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Keywords: Stabilisation, real proportional control, explicit up4f we consider only scalar, real controllers:) = k, we find
per bound, stable systems, linear systems that of conditions i), ii), iii) as above only i) means a limitation.
For S(z) = (1 + p(z) - ¢(2))~! to have no poles in the right
half-plane, whilec(z) = k, this means% # k. This yields
the following.

The explicjt dgt_ermination_ of the largest a_dmissable cpnsta;fgct: Every real controller

controller is difficult. For linear systems with all poles in the

domain of stability but at least one zero outside, an improved:) = k, |k| < [sup {|p(z)| : Rz >0, S(p(2)) =0}]"* (1)

upper bound on real proportional gain controllers is given. An o

example shows the improvement and further possible margiri§ St@Pilising.

The right hand side of (1) was denotéd,, by Blondel and

Bertilsson in [1] as this figure is the maximal size of the largest

proportional gain controller such that all smaller ones are sta-

Given the transfer function of a plaptz) and a controller(z) bilising. This valueL,,; might in practice often be replaced by

stabilising it in closed loop. What conditions are imposed Bje unconstrained figuré := [sup {|p(z)| : Rz > 0}]~* as

the plant configuration on the size of the controller? L < L, is easier to compute. To assess any such approxima-
. tion of the optimum upper bounds may be used. Thus, Blondel

i = . -1 - -
I_Dgagnate. byS'(z)_ = (1 +p(2) - c(2)) " the so callgd_seny nd Bertilsson [1] proved the following upper bound @m-
tivity function. It is then well-known that asymptotic interna lexproportional controllers

stability of the closed feedback loop is equivalent to the follow-
ing three properties [5] :

Abstract

1 Introduction

Theorem 1 Letp(s) = > oo, p,2z" be the transfer function of

a system with no poles in the closed right-half plane. Suppose

) S(z) is without poles outside the domain of stability (Iefty(s) has at least one zerq, in the open right half-plane. Let
half-plane or unit disc). m designate the number of zerosyg§) in the open right half

plane,q the multiplicity of the zera, and R (s¢) the real part

of the zerosy. Supposé: € C to be a stabilising proportional

controller. Thent

ii) Zeros (S(z)) D Poles(p(z)) (outside the domain of
stability).

iif) Zeros(S(z) — 1) D Zeros(p(z)) (outside the domain of

stability).
lity) 9-(m+1)¢q

< .
12+ R (s0)|" - [P (s0)]

|k 2
In this presentation, we study the following question: How
large may we take a stabilising proportional controller? WFhe above bound holds a fortiori for rell The proof in [1]
will exhibit a new upper bound for rational (or more genera,,: lies on the study of functions omitting two values. As the
meromorphic) systems with all poles in the left half-plane, b ?dmber of zeros is supposed to be finite and known ;'icomplex
at least one zero in the right half-plane. The bound is relatﬁJ '

to the sensitivity of zeros. It does not depend on the number Pction omitting the values ando is constructed. Using the
Y ' P s%arp version of a special result by Landau and Carathéodory

Zeros. (see [3]), the above bound is established. The quantity on the
We will outline analytic limitations to proportional controllersright hand side of (2) is denoted 8y in [1], and is such that

in the next section, present the steps leading to the bound intleecomplex controller of larger absolute value is stabilising.
following section, give the proofs subsequently, and close thience, we have

aper with a worked example. _
bap P L< Loy <T. ®)

2 Known limitation for proportional control We might want to inquire which real proportional controllers

Consider the closed right half-plane and suppose the ratioRS not stabilising the system. The general bound for complex

functionp(z) has no poles there. please note: The terpd is missing in [1].




proportional gain may be too conservative for this importaBtuppose thato, tso > 0 is a zero ofp(s) with multiplicity g.
case. Hence, we consider the largest absolute Vakech that Then
all real proportional compensators smaller in absolute value are
stabilising. This allows to lower the fact®(m + 1) in (2)
to a constan®. Thus, we establish a boun@ for real gain 1 a1 (q)

. ' —2-R - |ple I| < k. 4
controllers with 2 | (s0)["- P (s0) /'] < “)

L<Ly<R<9R<T. With
. . _ _ _ fi = =2%Rs0[p (s0)],
We achieve this result by studying the maximal possible set of L1\? 1
image values. This value set must be bounded for the functiofys:= 2 (SO ) <p”(so)(8%so)2 —p'(s0)Rso ) :
considered. Taking into consideration the image covered by so + 1 so +2

p(z) depending on the maximum real value, we may establigl} 4 simple roots, the bounds is no less than the smallest
a new bound using ‘standard’ conformal mappings to the upigsitive root of

disc. As we will see, we can sharpen this further to obtain
bounds near the order of magnitude of the optimal vdlyg. |ﬁ|2 4 |£|2 -1 (5)
2K 2K '

3 Functions with image restrictions As it is clear from the above discussion of (1), the inverse of

We build our analysis on the fact that the coefficients of the maximum real value on the half-plane, ilgx, gives the
bounded function are bounded. One of the quantitative exprégPremum bound such that all smaller real proportional gains
sions for this is Gutzmer's lemma (see for ex. [4]), a cons@te stabilising controllers, i.€.,,,. We infer our desired bound

quence of the maximum principle. We denote the open uditfor proportional controllers by taking the inverse of our func-
disc byD. tion bound.

Lemma 1 (Gutzmer) Corollary 1 Given p(z) meromorphic, with no poles in the
closed right half-plane and at least one zefpin the open
half-plane. The largest real valuB such that all realk with
|k| < R are proportional stabilising(z) is bounded by

oo
2
> gl < 1. B 5

v=0 R < )
12 R (s0)]*- ‘p(q) (50) /q!|

Supposg/ (z) : D — D given asg (z) = > .-, g»2" is holo-
morphic. Then

(6)

We will derive the new bound as a consequence of the follow-

ing observation, which is proved together with the theorem Whereq denotes the multiplicity of the zero. Moreover, for a

the next section. simple root an upper bound tB is the inverse of the smallest
positive root of(5).

Proposition 1 Suppose we have a meromorphic function

p(z) = >02,pyz” With no poles in the closed unit dide, Remark. Using the full force of Lemma 1, computing more

but a zeroz, at the origin of arbitrary multiplicityg > 1. De- coefficients we might improve this further. We give no explicit

fined := sup {|p(2)| : z € D, I(p(2)) = 0}. formulas here.
Then o
4  Derivation of results
1| ‘_1 p(q)(o)‘ <5
oPal = 2| q = Proof of the Proposition:

The meromorphic functiop(z) has by assumption no poles in
the disc|z| < 1. The function values taken on the unit disc
hence lie in a bounded domain. Thus, the limes superior of
all real valuesy, is finite. Therefore, the image ofz) is con-

tained in the doubly slit plan&/ := C\ {(—o0, —=6] U [4, 00) }.
For thg .half-planéRs g 0 and an arbltrary zero there, t.he\Ne map this maximal image domai back to the unit circle
proposition translates via conformal mapping to the followm%) via

Moreover, for a simple root

P12 D2 2
— 1< 1.
1551 1551 =

Theorem 2 Given a meromorphic transfer functigriz) with 1— /L—rzfg
no poles in the closed right half-plane. Define := P(s) = ———. (7)

sup {[p(s)| : ®s > 0, Im(p(s)) = 0}. 1+ /1555



Obviously,¢(0) = 0. We havep(M) C D, especially For the canonical mapping of the unit disc to the right half-
planeH™ := {z : Rz > 0},

¢(p(D)) C D. ®)
Let the power series expansion pfz) be given as:p(z) = o Do HY we 1+w
> o puz¥. Consider the composite functiop(p(z)), and ' ’ 1—w

compute the first coefficients of the square root term in (7)
definezy by

[1-p(2)/8 p(2) o(20) o Lt - o1, 2
Z 2 =S =S 0 = = — .
1+pz 0 0 1z 0770 11 so+1

\/ 2 (potp1- Z+P22’2+ )
N )

14+1/6(po+ prz+ p2z2+...) Thus, giverz, we define
p@=0 [, 2 (pztpt..) A 2
6 14 (1/6) (prz+p2z®+...) N3D—’D7)\H)\f7
C 20 — 1
2
\/ - S p1z+ pz - —) +. ) and the composite functiom (4 (-)) maps the unit disc to the
right half plane. As: (0) = zp ando (z9) = so, the origin is
1 2
—(5) () (e (o)) T
, As by assumptions, is ag-fold zero ofp(z), there is a-fold
2/5)2 (pr-2+4 (pa — (11/6)%) 22 +...) zero of f(z) := p(o (1 (2))) = 3. f,2¥ at the origin. Using

our proposition, we find that the real maximunof f on the

1 T unit circle which is equal the real maximummof p on the half-
_ b1 P P2\ 2 3 i
—1_ 5 2+ (55_2 _ F) 2420, plane is lower bounded by
. . : |&|2 <k
Thus, if we consider our mappingp(z)) we have 2 =
$(p(2)) , For a simple zero we obtain
B 1—(1—pgz+[§§—;—%2]-z2+...)
- 2
1+(1—%1 z+[%§—§—%2]-22...) | | +| | : ©)
pr.,_ [1pl _ P_z} 21
o 2 52 4 : : :
= o This leaves us the task to computg f> for simple zeros in
2= 2+, terms of our original functiorp(z). (The case of a multiple
= % Cz+ (%) S22 zero is completely analogue).

. - , .. We find for
Using now Gutzmer’s coefficient bound for the first coefficient

#(p(z)), we find esq.ﬁplf < 1, hence|EL| < 4. We ob-

serve, that the analogue result holds truegfpin place ofp;, f(z)=p(o(n(2)))
if 0 =po =p1 =... = pg_1. The first claim of the proposi-
tion follows asp, = p(9)(0)/q!. that
Consider the special case of a simple zero. Using Gutzmer's AN s Y, 10
botnd sah o g FE =0 @ @E) o' (@)W () (10)
552+ 152 <1 and
o f” (Z) =

Proof of the Theorem: P (o (1(2))) - (0" (1 ()))‘N/(Z)2+

We proceed as in [1], to compose a suitable mapping of the unit - - + 2’ (0 (2)) [0 (11 (2)) (1’ (2))* + 0’ (1 (2)) " (2)] (11)
disc to the right-half plane which transfers the origin to the zero
So: From the definition, we have



The term [o” (1 (=)) - (1 (2))" + 0" (1 (=) - 1" (2)] evalu-

142 . 25 ated at zero gives:
A i
) = 21—-2)+22 2 )
A R PR " (1(0)) - (1 (0)” + 0" (1 (0)) - u” (0)
!
” —2(=2)(1 - 2) 4 207 (2) —y I U () o =
o"(2) 1 2)° 1-2)3 (1-2) 1—1(0) 0
A— 2 ! ’ |:2'M/<0) —:|
= = =0 0)) - 0)) | ——= + 2%
, (AT -1) -7 (A - =)
w(z) = Nz —1)2 2.1/ (0) — ’ -
(A-Z0—1) Theterm| 775 + 220} wherey' (0) = 20-Z0—1, 11 (0) = 2o
_ AME -tz —1 z-F -l gives
Az —1)° Az —1)7°
1 _( _O ) _ | 0_) 4 2.m+2.z—(1_’z(’)
u'(z) = —2z0()\-zo—1)-(zo-z0—1)/()\zo—1) 1— 2 012,
p'(0) = 2-%Z0—1, 2427 (70— 1) 2 /501
" _ _ . ’ = = _-92. = 9. —
0) = 2% (20-20—1)=2-Z (¢ (0)) 1—-2 zo+1 2+ 9
_4 (80—|—1)/(30+1)_2 so+1 1
This gives the first coefficient of by (10) as T 2 504242 TSl so+2
The second coefficient is finally computed as
fi=Ff(0) = p'(s0)-0 (Z20) -1/ (0) fo = f7(0)/2
/ — 2 /
= 7' (s0) - (2020 — 1) s0+1 " 2 P(s0)Rso
1— = 2 Rso)? — =2 ) (14
(120 S ) (o)) = F e gy
With 2o = o(s0) = 2272 = 1 — —2- we find Hence, the lower bound for simple zeros is obtained from (9)
sot sot with (13) and (14). O
Remark. The Corollary may be strengthened by further co-
fi = f(0) efficient computations. We may have given more formulas to

Re (s0) state a further improved estimate for multiple zeros as well.

1
= —4p'(s0) 5 (50 + 1)° (12) The way to proceed is strictly as above.

2 (SQ+1)-(80+1)

= —2p' (s0) - Re(sg) -

(13) 5 Example

In [1] the following transfer function was considered
With sq inside the right half-plane the absolute value of this

coefficient is: (s) = (s=2)(s+1)
P s T 2431 1

(15)

|fil = 1D (s0)] - 2 - Re (s0) There is no pole in the closed right half plane and a single zero

. o . i s0 With Re sg > 0, thussg = 2, m = 1. The derivative op(z)
Computing the derivatives from (10), this translates (just as;in

[1]) to the situation of a multiple zero as:
_ 2.5 4+4.82+16-5>+6s5+5
(2-3+s2+3-s+1)°

[Fal = [P (s0) /a2 % (s0) | P ()

Suppose now finally the case of a simple zero. The COMPURn ey’ (s0) = P (2) = 1/9.

tion of f, from (11) is slightly more tedious. We have
Blondel and Bertilsson derived the upper bound for the modu-

P (0 (1 (2) - (0 (u(2) - 1 <Z))|22:30 lus of acomplexgain as (2), namely
s (=2 sy LY 9-(m+1)q!
= (o0 (2R 2o5) 2Re (o) I (s0)



which evaluates to References

9-2 [1]
4.1/9_4().5.

From the first bound in Theorem 2 we find the upper bofind
to be smaller than [2]

=4.5.

2 _ 2 _ 9
fi 122 Re(so)l - o (s0)| 2 3]

Willing to use more information from the transfer function we

calculate firsp” (so) = 574, and then 4]

2
perro = 2(3) (rez-rel) @
- 2(__44 AL g) - __758,
243 9 4 486

This gives by the second estimate of our Theorem 2 a lower
bound of the maximal real valuevia

|ﬁ|2 + |Q|2 <1 as V146557/243 < k.

2K 2K
Taking the inverse gives the second controller bound of Corol-
lary 1. Hence we find that the upper bouRdo real propor-
tional gain is no greater than

0.635.

What is the actual largest admissable value for a constant real
controllerk? Computing the root loci of the family

253 + 52 +3s+1+k- (s —5—2),

we find that all positive, real valuds 0 < k£ < 0.5 are ad-
missable, whilet = 0.5 yields an unstable function. The neg-
ative proportional controllers may not be chosen smaller than
—0.1625. Thus, we must compare the new upper bouhds
and0.635 to 0.1625 which shows that further improvement of
the latter bound is limited to a factor smaller thAn

From the numerical example above, we infer that the first part
of Corollary 1 does not hold true when the bound is multiplied

by a constant smaller thar/28. The second part of Corollary

1 does not hold true when the bound is multiplied by a factor
smaller thanl /4.

6 Conclusion

Using complex analysis, we have given general upper bounds
for real proportional controllers. The new bound improves the
known one by a factor of at least 9, and is in contrast not depen-
dent on the number of roots. A systematic way to improve the
new bound has been outlined. The general bound may not be
improved by any constant factor smallef27, while the first

of the improved bounds may not be lowered by a factor smaller
thanl/4.

Blondel, V.; Bertilsson, D. An upper bound for the gain
of stabilizing proportional controllersSyst. Control Lett.
24(2):83-86, 1995.

Doyle, J.C.; Francis, B. A.; Tannenbaum, A. Reedback
Control Theory Macmillan Publishing Company, New
York, N.Y., 1992.

Hayman, W. K.Multivalent functions Cambridge Univer-
sity Press, Cambridge, U.K., 2nd edition, 1994.

Pélya, G.; Szeg0, GAufgaben und Lehrsétze aus der Anal-
ysis | Springer-Verlag, Berlin, 1970.

Youla, D.C.; Bongiorno jun., J.J.; Lu, C.N. Single-loop
feedback-stabilization of linear multivariable dynamical
plants.Automatica10:159-173, 1974.



	Session Index
	Author Index



