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Abstract

The explicit determination of the largest admissable constant
controller is difficult. For linear systems with all poles in the
domain of stability but at least one zero outside, an improved
upper bound on real proportional gain controllers is given. An
example shows the improvement and further possible margins.

1 Introduction

Given the transfer function of a plantp(z) and a controllerc(z)
stabilising it in closed loop. What conditions are imposed by
the plant configuration on the size of the controller?

Designate byS(z) = (1 + p(z) · c(z))−1 the so-called sensi-
tivity function. It is then well-known that asymptotic internal
stability of the closed feedback loop is equivalent to the follow-
ing three properties [5] :

i) S(z) is without poles outside the domain of stability (left
half-plane or unit disc).

ii) Zeros (S(z)) ⊃ Poles(p(z)) (outside the domain of
stability).

iii) Zeros (S(z)− 1)⊃ Zeros(p(z)) (outside the domain of
stability).

In this presentation, we study the following question: How
large may we take a stabilising proportional controller? We
will exhibit a new upper bound for rational (or more general:
meromorphic) systems with all poles in the left half-plane, but
at least one zero in the right half-plane. The bound is related
to the sensitivity of zeros. It does not depend on the number of
zeros.

We will outline analytic limitations to proportional controllers
in the next section, present the steps leading to the bound in the
following section, give the proofs subsequently, and close the
paper with a worked example.

2 Known limitation for proportional control

Consider the closed right half-plane and suppose the rational
functionp(z) has no poles there.

If we consider only scalar, real controllersc(z) = k, we find
that of conditions i), ii), iii) as above only i) means a limitation.
For S(z) = (1 + p(z) · c(z))−1 to have no poles in the right
half-plane, whilec(z) = k, this means−1

p(z) 6= k. This yields
the following.

Fact: Every real controller

c(z) = k, |k| < [sup {|p(z)| : <z ≥ 0, =(p(z)) = 0}]−1 (1)

is stabilising.

The right hand side of (1) was denotedLopt by Blondel and
Bertilsson in [1] as this figure is the maximal size of the largest
proportional gain controller such that all smaller ones are sta-
bilising. This valueLopt might in practice often be replaced by
the unconstrained figureL := [sup {|p(z)| : <z ≥ 0}]−1 as
L ≤ Lopt is easier to compute. To assess any such approxima-
tion of the optimum upper bounds may be used. Thus, Blondel
and Bertilsson [1] proved the following upper bound oncom-
plexproportional controllersk.

Theorem 1 Letp(s) =
∑∞
ν=0 pνz

ν be the transfer function of
a system with no poles in the closed right-half plane. Suppose
p(s) has at least one zeros0 in the open right half-plane. Let
m designate the number of zeros ofp(s) in the open right half
plane,q the multiplicity of the zeros0 and< (s0) the real part
of the zeros0. Supposek ∈ C to be a stabilising proportional
controller. Then1

|k| < 9 · (m+ 1) q!
|2 · < (s0)|q ·

∣∣p(q) (s0)
∣∣ . (2)

The above bound holds a fortiori for realk. The proof in [1]
relies on the study of functions omitting two values. As the
number of zeros is supposed to be finite and known, a complex
function omitting the values1 and0 is constructed. Using the
sharp version of a special result by Landau and Carathéodory
(see [3]), the above bound is established. The quantity on the
right hand side of (2) is denoted byU in [1], and is such that
no complex controller of larger absolute value is stabilising.
Hence, we have

L ≤ Lopt ≤ U. (3)

We might want to inquire which real proportional controllers
are not stabilising the system. The general bound for complex

1Please note: The termq! is missing in [1].



proportional gain may be too conservative for this important
case. Hence, we consider the largest absolute valueR such that
all real proportional compensators smaller in absolute value are
stabilising. This allows to lower the factor9(m + 1) in (2)
to a constant2. Thus, we establish a boundR for real gain
controllers with

L ≤ Lopt ≤ R < 9R ≤ U.

We achieve this result by studying the maximal possible set of
image values. This value set must be bounded for the functions
considered. Taking into consideration the image covered by
p(z) depending on the maximum real value, we may establish
a new bound using ‘standard’ conformal mappings to the unit
disc. As we will see, we can sharpen this further to obtain
bounds near the order of magnitude of the optimal valueLopt.

3 Functions with image restrictions

We build our analysis on the fact that the coefficients of a
bounded function are bounded. One of the quantitative expres-
sions for this is Gutzmer’s lemma (see for ex. [4]), a conse-
quence of the maximum principle. We denote the open unit
disc byD.

Lemma 1 (Gutzmer)

Supposeg (z) : D → D given asg (z) =
∑∞
v=0 gvz

v is holo-
morphic. Then

∞∑
v=0

|gv|2 ≤ 1.

We will derive the new bound as a consequence of the follow-
ing observation, which is proved together with the theorem in
the next section.

Proposition 1 Suppose we have a meromorphic function
p(z) =

∑∞
ν=0 pνz

ν with no poles in the closed unit discD,
but a zeroz0 at the origin of arbitrary multiplicityq ≥ 1. De-
fineδ := sup

{
|p(z)| : z ∈ D, =(p(z)) = 0

}
.

Then

1
2
|pq| =

1
2
| p

(q)(0)
q!
| ≤ δ.

Moreover, for a simple root

|p1

2δ
|2 + |p2

2δ
|2 ≤ 1.

For the half-plane<s > 0 and an arbitrary zero there, the
proposition translates via conformal mapping to the following.

Theorem 2 Given a meromorphic transfer functionp(z) with
no poles in the closed right half-plane. Defineκ :=
sup {|p(s)| : <s ≥ 0, Im(p(s)) = 0}.

Suppose thats0,<s0 > 0 is a zero ofp(s) with multiplicity q.
Then

1
2
|2 · < (s0)|q · |p(q) (s0) /q!| ≤ κ. (4)

With

f1 := −2<s0|p′(s0)|,

f2 := 2
(
s0 + 1
s0 + 1

)2(
p′′(s0)(<s0)2 − p′(s0)<s0

1
s0 + 2

)
,

for a simple roots0 the boundκ is no less than the smallest
positive root of

| f1

2κ
|2 + | f2

2κ
|2 = 1. (5)

As it is clear from the above discussion of (1), the inverse of
the maximum real value on the half-plane, i.e.1/κ, gives the
supremum bound such that all smaller real proportional gains
are stabilising controllers, i.e.Lopt. We infer our desired bound
R for proportional controllers by taking the inverse of our func-
tion bound.

Corollary 1 Given p(z) meromorphic, with no poles in the
closed right half-plane and at least one zeros0 in the open
half-plane. The largest real valueR such that all realk with
|k| < R are proportional stabilisingp(z) is bounded by

R <
2

|2 · < (s0)|q ·
∣∣p(q) (s0) /q!

∣∣ , (6)

whereq denotes the multiplicity of the zero. Moreover, for a
simple root an upper bound toR is the inverse of the smallest
positive root of(5).

Remark. Using the full force of Lemma 1, computing more
coefficients we might improve this further. We give no explicit
formulas here.

4 Derivation of results

Proof of the Proposition:

The meromorphic functionp(z) has by assumption no poles in
the disc|z| ≤ 1. The function values taken on the unit disc
hence lie in a bounded domain. Thus, the limes superior of
all real values,δ, is finite. Therefore, the image ofr(z) is con-
tained in the doubly slit planeM := C\{(−∞,−δ] ∪ [δ,∞)}.

We map this maximal image domainM back to the unit circle
D via

φ(s) =
1−

√
1−s/δ
1+s/δ

1 +
√

1−s/δ
1+s/δ

. (7)



Obviously,φ(0) = 0. We haveφ(M) ⊂ D, especially

φ(p(D)) ⊂ D. (8)

Let the power series expansion ofp(z) be given as:p(z) =∑∞
ν=0 pνz

ν . Consider the composite functionφ(p(z)), and
compute the first coefficients of the square root term in (7)

√
1− p(z)/δ
1 + p(z)/δ

=

√
1− 2

δ

p(z)

1 + p(z)
δ

=

√
1− 2

δ
· (p0 + p1 · z + p2z2 + . . .)

1 + 1/δ (p0 + p1z + p2z2 + . . .)

p(0)=0
=

√
1− 2

δ
· (p1 · z + p2z2 + . . .)

1 + (1/δ) (p1z + p2z2 + . . .)

=

√
1− 2

δ

(
p1z +

(
p2 −

p2
1

δ

)
z2 + . . .

)
= 1−

(
1
2

)(
2
δ

)(
p1 · z +

(
p2 −

p2
1

δ

)
z2 + . . .

)
−1

8
(2/δ)2 (

p1 · z +
(
p2 − (p1/δ)2

)
z2 + . . .

)2
+ . . . .

= 1− p1

δ
· z +

(
1
2
p2

1

δ2
− p2

δ

)
z2 + z3 · (. . .) .

Thus, if we consider our mappingφ(p(z)) we have

φ(p(z))

=
1−

(
1− p1·z

δ +
[

1
2
p2

1
δ2 − p2

δ

]
· z2 + . . .

)
1 +

(
1− p1

δ · z +
[

1
2
p2

1
δ2 − p2

δ

]
· z2 . . .

)
=

p1
δ · z −

[
1
2
p2

1
δ2 − p2

δ

]
z2 + . . .

2− p1
δ · z + . . .

=
p1

2δ
· z + (

p2

2δ
) · z2 + . . . .

Using now Gutzmer’s coefficient bound for the first coefficient
φ(p(z)), we find esp.

∣∣ 1
2·δp1

∣∣2 ≤ 1, hence
∣∣p1

2

∣∣ ≤ δ. We ob-
serve, that the analogue result holds true forpq in place ofp1,
if 0 = p0 = p1 = . . . = pq−1. The first claim of the proposi-
tion follows aspq = p(q)(0)/q!.

Consider the special case of a simple zero. Using Gutzmer’s
bound again, we find

|p1

2δ
|2 + |p2

2δ
|2 ≤ 1

�

Proof of the Theorem:

We proceed as in [1], to compose a suitable mapping of the unit
disc to the right-half plane which transfers the origin to the zero
s0:

For the canonical mapping of the unit disc to the right half-
planeH+ := {z : <z > 0},

σ : D→ H+, ω 7−→ 1 + ω

1− ω

definez0 by

σ(z0) = s0 ⇔
1 + z0

1− z0
= s0 ⇔ z0 =

s0 − 1
s0 + 1

= 1− 2
s0 + 1

.

Thus, givenz0 we define

µ : D→ D , λ 7−→ λ− z0

λ · z0 − 1
,

and the composite functionσ (µ (·)) maps the unit disc to the
right half plane. Asµ (0) = z0 andσ (z0) = s0, the origin is
mapped tos0.

As by assumption,s0 is aq-fold zero ofp(z), there is aq-fold
zero off(z) := p (σ (µ (z))) =

∑
fνz

ν at the origin. Using
our proposition, we find that the real maximumδ of f on the
unit circle which is equal the real maximumκ of p on the half-
plane is lower bounded by

|fq
2
|2 ≤ κ.

For a simple zero we obtain

| f1

2κ
|2 + | f2

2κ
|2 ≤ 1. (9)

This leaves us the task to computef1, f2 for simple zeros in
terms of our original functionp(z). (The case of a multiple
zero is completely analogue).

We find for

f (z) = p (σ (µ (z)))

that

f ′(z) = p′ (σ (µ (z))) · σ′ (µ (z)) · µ′ (z) (10)

and

f ′′ (z) =

p′′ (σ (µ (z))) · (σ′ (µ (z))) · µ′ (z)2 +

. . . + p′ (σ′′ (z))
[
σ′′ (µ (z)) (µ′ (z))2 + σ′ (µ (z))µ′′ (z)

]
(11)

From the definition, we have



σ(z) =
1 + z

1− z
= 1 +

2z
(1− z)

,

σ′(z) =
2(1− z) + 2z

(1− z)2
=

2
(1− z)2

σ′′(z) =
−2(−2)(1− z)

(1− z)4
=

4
(1− z)3

=
2σ′(z)
(1− z)

µ(z) =
λ− z0

λ · z0 − 1
,

µ′(z) =
(λ · z0 − 1)− z0 · (λ− z0)

(λ · z0 − 1)2

=
λ (z0 − z0) + z0 · z0 − 1

(λ · z0 − 1)2 =
z0 · z0 − 1

(λ · z0 − 1)2

µ′′(z) = −2z0 (λ · z0 − 1) · (z0 · z0 − 1)
/

(λz0 − 1)4

µ′(0) = z0 · z0 − 1,
µ′′(0) = 2 · z0 · (z0 · z0 − 1) = 2 · z0 · (µ′ (0))

This gives the first coefficient off by (10) as

f1 = f ′ (0) = p′ (s0) · σ′ (z0) · µ′ (0)

= p′ (s0) · 2
(1− z0)

· (z0 · z0 − 1)

With z0 = σ(s0) = s0−1
s0+1 = 1− 2

s0+1 we find

f1 = f ′ (0)

= −4p′ (s0)
1
2

(s0 + 1)2 Re (s0)
(s0 + 1) ·

(
s0 + 1

) (12)

= −2 p′ (s0) ·Re (s0) · s0 + 1
s0 + 1

(13)

With s0 inside the right half-plane the absolute value of this
coefficient is:

|f1| = |p′ (s0)| · 2 ·Re (s0)

Computing the derivatives from (10), this translates (just as in
[1]) to the situation of a multiple zero as:

|fq| =
∣∣∣p(q) (s0) /q!

∣∣∣ · |2 · < (s0) |q

Suppose now finally the case of a simple zero. The computa-
tion of f2 from (11) is slightly more tedious. We have

p′′ (σ (µ (z))) · (σ′ (µ (z)) · µ′ (z))2
|z=s0

= p′′ (s0) ·
(
−2 · < (s0) · s0 + 1

s0 + 1

)2

.

The term
[
σ′′ (µ (z)) · (µ′ (z))2 + σ′ (µ (z)) · µ′′ (z)

]
evalu-

ated at zero gives:

σ′′ (µ (0)) · (µ′ (0))2 + σ′ (µ (0)) · µ′′ (0)

= σ′ (µ (0)) · (µ′ (0)) · 2 · µ′ (0)
1− µ (0)

+ σ′ (µ (0)) · µ′ (0) · 2 · z0

= σ′ (µ (0)) · (µ′ (0))
[

2 · µ′ (0)
1− µ (0)

+ 2z0

]
.

The term
[

2·µ′(0)
1−µ(0) + 2z0

]
whereµ′ (0) = z0·z0−1, µ (0) = z0

gives

2 · (z0 · z0 − 1)
1− z0

+ 2 · z0
(1− z0)
1− z0

=
−2 + 2z0

1− z0
= −2 · (z0 − 1)

z0 + 1
= −2 ·

(
−2
/
s0 + 1

2 + 2
s0+1

)

= 4 · (s0 + 1)/(s0 + 1)
2 · s0 + 2 + 2

= 2 · s0 + 1
s0 + 1

· 1
s0 + 2

.

The second coefficient is finally computed as

f2 = f ′′ (0) /2

= 2
(
s0 + 1
s0 + 1

)2(
p′′(s0)(<s0)2 − p′(s0)<s0

s0 + 2

)
.(14)

Hence, the lower bound for simple zeros is obtained from (9)
with (13) and (14). �

Remark. The Corollary may be strengthened by further co-
efficient computations. We may have given more formulas to
state a further improved estimate for multiple zeros as well.
The way to proceed is strictly as above.

5 Example

In [1] the following transfer function was considered

p(s) =
(s− 2)(s+ 1)

2s3 + s2 + 3s+ 1
. (15)

There is no pole in the closed right half plane and a single zero
s0 with Re s0 > 0, thuss0 = 2, m = 1. The derivative ofp(z)
is

p′ (z) =
−2 · s4 + 4 · s3 + 16 · s2 + 6s+ 5

(2 · s3 + s2 + 3 · s+ 1)2

hencep′ (s0) = p′ (2) = 1/9.

Blondel and Bertilsson derived the upper bound for the modu-
lus of acomplexgain as (2), namely

9 · (m+ 1) q!
|2Re (s0)|q |pq (s0)|

,



which evaluates to

9 · 2
4 · 1/9

= 40.5.

From the first bound in Theorem 2 we find the upper boundR
to be smaller than

2
f1

=
2

|2 ·Re (s0)| · |p′ (s0)|
=

9
2

= 4.5.

Willing to use more information from the transfer function we
calculate firstp′′ (s0) = −44

243 , and then

f2 = f ′′ (0) /2 = 2
(

3
3

)2(
p′′(2)22 − p′(2)

2
4

)
= 2(

−44
243
· 4− 1

9
· 2

4
) =
−758
486

.

This gives by the second estimate of our Theorem 2 a lower
bound of the maximal real valueκ via

| f1

2κ
|2 + | f2

2κ
|2 ≤ 1 as

√
146557/243 ≤ κ.

Taking the inverse gives the second controller bound of Corol-
lary 1. Hence we find that the upper boundR to real propor-
tional gain is no greater than

0.635.

What is the actual largest admissable value for a constant real
controllerk? Computing the root loci of the family

2s3 + s2 + 3s+ 1 + k · (s2 − s− 2),

we find that all positive, real valuesk, 0 ≤ k < 0.5 are ad-
missable, whilek = 0.5 yields an unstable function. The neg-
ative proportional controllers may not be chosen smaller than
−0.1625. Thus, we must compare the new upper bounds4.5
and0.635 to 0.1625 which shows that further improvement of
the latter bound is limited to a factor smaller than4.

From the numerical example above, we infer that the first part
of Corollary 1 does not hold true when the bound is multiplied
by a constant smaller than1/28. The second part of Corollary
1 does not hold true when the bound is multiplied by a factor
smaller than1/4.

6 Conclusion

Using complex analysis, we have given general upper bounds
for real proportional controllers. The new bound improves the
known one by a factor of at least 9, and is in contrast not depen-
dent on the number of roots. A systematic way to improve the
new bound has been outlined. The general bound may not be
improved by any constant factor smaller1/27, while the first
of the improved bounds may not be lowered by a factor smaller
than1/4.
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