → X , B : U → X , C : X → Y,
D : H→ X , and E : X → Z. We shall denote B the
image of B, D the image of D, C the kernel of C, E the
kernel of E, hA | Bi the controllable space of (A,B) and
hC | Ai the unobservable space of (C,A).

We shall use in the sequel the following notation.
sp(s). will stand for subspace(s). Given two sps. T
and L ⊂ X , we shall note (see Wonham [14] and Basile
& Marro [1]):

V∗(T ,L) :=the supremal (A,T )-invariant subspace
(inv.sp.) contained in L,
S∗(L,T ) :=the infimal (L,A)-inv.sp. containing T ,
R∗

(T ,L) := V∗(T ,L) ∩ S∗(L,T ) = the supremal (A,T )-
controllability sp. contained in L,
N ∗

(L,T ) := V∗(T ,L) + S∗(L,T ) =the infimal (L,A)-
complementary observability sp. containing T .
Let V be an (A,B)-inv.sp. Then F(V) (also noted as

FV) denotes the set of matrices F that satisfy: (A +
BF )V ⊂ V. This set is also called "the friends of V".
If V ⊂ E also satisfies V∗(B,E)∩B ⊂ V, then V is called
(A,B)-self bounded with respect to E . The set of all the
sps. (A,B)-self bounded with respect to E is closed under
addition and intersection and the infimum isR∗(B,E). Let
S be a (C,A)-inv.sp. Then, in a dual way, G(S) (or GS)
are well defined and also the set of all sps. (C,A)-self
hidden with respect to D and the supremum N ∗

(C,D) [1].

σ (FL | L/M) denotes the spectrum of the map in-
duced by (A+BFL) in the quotient space L

M , whereM⊂ L and both are (A+BFL)-inv.sps. The spectrum of
(A+BFV) can be decomposed (in connection with the
(A,B)-inv.sp. V) into fixed and free parts (see [12] or
in a more general case [9], Lemma A.2, pp. 353). The
fixed part (called the fixed spectrum of V) is given by:

σfix(V) := σ (FV | X/hA | Bi+V) ∪̇ σ
³
FV | V/R∗

(B,V)

´
(2)

for any FV and where ∪̇ stands for the union
of sets with common elements repeated. The set
σ
³
FV | V/R∗(B,V)

´
is called the internal fixed spectrum

of V and σ (FV | X/hA | Bi+V) the external fixed spec-
trum of V. In a dual way, σ (GM | L/M) , the spectrum
of the map induced by (A+GMC) in the quotient space
L
M is defined and can be decomposed (in connection with
the (C, A)-inv.sp. S) into fixed and free parts in order
to get σfix(S).The fixed spectra of V and S can also be
written in the following way:

Property 1:

σfix(V) := σ

µ
FV | X

hA | Bi
¶
∪̇ σ

Ã
FV | V∩hA | BiR∗

(B,V)

!

σfix(S) := σ

µ
GS |

N ∗
(C,S)

S+hC | Ai
¶
∪̇ σ

µ
GS | hC | Ai{0}

¶
Property 2: The internal unassignable eigenvalues of

V∗(B,E) are equal to the external unassignable eigenvalues
of S∗(E,B) and correspond to the so-called invariant zeros
of (A,B,E) (see [1]), i.e.:

Z(A,B,E) := σ
³
FV∗

(B,E)
| V∗(B,E)/R∗(B,E)

´
= σ

³
GS∗

(E,B)
| N ∗

(E,B)/S∗(E,B)

´
Note that in the same way, the invariant zeros of the

systems (A,B,C), (A,D,C), (A,D,E), (A,

·
B
...D
¸
, E),

... are well defined. A pair of sps. of X , say (S,V), is
called a (C, A,B)-pair if S is a (C, A)-inv.sp., V is an
(A,B)-inv.sp. and S ⊂ V[11].

3 Preliminaries

In particular, in this section we shall denote: R∗c :=
R∗(B+D,E) and N ∗

c := N ∗
(C∩E ,D). Let us recall the defin-

ition of the DRMF problem. First of all, consider the
general measurement feedback processor:½

ẇ(t) = Nw(t) +My(t)
u(t) = Lw(t) +Ky(t)

(3)

where w(t) ∈ W ≈ Rv is the state of the compen-
sator. Then, the composite system (1) with the output
feedback compensator (3) in the extended state space
Xw = X ⊕W is described by:½

ẋw(t) = Awxw(t) +Dwh(t)
z(t) = Ewxw(t)

(4)

where Aw =

·
A+BKC BL
MC N

¸
; Dw =

·
D
0

¸
and

Ew =
£
E 0

¤
.

DRMF problem formulation: Find, if possible, a
feedback processor for (1) of the type given by (3) such
that for the closed loop system (4), the transfer function
matrix from h to z be identically zero. Equivalently: find,
if possible, an extension space W and a compensator
matrix Aw such that an Aw-inv.sp. Vw ⊂ Xw exists
with imDw ⊂ Vw ⊂ kerEw.
The basic geometric solvability condition for the

DRMF problem ([3], [11] and [4]) states that the DRMF
problem is solvable if and only if S∗(C,D) ⊂ V∗(B,E),



or equivalently, if and only if there exists a (C,A,B)-
pair, say (S,V) ((C,A,B)-pair solution), such that
D ⊂ S ⊂ V ⊂ E .
The aim of this paper is then, assuming that the

DRMF problem is solvable and considering that the sys-

tem is (
·
C
E

¸
,A) observable:

• To show that there exists a maximal set of poles
that are fixed and present in the closed loop system
(Aw,Dw,Ew) for any compensator solution: these
are called the DRMF fixed poles.

• To give geometric and invariant-zero characteriza-
tions of the DRMF fixed poles.

• To characterize “optimal” compensators solution
to the DRMF problem, i.e., those for which all
the poles are freely placed (modulo the compulsory
symmetry with respect to the real axis) in the closed
loop system except the DRMF fixed poles.

Let us define a class of compensators (Definition 1)
and show (Lemma 1) how we can associate with any
(C, A,B)-pair solution to the DRMF problem, say (S,V),
one such compensator which is a solution to the problem
and for which all the poles can be freely placed except
the set σfix(S,V).

Definition 1 We shall call S-V based compensators,
those which are designed from an associated (C,A,B)-
pair, say (S,V), with a full order compensator structure,
by taking N = A+GSC+BFVL2; M = −GS +BFVL1;
L = FVL2; and K = FVL1 in (3), where FV ∈ F(V),
GS ∈ G(S) and with L1, L2 such that: L1C + L2 =
In and kerL2 ⊕ (S ∩ C) = S (for the fact that such L1

and L2 always exist and for details about this kind of
compensators see [1]).

Lemma 1 Consider a S-V based compensator designed
from a (C,A,B)-pair (S,V), solution to the DRMF prob-
lem. Then, the S-V based compensator rejects the dis-
turbance and the poles of the corresponding compensated
system, σ(Aw), can be freely placed by an adequate choice
of friends of V and S , except a set of poles that is fixed
for any GS ∈ G(S) and any FV ∈ F(V), called the
FP of (S,V), and which is given by: σfix(S ,V) :=
σfix(S) ∪̇ σfix(V)

Proof. The proof is exactly the same as in [2], Lemma
2 (where the asumptions (A, [BD]) controllable and

(

·
C
E

¸
, A) observable were taken) , as the non con-

trollable and non observable poles will always be in-
cluded in σ(Aw),i.e.: σ (FV | X/hA | Bi+V) ⊂ σ(Aw)
and σ (GS | hC | Ai∩S) ⊂ σ(Aw).
Definition 1 and Lemma 1 will allow us to focus

our search for particular solutions on the use of some

(C, A,B)-pair (S,V), just keeping in mind that the S-
V based compensators are naturally deduced from the
chosen (C, A,B)-pair.

4 Main Results

The characterization of the DRMF fixed poles has al-
ready been done in [2], but considering (A, [BD]) con-

trollability and (

·
C
E

¸
, A) observability. We shall fol-

low almost the same way to get our DRMF fixed poles
but without any controllability consideration. We shall
proceed as follows :

• First, we show that, starting from any compensated
system solution there exists a particular (C, A,B)-
pair solution (S,V) which fixed spectrum σfix(S,V)
is contained in the closed loop spectrum (Lemma
2). This result is valid independently on the way
the compensator was found and is the key of the
generality of our main results.

• In Lemma 3 we find a “better” (C, A,B)-pair solu-
tion (S,S +R∗c), with S := S + (N ∗

c ∩R∗
c), leading

to a set of FP which is included in σfix(S,V).

• Finally, in Lemma 4, we prove that this (C, A,B)-
pair solution belongs to a set of solutions (Si,Si +
R∗c) where the particular element (N ∗

c ,R∗c + N ∗
c )

has the nice characteristic: σfix(N ∗
c ,R∗c + N ∗

c ) ⊂
σfix(Si,Si + R∗c) and which is characterized in-
dependently on the particular values of the ini-
tial (C, A,B)-pair solution (S,V). The proof that
σfix(N ∗

c ,R∗c +N ∗
c ) is the set of DRMF FP follows

directly.

Lemma 2 Consider that the DRMF problem is solv-
able. Let (4) be the compensated system with any par-
ticular measurement feedback solution of type (3), with
σ(Aw) the poles of the corresponding compensated sys-
tem. Then, there exists a (C, A,B)-pair solution (S,V)
which satisfies σfix(S,V) ⊂ σ(Aw), with V (A,B)-self
bounded with respect to E and S (C,A)-self hidden with
respect to D.

proof: The proof is the same that in the controllable-
observable case (see [2], Lemma 3), just note that
σ (F | X/hA | Bi) ⊂ σfix(V) and σ (G | hC | Ai) ⊂
σfix(S), for any F and G.¥

Lemma 3 Consider that the DRMF problem is solv-
able. Let (S,V) be any (C,A,B)-pair solution such that
S is (C, A)-self hidden with respect to D and V is (A,B)-
self bounded with respect to E. Let S := S + (N ∗

c ∩R∗c).
Then (S,S +R∗c) is a (C,A,B)-pair solution that more-
over satisfies σfix(S,S +R∗c ) ⊂ σfix(S ,V). Note that,



as V contains D, and R∗
c is the infimal (A,B)-self

bounded sp. with respect to E containing D thenR∗c ⊂ V,
and by duality S ⊂ N ∗

c .

proof: The proof is the same that in the
controllable-observable case (see [2], Lemma 3), just
note that σ (F | X/ hA | Bi+R∗c) ⊂ σfix(V) and
σ (G | hC | Ai ∩N ∗

c ) ⊂ σfix(S), for any F and G.¥

Lemma 4 Assume that the system is (

·
C
E

¸
, A) ob-

servable and that the DRMF problem is solvable. Let
us define: σ∗ := σfix(N ∗

c ,R∗c + N ∗
c ). Then, for any

(C, A)-inv.sp. Si such that N ∗
c ∩ R∗

c ⊂ Si ⊂ N ∗
c ,

(Si,Si + R∗c) is a (C,A,B)-pair solution which more-
over satisfies: σ∗ ⊂ σfix(Si,Si +R∗c) , and similarily,
for any (A,B)-inv.sp. Vi such that R∗c ⊂ Vi ⊂ N ∗

c +R∗
c ,

(Vi∩N ∗
c ,Vi) is a (C,A,B)-pair solution which moreover

satisfies: σ∗ ⊂ σfix(Vi ∩N ∗
c ,Vi) .

Proof: Assume that S∗(C,D) ⊂ V∗(B,E). Consider any
(C, A)-inv.sp. Si such that R∗c ∩ N ∗

c ⊂ Si ⊂ N ∗
c . By

[2], Property A.4, the sp. Si + R∗c is (A,B)-invariant
included in E , then the pair (Si,Si +R∗c) is a (C,A,B)-
pair solution. The fixed spectrum for this (C, A,B)-pair
is: σfix(Si,Si +R∗c ) = σfix(Si) ∪̇ σfix(Si +R∗

c).
From the dual version of [2] Property A.5:

hC ∩ E | Ai = hC | Ai ∩ N ∗
c , and from the ob-

servability hypothesis we obtain hC ∩ E | Ai =
hC | Ai ∩ N ∗

c = 0. Then, Si∩ hC | Ai = 0

and we get σ
³
GSi | Si∩hC|Ai{0}

´
= 0. Then:

σfix(Si) = σ
³
GSi | N ∗

(C,Si)/Si
´

= σ
³
GSi | N ∗

(C,D)/Si
´

= σ
³
GSi | N ∗

(C,D)/N ∗
c

´
∪̇σ (GSi | N ∗

c /Si) . From

[2] Lemma A.3, by duality, we know that:
σ(F | (R∗c +N ∗

c ) / (Si +R∗c)) = σ (GSi | N ∗
c /Si) , with

F ∈ F(R∗c +N ∗
c ) and G ∈ G( Si). Then: σfix(Si) =

σ
³
GSi | N ∗

(C,D)/N ∗
c

´
∪̇σ(F | (R∗c +N ∗

c ) / (Si +R∗
c)).

Let us define σc := σ
³
FSi+R∗

c
| X
hA|Bi+Si+R∗

c

´
. Then:

σfix(Si +R∗c) =

= σ
³
FSi+R∗

c
| (Si +R∗c) /R∗(B,Si+R∗

c)

´
.∪ σc

= σ
³
FSi+R∗

c
| (Si +R∗c) /R∗(B,E)

´
∪ σc

Then:

σfix(Si,Si +R∗c) = σfix(Si)∪̇σfix(Si +R∗c) =

σ
³
GSi | N ∗

(C,D)/N ∗
c

´
∪̇σ(F | (R∗

c +N ∗
c ) / (Si +R∗c))

∪̇σ
³
FSi+R∗

c
| (Si +R∗c) /R∗(B,E)

´
∪ σc

and, since σfix(N ∗
c )=σ

³
GSi | N ∗

(C,D)/N ∗
c

´
, due to

the dual version of [2] Property A.5, σfix(Si,Si+R∗c ) =
σfix(N ∗

c )∪̇σ(F | (R∗c +N ∗
c ) /R∗(B,E)) ∪ σc

On the other hand,

σfix(N ∗
c ,R∗c +N ∗

c ) = (5)

σfix(N ∗
c )∪̇σ(F | (R∗c +N ∗

c ) /R∗(B,E)) ∪ σc = (6)

σfix(N ∗
c ) ∪̇ σ(F | (R∗c +N ∗

c ) /R∗
(B,E))∪̇

σ

µ
FSi+R∗

c
| X
hA | Bi+R∗c +N ∗

c

¶
(7)

as

σ

µ
FSi+R∗

c
| X
hA | Bi+R∗c +N ∗

c

¶
⊂ σc

it is clear that

σ∗ = σfix(N ∗
c ,R∗

c +N ∗
c ) ⊂ σfix(Si,Si +R∗c)

A similar procedure can easily be followed to get σ∗ ⊂
σfix(Vi ∩N ∗

c ,Vi)¥
We can now state our main result, which characterizes

the DRMF Fixed Poles (DRMF FP):

Theorem 5 Assume that the system is (

·
C
E

¸
,A) ob-

servable and that the DRMF problem is solvable. Then:

• DRMF FP= σfix(N ∗
c ,N ∗

c +R∗c).
• (N ∗

c ,N ∗
c + R∗c) is a (C,A,B)-pair solution which

leads to an optimal solution (to the DRMF prob-
lem) in the sense of maximal pole placement, i.e.,
from which all the poles can be freely placed (mod-
ulo symmetry/real axis) in the closed loop system,
except the DRMF FP.

The proof is simply the connection between the dif-
ferent previous results, noting that (N ∗

c ,N ∗
c + R∗c) is

himself a (C,A,B)-pair solution member of the family
(Si,Si +R∗c) characterized in Theorem 4. ¥

Lemma 6 Consider that S∗(C,D) ⊂ V∗(B,E) and let
us define R∗

e = N ∗
c + R∗c , and hA | B+N ∗

ci =
hA | Bi + N ∗

c +AN ∗
c +A2N ∗

c + · · ·+An−1N ∗
c . Then:

hA | B +N ∗
ci = hA | Bi+R∗e

Proof: Consider that S∗(C,D) ⊂ V∗(B,E). It has
been proved in [2], Property A.5 that if D ⊂ V∗(B,E)

then hA | B +Di = hA | Bi + R∗
c (remember that

R∗c = R∗(B+D,E)). From [2], Corollary A.2, R∗e =

R∗(B+N ∗
c ,E). Then, considering D = N ∗

c , it is clear that
hA | B +N ∗

ci = hA | Bi+R∗e¥
This lemma allows us to derive a structural charac-

terization of the F.P.

Theorem 7 Assume that the system is (

·
C
E

¸
,A) ob-

servable and that the DRMF problem is solvable. Let us



define Ee such that kerEe = R∗c and De such that im
De =N ∗

c . The FP of the DRMF problem are given by:½
Z (A,D,C)− Z

µ
A,D,

·
C
Ee

¸¶¾
(8)

∪̇ (9)½
σ(hA | B+N ∗

ci)∪̇
½
Z(A,B,E)−Z(A, [B

...D], E)

¾¾
(10)

where σ(hA | B+N ∗
ci) are the non controllable poles of

the composed system (A, [B
...De]).

Proof: The proof is a consequence of Theorem 5 and
Lemma 6. Consider S∗(C,D) ⊂ V∗(B,E). From (5):

σfix(N ∗
c ,R∗c +N ∗

c ) =

σfix(N ∗
c )∪̇σ(F | (R∗

c +N ∗
c ) /R∗(B,E))

∪̇σ
µ
FSi+R∗

c
| X
hA | Bi+R∗c +N ∗

c

¶
As σ

³
FN∗

c +R∗
c
| N∗

c +R∗
c

R∗
c

´
= σ

³
GR∗

c∩N∗
c
| N∗

c

R∗
c∩N∗

c

´
then

σfix(N ∗
c ,R∗c +N ∗

c ) = σ

µ
GR∗

c∩N∗
c
| N ∗

R∗c ∩N ∗
c

¶
∪̇σ(F |R∗c/R∗(B,E))

∪̇σ
µ
FSi+R∗

c
| X
hA | Bi+R∗c +N ∗

c

¶
From Lemma 6, hA | Bi+R∗c + N ∗

c = hA | B +N ∗
ci .

Then:

σfix(N ∗
c ,R∗c +N ∗

c ) = σ

µ
GR∗

c∩N∗
c
| N ∗

R∗c ∩N ∗
c

¶
∪̇σ(F |R∗c/R∗(B,E))∪̇σ(hA | B +N ∗

ci
As

σ

µ
GR∗

c∩N ∗
c
| N ∗

R∗c ∩N ∗
c

¶
=

σ

Ã
GR∗

c∩N∗
c
| N ∗

S∗(C,D)

!
− σ

Ã
GR∗

c∩N ∗
c
| R

∗
c ∩N ∗

c

S∗(C,D)

!

From [2], Corollary A.2, R∗c ∩ N ∗
c = N ∗

(C∩R∗
c ,E), and

S∗(C,D) = S∗(C∩R∗
c ,E). Then

σ

µ
GR∗

c∩N ∗
c
| N ∗

R∗c ∩N ∗
c

¶
=

σ

Ã
G | N

∗
(C,D)

S∗(C,D)

!
− σ

Ã
G |

N ∗
(C∩R∗

c ,E)

S∗(C∩R∗
c ,E)

!

= Z (A,D,C)−Z
µ
A,D,

·
C
Ee

¸¶

with Ee such that kerEe = R∗c . On the other hand, as
D ⊂ V∗(B,E), V∗(B,E)=V∗(B+D,E) (see [1]) and

σ
³
FR∗

(B+D,E)
| R∗(B+D,E)/R∗(B,E)

´
=

σ
³
FV∗

(B,E)
| V∗(B,E)/R∗(B,E)

´
−

σ
³
FR∗

(B+D,E)
| V∗(B+D,E)/R∗(B+D,E)

´
=

Z(A,B,E)− Z(A, [B
...D], E)

Finally:

σfix(N ∗
c ,R∗c +N ∗

c ) = (11)½
Z (A,D,C)−Z

µ
A,D,

·
C
Ee

¸¶¾
∪̇ (12)½

σ(hA | B +N ∗
ci)∪̇

½
Z(A,B,E)− Z(A, [B

...D],E)

¾¾
(13)

By a dual procedure, we can easily obtain a similar
result under the assumption (A, [BD]) controllable and
without any observability consideration. In this case,
DRMF FP= σfix(N ∗

c ∩R∗c ,R∗c) :

Theorem 8 Consider that the system is (A,
£
B D

¤
)

controllable and assume that the DRMF problem is solv-
able. Then:

• DRMF FP= σfix(N ∗
c ∩R∗c ,R∗c).

• (N ∗
c ∩ R∗c ,R∗

c) is a (C,A,B)-pair solutions which
leads to an optimal solution (to the DRMF prob-
lem) in the sense of maximal pole placement, i.e.,
from which all the poles can be freely placed (mod-
ulo symmetry/real axis) in the closed loop system,
except the DRMF FP.

Theorem 9 Consider that the system is (A,
£
B D

¤
)

controllable and assume that the DRMF problem is solv-
able. Let us define Ee such that kerEe = R∗c and De
such that im De = N ∗

c . The FP of the DRMF problem
are given by:½

Z (A,D,C)−Z
µ
A,D,

·
C
E

¸¶¾
∪̇ (14)

σ(hC ∩R∗c | Ai)∪̇
½
Z(A,B,E)−Z(A, [B

...De],E)

¾
(15)

where σ(hC ∩R∗c | Ai) are the unobservable poles of the

composed system (

·
C
Ee

¸
,A).



5 Conclusions

We have presented here a new characterization of the
fixed poles present in any solution of the DRMF problem

under the hypothesis of (A,

·
C
E

¸
) observability and

the dual case, the hypothesis of (A,
£
B D

¤
) control-

lability. These fixed poles are imposed by the solution
of the corresponding problems and are independent on
the way the solution is obtained. Natural conclusions
about the solvability of the corresponding disturbance
rejection problem with internal stability can easily be
stated: the necessary and sufficient condition is that the
DRMF problem be solvable and the FP be stable.
Our next objective will be to consider the completely

general case without neither controllability nor observ-
ability assumptions. This is important since in prac-
tice, the DROF problem may have to be considered on
a part of a large and complex system with no guarantee
that either controllability or observability holds for this
part. The solution of the general case will also be help-
ful in tackling the H2 Optimal Control problem with-
out controllability or observability assumptions. Indeed,
in [10], a non exact Disturbance Rejection problem has
been considered using an H2 Optimal Control approach.
The aim is to minimize the H2 norm of the transfer from
the disturbance to the controlled output, while applying
an internally stabilizing controller. There, H2 Optimal
FP also occur. However, in the case of dynamic mea-
surement feedback, i.e. for the DRMF problem, the FP
characterizations given in [10] are always related to par-
ticular classes of compensators. It has been proved in
[5] that under controllability and observability assump-
tions, there exists an unique set of H2 Optimal FP by dy-
namic measurement feedback, whatever be the way used
to find the compensator. Our objective is to extend this
result without using controllability or observability as-
sumptions (just using stabilizability and detectability).
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