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Abstract

Let �� be a possibly unbounded positive operator on the
Hilbert space � , which is boundedly invertible. Let �� be

a bounded operator from ���
�

�

� � (with the norm �����
�

�

����� ��) to another Hilbert space � . It is known that the sys-
tem of equations

����� ������� �
�

�
����� ����� � ������� �

���� � � �� ����� � ���� �

determines a well-posed linear system � with input � and out-

put �, input and output space � and state space 	 � ���
�

�

� ��
� . Moreover, � is conservative, which means that a certain
energy balance equation is satisfied both by the trajectories of
� and by those of its dual system. In this paper we present vari-
ous conditions which are equivalent to the exponential stability
of such a systems. Among the equivalent conditions are exact
controllability and exact observability. Denoting


 ��� �
�
��� �

�

�
����� ���

���

�

we also obtain that the system is exponentially stable if and

only if ���
�

�

� 
 ��� is a bounded ����-valued function on
the imaginary axis. This is also equivalent to the condition that
�� �
 ��� is a bounded ����-valued function on the imagi-
nary axis (or equivalently, on the open right half-plane).

1 Introduction and main results

In our paper [15] we have investigated a class of conser-
vative linear systems with a special structure, described by a
second order differential equation (in a Hilbert space) and an
output equation, see (1.1) and (1.3) below. Such systems occur
frequently in applications, such as wave equations and beam

equations, see for example [1], [4], [14], [15] and the refer-
ences therein. For this reason, it is useful to have criteria for
their exponential stability.

We recall the construction from the paper [15], in order to be
able to state the new results. Let � be a Hilbert space, and
let �� 	 ������� be a self-adjoint, positive and boundedly
invertible operator. We introduce the scale of Hilbert spaces
��,  � �, as follows: for every  	 
, �� � ����

� �,
with the norm ���� � ���

� ��� . The space ��� is defined by
duality with respect to the pivot space � as follows: ��� �
��
� for  � 
. Equivalently,��� is the completion of � with

respect to the norm ����� �
������ �

��
�

. The operator�� can
be extended (or restricted) to each ��, such that it becomes a
bounded operator

�� 	 ������� 
  � � �

Let �� be a bounded linear operator from � �

�

to � , where �
is another Hilbert space. We identify � with its dual, so that
� � ��. We denote �� � ��� , so that �� � ������ �

�

�. The
class of systems studied in [15] and also here is described by

��

���
���� ������� �

�

�
��

�

��
������ � ������ � (1.1)

��
� � �� � ���
� � �� � (1.2)

���� � �
�

��
������ � ���� � (1.3)

where � � �
��� is the time. The equation (1.1) is understood
as an equation in �� �

�

, i.e., all the terms are in �� �

�

. Most of
the linear equations modelling the damped vibrations of elastic
structures can be written in the form (1.1), where � stands for
the displacement field and the term ��

�
��������, informally

written as ���� �����, represents a viscous feedback damping.
The signal ���� is an external input with values in � (often a
displacement, a force or a moment acting on the boundary) and
the signal ���� is the output (measurement) with values in � as
well. The state ���� of this system and its state space 	 are



defined by

���� �

�
����
�����

�
� 	 � � �

�

�� �

We use the standard notation for certain function spaces,
such as ���
��� �, ��

����
��� �, ���
��� � and
����
��� � (with � � 
� �� �� � � ��). �� stands for
“bounded and continuous”. We write � instead of � �.

We assume that the reader understands the concepts of a well-
posed linear system and of a conservative linear system, see for
example [12], [14], [15, Sections 1,3,4]. The first main result
of [15] has been the following:

Theorem 1.1 With the above assumptions, the equations
(1.1)–(1.3) determine a conservative linear system �, in the
following sense:

There exists a conservative linear system � whose input and
output spaces are both � and whose state space is 	 . If � �

����
���� �� is the input function, �� �

�
��
��

�
� 	 is the

initial state, � �

�
�

�

�
is the corresponding state trajectory

and � is the corresponding output function, then

(1)
� � ���
��� �

�

� � ����
���� � ��
����
���� �

�

� �

(2) The two components of � are related by � � ��.

(3) ��� � �
��
���� and the equations (1.1) (in �� �

�

) and
(1.3) (in � ) hold for

almost every � 	 
 (hence, � � ����
���� ��).

If �� is a continuous function of �, with values in � �

�

(see Theo-
rems 1.2 and 1.4 in [15] for sufficient conditions for this), then
(1.1) and (1.3) can be rewritten as

����� ������� �
�

�
���� ����� � ������ � (1.4)

���� � � �� ����� � ���� � (1.5)

We introduce the space �� � �� � ���
� ��� , which is a

Hilbert space if we define on it a suitable norm, see [15, The-
orem 1.2]. We can rewrite the equations (1.4), (1.5) as a first
order system as follows:

�
����� � ����� ������ �
���� � ����� � ���� �

(1.6)

where

� �

�

 �

��� � �
�����

�
� � �

�


��

�
� (1.7)
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�
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�� �
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���� ��� �
�

�
����� � �

�
�

(1.8)

� 	 �� �� �

�

� � � � � �
 � �� � � (1.9)

We denote by � the restriction of � to ����. � is the gener-
ator of a strongly continuous semigroup of contractions on 	 ,
denoted � � �������. For the concepts of semigroup genera-
tor, control operator, observation operator and transfer function
of a well-posed linear system, we refer to [11], [12].

We denote by � � the open right half-plane in � where Re � �
�. We know from [15, Proposition 5.3] that for any � � ����
(in particular, for any � � � �), the operator ��� � �� �
�
����� � ��� �

�

� �� �

�

� has a bounded inverse denoted 
 ���:


 ��� �
�
��� ��� �

�

�
����

���

� ���� �

�

� � �

�

� � (1.10)

The following proposition is a restatement of a part of Theorem
1.3 in [15].

Proposition 1.2 With the notation of Theorem 1.1 and (1.7)–
(1.10), the semigroup generator of � is �, its control operator
is � and its observation operator is �. The transfer function
of � is given for all � � � � by

���� � ���� ������ � � � � � ���
 �����

and we have ������ � � for all � � � �.

Now we have all the necessary ingredients to state the new re-
sults of this paper. The following theorems use various con-
trollability, observability and stability concepts. The precise
definition of these concepts is given in Section 2.

Theorem 1.3 With the above notation, the following asser-
tions are equivalent:

(1) The pair ����� is exactly controllable (in some finite time).

(2) The pair ����� is exactly observable (in some finite time).

(3) The semigroup � is exponentially stable.

(4) The pair ����� is optimizable.

(5) The pair ����� is estimatable.

(6) We have ������ �
��

�

�

� 
 �������� � �.

(7) We have ������ �
��
 �������� � �.

(8) For a dense subset of �, denoted �, we have �� � ����
and

���
��	

��
�

�

� 
 ��������� � � �

(9) For a dense subset of �, denoted �, we have �� � ����
and

���
��	

��
 ��������� � � �

The equivalence of (1)–(5) remains valid for every conservative
system. This fact, the theorem above, the other new theorems



stated in this paper and various other results will be proved in
the journal version of this paper, see [9].

By a well-known theorem of Jan Prüss and Huang Falun, an
operator semigroup � with generator � is exponentially stable
if and only if ��� � ���� is uniformly bounded on � �. In the
specific case of the semigroup generated by � from (1.7)-(1.8),
the resolvent ��� � ���� can be written as a � � � matrix of
operators:

��� ����� �

�
�
�
�� � 
 ������ 
 ���
�
 ����� �
 ���

�
�

Thus, to verify that the stability condition (3) in Theorem 1.3
holds, we would have to verify that the four entries of this ���
matrix are all uniformly bounded on � �. However, conditions
(6) and (7) in Theorem 1.3 tell us that, in fact, we only have to
verify one entry: one of those in the second column in the ma-
trix. Conditions (8) and (9) tell us that, in fact, the boundedness
of one of these two entries of �������� has to be verified only
on a dense part of the imaginary axis, and we can still conclude
exponential stability.

The version of this theorem corresponding to bounded � and
�, i.e., with �� � ������, is in Liu [5, Sections 2-3] (without
conditions (4)–(7) and (9)). Using the boundedness of � � (and
hence also of ��), Liu was able to give in [5, Theorem 3.4]
also other, Hautus-type conditions which are equivalent to the
exponential stability of �. For unbounded ��, we were only
able to obtain a Hautus-type estimate as a necessary condition
for exponential stability, see Proposition 2.7.

We mention that semigroups of the type discussed in this pa-
per do not necessarily satisfy the spectrum determined growth
condition. For a counterexample (a damped wave equation on
a compact manifold) see Lebeau [4].

Recall that ���� denotes the norm of � in � . In the proof of
Theorem 1.3 (more precisely, to show that (6)��(3)) we use
the following proposition, which is of independent interest. For
bounded ��, this proposition follows easily from [5, Theorem
3.4], but for unbounded �� the proof is more delicate (it will
be given in the journal version of this paper). Related results
for a bounded (but not necessarily positive) operator in place
of ����� were given in Liu, Liu and Rao [6].

Proposition 1.4 With the above notation, if �� is bounded
from below, in the sense that there exists a � � 
 such that

�����
 	 ����� 
 � � � �

�

�

then � is exponentially stable.

2 Some background concerning the concepts
used in the first section

In this section we recall some controllability, observability
and stability concepts, quoting the relevant literature. We also
list the more interesting new results which are needed as inter-
mediate steps in the proofs of our main results.

Throughout this section,� ,	 and � are Hilbert spaces and� 	
�����	 is the generator of a strongly continuous semigroup
� � ������� on 	 . The space 	� is ���� with the norm
���� � ���� � ����, where � � ���� is fixed, while 	�� is
the completion of 	 with respect to the norm ����� � �����
������. We assume that the reader understands the concept of
an admissible (in particular, infinite-time admissible) control
operator for �. If � � ����	��� is admissible, then for every
� 	 
 we denote by �� the operator

��� �

� �

�

������� �� � (2.1)

We have �� � ���
���
���� ��� 	�. If � is admissible, then

for every �� � 	 and every � � ����
���� ��, the function
���� � ���� � ��� is called the state trajectory correspond-
ing to the initial state �� and the input function �. We have
� � ��

����
��	� and ����� � ����� � ����� (equality in
	��) for almost every � 	 
. If, moreover, � is infinite-time
admissible, then we denote

��� � ���
���

� �

�

��������� � (2.2)

and we have �� � ������
���� ��� 	�.

Similarly, we assume that the reader understands the concepts
of an admissible (in particular, infinite-time admissible) ob-
servation operator for �, also presented in Section I.2. If
� � ��	�� � � is admissible, then we denote by � the unique
continuous operator from 	 to ��

�����
���� � � such that

�������� � ����� 
 �� � ���� � (2.3)

In particular, if � is infinite-time admissible, then � �
��	�����
���� � ��. Recall that � is an (infinite-time) ad-
missible control operator for � if and only if � � is an (infinite-
time) admissible observation operator for ��.

Definition 2.1 Let � be the generator of a strongly continuous
semigroup � on 	 and let � � ����	��� be an admissible
control operator for �.

The pair ����� is exactly controllable in time ! � 
, if for
every �� � 	 there exists a � � ����
� ! �� �� such that
�� � ��.

����� is exactly controllable if the above property holds for
some ! � 
.

����� is optimizable if for any �� � 	 , there exists � �
����
���� �� such that the state trajectory corresponding to
�� and � is in ����
���� 	�.

Clearly, exact controllability implies optimizability. Optimiz-
ability is one possible generalization of the concept of stabiliz-
ability, as known from finite-dimensional control theory. We
refer to [13] for details on optimizability and estimatability.

Now we introduce the corresponding observability concepts
via duality.



Definition 2.2 Suppose that � � ��	�� � � is an admissible
observation operator for � (equivalently, � � is an admissible
control operator for the adjoint semigroup �

�). We say that
����� is exactly observable (in time ! ) if ���� ��� is ex-
actly controllable (in time ! ). ����� is called estimatable if
���� ��� is optimizable.

Let � be the operator defined in (2.3) and for every � 	 
 put
�� � ���. Then ����� is exactly observable in time ! � 

if and only if � is bounded from below.

Recall that the growth bound of a strongly continuous semi-
group � is ����� � ������

�
�
��� ���� � ������

�
�
��� ����,

see for example Pazy [7]. The semigroup � is exponentially
stable if its growth bound is negative: ����� � 
.

Let� be a strongly continuous semigroup on	 , with generator
�. A well-known spectral mapping result of Prüss [8, p. 852]
implies that if the function ���� � ����� is bounded on � �,
then � is exponentially stable. A little later and independently,
this result was explicitly stated and proved by Huang Falun [2].
A short proof was given in Weiss [10, Section 4]. Here we
need a result which is closely related to the one just mentioned,
without being an obvious consequence of it. The result is very
slightly more general than another result of Huang Falun, see
[2, Theorem 3]. Moreover, the proposition below gives an esti-
mate for the growth bound �����.

Proposition 2.3 Let � be a strongly continuous semigroup on
	 with generator �. Assume that ����� � 
 and � is a dense
subset of � such that �� � ���� and

����� ������ � " 
 � � � �

for some " � 
. Then � is exponentially stable, more pre-
cisely, ����� � � �

�
.

Proposition 2.4 Suppose that	 , �, �, � and� are as in Def-
inition 2.1. Then the following three statements are equivalent:

��� � is exponentially stable.

��� ����� is optimizable, � � � ���� and, for some " � 
,

����� ������
��
��
���

� " 
 � � � � �

��� ����� is optimizable, ����� � 
, there exists a dense
subset of �, denoted �,

such that �� � ���� and, for some " � 
,

������ ������
��
��
���

� " 
 � � � �

Recall that for any well-posed linear system � with input func-
tion �, state trajectory � and output function �,

�
����
���

�
� ��

�
��
�
���

�
� (2.4)

where �� denotes the truncation of a function to �
� � � and

�� �

�
�� ��

�� ��

�
� (2.5)

We denote the input, state and output spaces of � by � , 	 and
� , respectively. Then the operators �� appearing above are
bounded from 	 � ����
� � �� �� to 	 � ����
� � �� � �, which
means that for some �� 	 


��������

� �

�

������
�
�� � ���

	
���
��� �

� �

�

������
�
��



�

As explained in Section I.1, the system � is conservative
if the operators �� are unitary, from 	 � ����
� � �� �� to
	 � ����
� � �� � �. This implies that for any input function
� � ���
���� and any initial state ��
� � �� � 	 with
��� ����
� � 	 , the function ������� is in ���
��� and

�

��
������� � ������� � ������� 
 � 	 
 � (2.6)

see [15, Proposition 4.3]. Conversely, if (2.6) holds for both the
system� and for its dual system��, then� is conservative, see
[15, Corollary 4.4].

Proposition 2.5 Let � be a conservative linear system with
input space � , state space 	 , output space � , semigroup �,
control operator �, observation operator � and transfer func-
tion�. Then the following statements are true:

��� � is a semigroup of contractions.

��� � is infinite-time admissible.

��� � is infinite-time admissible.

��� ������ � � for all � � � �.

Proposition 2.6 With the notation of Proposition 2.5 and de-
noting the generator of � by �, for each � � 
, the following
statements are equivalent:

(1) The pair ����� is exactly controllable in time � .

(2) The pair ����� is exactly observable in time � .

(3) ���� � � (in particular, � is exponentially stable).

Proposition 2.7 With the above notation, if � is exponentially
stable, then denoting " � ������ ����� � ��������� we
have, for every � � � �

�

and every � � �
���,

����� ������� �

�

�
�

�
�������� �

�

	
�

"
���� �
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