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Abstract

The purpose of this paper is to show how the theory of frac-
tional ideals is a powerful mathematical framework for the
study of stabilization problems of linear SISO systems. In par-
ticular, in terms of fractional ideals, we give necessary and suf-
ficient conditions for a plant to be internally/strongly/bistably
stabilizable or to admit a (weakly) coprime factorization. Fi-
nally, we show how to extend the Youla-Kučera parametriza-
tion of all stabilizing controllers to every stabilizable plant
which does not (necessarily) admit coprime factorizations.

1 Introduction

In the eighties, the fractional representation approach to
analysis and synthesis problemshas been developed by M.
Vidyasagar, C. A. Desoer and co-authors in order to settle in
a unique mathematical framework different stabilization prob-
lems (internal/strong/simultaneous stabilization, parametriza-
tion of all stabilizing controllers, graph topology, gap metric,
margins of robustness, optimal controllers . . . ) [3, 10]. In the
nineties, certain ideas of this approach have been at the core of
the successful development ofH∞-control for linear finite di-
mensional systems. However, for certain classes of linear infi-
nite dimensional systems and multidimensional systems, some
questions on stabilization problems are still open [3, 4, 8, 10].

In this paper, we show that the introduction offractional ide-
als [2] within the fractional representation approach to synthe-
sis problems allows us to obtain general necessary and suffi-
cient conditions for internal/strong/bistable stabilization or for
the existence of (weakly) coprime factorizations. The main
idea is to replace transfer functions by means of ideals [8],
and then, to use the powerful theory of ideals to obtain certain
information that could be difficult to find if we use different
approaches. This approach gives simple and tractable charac-
terizations of the structural properties of SISO systems. For
instance, it is possible to clarify the relationship between inter-
nal stabilizability and the existence of coprime factorizations.
In particular, we recover the fact that internal stabilizability
does not generally imply the existence of coprime factoriza-
tions [8]. The Youla-Kǔcera parametrization of all stabilizing

controllers was developed for plants that admit coprime factor-
izations. We extend the Youla-Kučera parametrization to every
stabilizable plant which does not (necessarily) admit coprime
factorizations. As the Youla-Kǔcera parametrization, this new
parametrization is affine in the free parameters but generally
has two free parameters. Ifp admits a coprime factorization,
then we show that this parametrization is the Youla-Kučera one
and if p does not admit a coprime factorization butp2 does,
then this parametrization only admits one free parameter. Fi-
nally, using the concept ofPicard group[2], we characterize
the ringsA of SISO (proper) stable plants [3, 10] over which
every stabilizable plant, defined by a transfer functionp = n/d,
0 6= d, n ∈ A, admits a Youla-Kǔcera parametrization or a
parametrization with one or two free parameters.

Notation: A will denote a commutative integral domain
(∀ a, b ∈ A, a b = b a, a b = 0, b 6= 0 ⇒ a = 0) and
K = Q(A) = {n/d | 0 6= d, n ∈ A} thequotient fieldof A
[2]. U(A) = {a ∈ A | ∃ b ∈ A : a b = 1} will be thegroup
of invertible elementsof A, Mq(A) the ring ofq × q matrices
with entries inA. Finally, if a1, . . . , an ∈ K = Q(A), then
(a1, . . . , an) will denote theA-moduleA a1 + . . . + A an =
{
∑n

i=1 λi ai | λi ∈ A} and, will mean “by definition”.

2 Fractional representation approach to syn-
thesis problems

The main idea of the fractional representation approach to syn-
thesis problems [3, 10] is to write the stabilization problems
into general forms so that they can be applied to different
classes of linear systems (e.g. ordinary differential equations,
time-delay systems, multidimensional systems, infinite dimen-
sional systems, discrete systems . . . ). More precisely, we first
considera ring A of (proper) stable SISO plants(e.g. A =
RH∞, H∞(C+), Â, l1(Z+)) [3, 10]. Then, the class of sys-
tems is defined by the set of plants whose transfer functions are
of the formp = n/d with 0 6= d, n ∈ A. Hence,K = Q(A)
modelizes the set of stable/unstable or proper/improper plants
which have transfer functionsp ∈ K = Q(A).

Example 1. For finite dimensional systems, we considerthe
integral domainA = RH∞ of proper stable real rational
transfer function[10], i.e. we have:

A = {n/d | n, d ∈ R[s], deg n ≤ deg d,

d(s?) = 0 ⇒ Re s? < 0}.



A transfer function which belongs toA corresponds to a proper
and stable plant. Now, we haveK = Q(A) = R(s), i.e. every
elementp ∈ K can be written asp = n/d with n, d ∈ A. For
instance, the unstable plant1/(s−1) can be written asp = n/d
with n = 1/(s + 1) ∈ A andd = (s− 1)/(s + 1) ∈ A.

There are different classes of “stable” infinite dimensional sys-
tems depending on what criterium of stability we are dealing
with. A first example is the integral domainA = H∞(C+) of
the holomorphic functionsf in C+ , {s ∈ C | Re s > 0}
which are bounded w.r.t. the norm‖ f ‖∞, sups∈C+

|f(s)|.
H∞(C+) is a Banach algebra[3, 10]. A transfer function
p ∈ A is stable in the sense that the linear operator

Tp : H2(C+) −→ H2(C+),
u 7−→ p u,

is bounded, whereH2(C+) denotes the Hilbert space of holo-
morphic functions inC+ which are bounded w.r.t. to the norm
‖ u ‖2 , supx∈R+

(
∫ +∞
−∞ |u(x + i y)|2 dy)1/2 [3, 7]. For in-

stance,p = e−s/(s − 1) /∈ A becausep has the unstable pole
1 ∈ C+. However, we havep = n/d ∈ K = Q(A), with
n = e−s/(s + 1) ∈ A andd = (s− 1)/(s + 1) ∈ A.

Another class of “stable” infinite dimensional systems is the
Wiener algebra [3] defined by:

A = { f(t) +
∑∞

i=0 ai δ(t− ti) | f ∈ L1(R+),

(ai)i≥0 ∈ l1(Z+), 0 = t0 ≤ t1 ≤ t2 ≤ . . .}.

The two operations ofA = A are+ and the convolution? and
the Dirac distributionδ is the unit ofA. A is an integral domain
[3]. Endowed with the topology defined by the norm

‖ g ‖A =‖ f ‖L1(R+) + ‖ (ai)i≥0 ‖l1(Z+)

,
∫ +∞
0

|f(t)| dt +
∑+∞

i=0 |ai|,

A becomes a Banach algebra [3, 10]. The same properties hold
for Â = {f̂ | f ∈ A}, wherê· is the Laplace transform, and
with the norm‖ f̂ ‖Â, ‖ f ‖A. A transfer functionp ∈ A
is stable in the sense that, for any1 ≤ p ≤ +∞, the linear
operatorTp : Lp(R+) → Lp(R+), defined byTp(u) = p ? u,
is bounded [3, 7].

Definition 1. • [3, 10] A transfer functionp ∈ K = Q(A)
is internally stabilizableif there existsa stabilizing con-
troller of p, namelyc ∈ K = Q(A), such that:

H(p, c) =
(

1 c
p 1

)−1

=
( 1

1−p c − c
1−p c

− p
1−p c

1
1−p c

)
∈ M2(A).

(1)

Equivalently, this means that1/(1− p c), p/(1− p c) and
c/(1− p c) areA-stable.

• [10] A transfer functionp ∈ K = Q(A) is strongly stabi-
lizable (resp.bistably stabilizable) if there exists a stable
(resp. stable with a stable inverse) stabilizing controllerc
of p, i.e. c ∈ A (resp.c ∈ U(A)).

• [4, 5, 9] A transfer functionp ∈ K = Q(A) admits a
weakly coprime factorizationif there exist0 6= d, n ∈ A
such thatp = n/d and:

∀ k ∈ K : k n, k d ∈ A ⇒ k ∈ A.

• [3, 10] A transfer functionp ∈ K = Q(A) admits a
coprime factorizationif there exist0 6= d, n ∈ A and
x, y ∈ A such thatp = n/d and:

d x− n y = 1.

For other structural properties and stabilization problems, we
refer to [3, 7, 10] and the references therein. For a lack of
space, in this paper, we shall only study the previous ones.

3 Theory of fractional ideals

Let us recall that an idealI of A, defined bya1, . . . , an of A, is
theA-submodule ofA defined byI =

∑n
i=1 A ai. The theory

of fractional ideals is an extention of the well-known theory of
ideals of a ringA. The main idea of this theory is to develop a
mathematical framework which can treat at the same time the
elements ofA and the elements ofK = Q(A). The motivation
of the introduction of this theory within the fractional repre-
sentation approach to systems seems clear: we shall have the
possibility to study stable and unstable/improper plants in the
same mathematical framework.

Definition 2. We have the following definitions [2]:

• A fractional ideal J of A is an A-submodule ofK =
Q(A) such that there exists0 6= a ∈ A satisfying:

(a) J , {a b ∈ K | b ∈ J} ⊆ A.

• A fractional idealJ of A such thatJ ⊆ A is called an
integral ideal ofA.

• A fractional idealJ of A is principal if there existsk ∈ K
such thatJ = (k) , A k.

• A non-zero fractional idealJ is invertible if there exists a
non-zero fractional idealI of A such that we have:

I J = A.

Example 2. Let p ∈ K be the transfer function of the system:

y = p u ⇔ (1 : −p)
(

y
u

)
= 0.

Module theory approach to linear system tells us that the struc-
tural properties only depend on the whole system, i.e. input
and output together (without separation), and thus, on theA-
moduleJ = A (1) + A (−p) = A + A p [4, 5]. In fact,
J = (1, p) , A + A p is a fractional ideal ofA. Indeed,
there exist0 6= d, n ∈ A and such thatp = n/d. Thus,
we haveJ = (1, p) = (1/d) (d, n), where I = (d, n)
is an integral ideal ofA, i.e. I ⊆ A. Therefore, we have
(d) J = (d, n) ⊆ A.



We shall denote byF(A) the set of non-zero fractional ideals
of A. Let I, J ∈ F(A), then the following ideals

I ∩ J , {a ∈ I, a ∈ J},
I + J , {a + b | a ∈ I, b ∈ J},
I J , {

∑n
i=1 ai bi | ai ∈ I, bi ∈ J, n ∈ Z+},

I : J , {k ∈ K = Q(A) | (k) J ⊆ I},

are also fractional ideals ofA, i.e. belong toF(A). Hence,
F(A) is stable under respectively intersections, sums, products
and residuals. Moreover, we have the following relations.

Lemma 1. [2] If I, J, L are elements ofF(A), then we have
the following equalities: I (J + L) = I J + I L,

I : (J + L) = (I : J) ∩ (I : L),
I : (J L) = (I : J) : L = (I : L) : J.

Proposition 1. • [2] If J is an invertible fractional ideal of
A, then there exists a unique idealI ∈ F(A) such that
I J = A. This fractional ideal is denoted byJ−1 and we
haveJ−1 = A : J = {k ∈ K = Q(A) | (k) J ⊆ A}.

• [2] If J is an invertible fractional ideal ofA, then we have
(J−1)−1 = J . Hence, an invertible fractional idealJ of
A is divisorial, namelyJ satisfiesJ = A : (A : J).

The next theorem characterizes the structural properties of
plants and the stabilization problems defined in Definition 1
in terms of the properties of the fractional idealJ = (1, p).

Theorem 1. Let A be an integral domain of (proper) stable
SISO plants andK = Q(A) its quotient field. Letp ∈ K be
a transfer function of a plant andJ = (1, p) , A + A p the
fractional ideals ofA defined by1 andp. Then, we have:

1. p is stable, i.e. p ∈ A, iff J = A, or equivalently, iff
A : J = A.

2. p admits a weakly coprime factorization iffA : J is a
non-zero principal integral ideal ofA, i.e. there exists
0 6= d ∈ A such thatA : J = (d). Then,p = n/d, where
n = d p ∈ A, is a weakly coprime factorization ofp.

3. p is internally stabilizable iff the fractional idealJ is in-
vertible, or equivalently, there exista, b ∈ A such that:{

a− b p = 1,
a p ∈ A.

(2)

If a 6= 0, thenc = b/a is a stabilizing controller ofp and
J−1 = (a, b). c ∈ K internally stabilizesp ∈ K iff:

(1, p) (1, c) = (1− p c). (3)

4. p admits a coprime factorization iffJ is a non-zero prin-
cipal fractional ideal ofA, i.e. there exists0 6= k ∈ K
such thatJ = (k). Moreover, we haved = 1/k ∈ A,
n = d p ∈ A andp = n/d is a coprime factorization ofp.

5. p is strongly stabilizable iff there existsc ∈ A such that
J = (1− p c).

6. p is bistably stabilizable iff there existsc ∈ U(A) such
thatJ = (1− p c).

Proof. 1. If p is stable, thenJ = (1, p) = (1) = A, and thus,
A : J = A : A = A. Conversely, if we haveA : J = A, then
1 ∈ A : J = {k ∈ K | k, k p ∈ A} = {d ∈ A | d p ∈ A}, and
thus,1 p = p ∈ A, i.e. p is stable.

2. Let p admit a weakly coprime factorizationp = n/d,
0 6= d, n ∈ A. Then, by definition of a weakly coprime factor-
ization, we haveA : (d, n) = {k ∈ K | k d, k n ∈ A} = A.
Thus,J = (1, p) = (1, n/d) = (1/d) (d, n) which implies
that A : J = (A : (d, n)) : (1/d) = A : (1/d) = (d), by
the third equality of Lemma 1, and thus,A : J is a principal
integral ideal ofA.

Conversely, ifA : J is a non-zero principal integral ideal ofA,
then there exists0 6= d ∈ A such thatA : J = (d). But, we
haveA : J = {d ∈ A | d p ∈ A}, and thus,n , d p ∈ A. Let
us prove thatp = n/d is a weakly coprime factorization ofp.
We have

A : (d, n) = A : ((d) J) = (A : J) : (d) = (d) : (d) = A,

and thus,A : (d, n) = {k ∈ K | k d, k n ∈ A} = A, which
shows thatp = n/d is a weakly coprime factorization ofp.

3. Let us suppose thatp is internally stabilizable. Then, there
exists a stabilizing controllerc ∈ K such that we have (1). Let
us denotea = 1/(1 − p c) ∈ A, b = c/(1 − p c) ∈ A and
I = (a, b) the integral ideal ofA defined bya andb. We have
a p = p/(1− p c) ∈ A, b p = (p c)/(1− p c) = −1 + a ∈ A

⇒ 1 = a− b p ∈ I J = (a, b, a p, b p) ⊆ A ⇒ I J = A,

which shows thatJ−1 = I = (a, b). Moreover,c = b/a is a
stabilizing controller ofp.

Conversely, ifJ is an invertible ideal ofA, then we have

(A : J) J = {u− v p | u, v ∈ A : J} = A,

whereJ−1 = A : J = {d ∈ A | d p ∈ A}. Thus, there exist
a, b ∈ J−1, i.e. a, b, a p, b p ∈ A, such thata − b p = 1. If
a 6= 0, then let us definec = b/a. Then, we have: 1/(1− p c) = a ∈ A,

p/(1− p c) = a p ∈ A,
c/(1− p c) = b ∈ A,

⇒ H(p, c) =
(

a −b
−a p a

)
∈ M2(A).

Morever, we have(a, b) ⊆ J−1. Usinga − b p = 1 and the
fact thatu ∈ J−1 satisfiesu, u p ∈ A, we obtainu = (u) a −
(u p) b, i.e. u ∈ (a, b) ⇒ J−1 ⊆ (a, b) ⇒ J−1 = (a, b).

Let us notice thata p ∈ A anda− b p = 1 implies that we have
b p = a− 1 ∈ A, and thus, the conditionb p ∈ A is redundant
in (2). Finally, using the fact thatc = b/a, we have

A = J J−1 = (1, p) (a, b) = (a) (1, p) (1, c)



and thus,(1, p) (1, c) = (1/a) = (1− p c).

4. Let us suppose thatp admits a coprime factorization. Then,
there existd, n, x, y ∈ A such thatp = n/d andd x−n y = 1.
Then, we have1 = d x − n y ∈ (d, n) ⊆ A ⇒ (d, n) = A.
Thus, we haveJ = (1, p) = (1/d) (d, n) = (1/d), i.e. J is a
principal fractional ideal ofA.

Conversely, ifJ is a non-zero principal fractional ideal ofA,
then there exists0 6= k ∈ K such thatJ = (k). Thus, there
existx, y, d, n ∈ A such that k = x− y p,

1 = d k,
p = n k,

⇒ d = 1/k,

and thus,p = n/d and1/d = x− y (n/d) ⇒ d x− n y = 1.

5 (resp. 6). Let us suppose thatp is strongly stabilizable (resp.
bistably stabilizable). Then, there exists a stabilizing controller
of the formc ∈ A (resp. c ∈ U(A)), and thus,(1, c) = A.
Using (3), we obtain thatJ = (1, p) = (1− p c).

Conversely, let us suppose that we haveJ = (1 − p c) where
c ∈ A (resp.c ∈ U(A)). Then,1 ∈ J ⇒ J 6= 0, and thus, we
have1− p c 6= 0. Moreover, there existd, n ∈ A such that

{
1 = d (1− p c),
p = n (1− p c), ⇒

 p = n/d,
p = (d− 1)/(d c),
p = n/(1 + n c),

and1−p c = d (1−p c)−(n c) (1−p c) = (d−n c) (1−p c) ⇒
d − n c = 1. The controllerc ∈ A (resp. c ∈ U(A)) is a
stabilizing controller ofp, i.e. p is strongly (resp. bistably)
stabilizable, because we have:

H(p, c) =
(

1 c
n/d 1

)−1

= 1
(d−n c)

(
d −d c
−n d

)
=

(
d −d c
−n d

)
∈ M2(A).

Remark 1. Firstly, from 2 and 4 of Theorem 1, a coprime fac-
torization is a weakly coprime factorization (this explains the
name). Indeed, ifp admits a coprime factorization, then, by 4
of Theorem 1,J = (1/d), for a certain0 6= d ∈ A, andJ is
invertible. Thus, we haveA : J = J−1 = (d) andA : J ⊆ A.
Hence,A : J is a principal integral ideal ofA, i.e. by 2 of
Theorem 1,p admits a weakly coprime factorization.

Secondly, let us notice that ifp admits a coprime factorization,
thenp is internally stabilizable. Indeed, ifp admits a coprime
factorization, then, by 4 of Theorem 1, there exists0 6= k ∈ K
such thatJ = (k). Thus,J is invertible with inverseJ−1 =
(1/k), and thus, by 3 of Theorem 1,p is internally stabilizable.

A strongly (resp. bistably) stabilizable plant always admits a
coprime factorization: there existsc ∈ A (resp. c ∈ U(A))
such thatJ = (1 − p c) is a principal fractional ideal ofA.
Thus, by 4 of Theorem 1,p admits a coprime factorization.

Corollary 1. Letp ∈ K = Q(A) a transfer function. We have
the following equivalences:

1. p admits a coprime factorization,

2. p admits a weakly coprime factorization andJ = (1, p)
of A is divisorial ideal ofA.

Proof. 1 ⇒ 2. By the first point of Remark 1,p admits a
weakly coprime factorization. Moreover, we haveJ = (k) for
a certain0 6= k ∈ K. Thus, we haveA : (A : J) = A : J−1 =
(J−1)−1 = J , by the second point of Proposition 1, and thus,
J is divisorial.

2 ⇒ 1. By 2 of Theorem 1, there exists0 6= d ∈ A such that
A : J = (d). Using the fact thatJ is divisorial, we obtain that
J = A : (A : J) = A : (d) = (1/d), and thus,J is a principal
fractional ideal ofA, i.e. p admits a coprime factorization by 4
of Theorem 1.

Proposition 2. Letp = n/d ∈ K = Q(A), 0 6= d, n ∈ A, be
any fractional representation ofp andJ = (1, p) the fractional
ideal ofA defined by 1 andp. Then, we have:

1. (d) ∩ (n) = (n) (A : J).

2. A is a greatest common divisor domain(GCDD), namely
every couple of elements ofA admits a greatest common
divisor, iff every transfer functionp ∈ K admits a weakly
coprime factorization.

3. If A is a GCDD, thenp admits a coprime factorization iff
J is a divisorial fractional ideal, i.e.J = A : (A : J).

We let the reader proves this theorem by himself. We refer to
[5] for the proof and examples.

Example 3. Let us consider the following wave equation [3]:

∂2z
∂t2 (x, t)− ∂2z

∂x2 (x, t) = 0,

∂z
∂x (0, t) = 0,

∂z
∂x (1, t) = u(t),

y(t) = ∂z
∂t (1, t),

⇒ ŷ(s) =
(es + e−s)

(es − e−s)
û(s).

The transfer function

p = (es + e−s)/(es − e−s) = (1 + e−2 s)/(1− e−2 s)

belongs to the field of fractions ofA = H∞(C+) (or A = Â)
because1 + e−s, 1 − e−s ∈ A. Let us consider the fractional
idealJ = (1, p) of A. It is known thatA is a GCDD [9] (see
also [4]). We haveA : J = {d ∈ A | d p ∈ A} = (1 − e−2 s),
and thus, by 2 of Theorem 1,p = (1 + e−2 s)/(1 − e−2 s)
is a weakly coprime factorization ofp. Moreover, we have
J J−1 = (1+ e−2 s, 1− e−2 s) = A because1 = (1+ e−2 s +
1 − e−2 s)/2. Thus,p is internally stabilizable and, using the
fact thata− b p = 1 with a = −b = (1− e−2 s)/2 ∈ (A : J),
we obtain thatc = b/a = −1 is a stabilizing controller of



p . Hence,A : J = J−1 = (1 − e−2 s), and thus,J =
(J−1)−1 = (1/(1− e−2 s)) is a principal fractional ideal ofA,
and thus, by 4 of Theorem 1,p admits the coprime fatorization
p = (1+e−2 s)/(1−e−2 s), 1

2 (1+e−2 s)− 1
2 (1−e−2 s) = 1.

Finally, we have1 − p c = 1 + p = 2/(1 − e−2 s), and thus,
J = (1/(1−e−2 s)) = (1−p c). Therefore, by 5 of Theorem 1,
we find thatp is bistably stabilizable (−1 ∈ A is a stabilizing
controller ofp).

4 Parametrization of all stabilizing controllers

In Remark 1, we saw that the existence of a coprime factoriza-
tion for a transfer function implies that the plant is internally
stabilizable. The converse is generally not true because the fact
thatJ is an invertible fractional ideal ofA does not imply that
it is principal (see 3 and 4 of Theorem 1). The Youla-Kučera
parametrization of all stabilizing controllers of a plant was de-
veloped under the condition that the plantp admits a coprime
factorization [3, 10]. Therefore, we may wonder if there exists
a parametrization of all stabilizing controllers for a stabilizable
plant which does not necessarily admit a coprime factorization.
We are going to show that such a parametrization exists and it
generalizes the Youla-Kǔcera one.

Lemma 2. Let J = (1, p) be an invertible fractional ideal of
A. Then, we have:

1. J2 = (1, p2) and J2 is also invertible whose inverse
J−2 = (J−1)2 = (a2, b2).

2. J−2 = (J2)−1 = {a ∈ A | a p2 ∈ A} = (r1, r2), where
r1, r2 ∈ A are such thatr1 − r2 p2 = 1 andr1 p2 ∈ A.

3. p2 admits a coprime factorization iffJ2 is a non-zero prin-
cipal fractional ideal ofA, or equivalently, iffJ−2 is a
non-zero principal fractional ideal ofA.

4. If p admits a coprime factorization, thenp2 also admits a
coprime factorization.

Proof. 1. We haveJ2 = (1, p, p2), and thus,(1, p2) ⊆ J2.
Using the fact thatJ is invertible, from 3 of Theorem 1, there
exista, b ∈ A such thata− b p = 1 anda p ∈ A. Multiplying
this last equality byp, we obtainp = (a p) 1 − (b p) p, where
a p, b p ∈ A, and thus,p ∈ (1, p2), which proves that we have
J2 = (1, p2). Now, let us notice that we have

(J J−1) (J J−1) = J2 (J−1)2 = A ⇒ (J2)−1 = (J−1)2,

and thus,J−2 , (J2)−1 = (J−1)2 = (a2, b2, ab) ⊇ (a2, b2).
Froma− b p = 1, we obtainab = (b) a2− (a p) b2 ∈ (a2, b2),
becauseb, a p ∈ A, and thus, we obtainJ−2 = (a2, b2).

2. J−2 = (1, p2)−1 = {a ∈ A | a p2 ∈ A} and, using
the fact thatJ2 J−2 = A, there existr1, r2 ∈ J−2, i.e.
ri ∈ A, ri p2 ∈ A, such thatr1 − r2 p2 = 1. In particu-
lar, we have(r1, r2) ⊆ J−2. Finally, for all r ∈ J−2, we have
r = (r) r1 − (r p2) r2, with r, r p2 ∈ A, which shows that
r ∈ (r1, r2), and thus,J−2 = (r1, r2).

3. From 1, we haveJ2 = (1, p2). Thus, by 4 of Theorem 1,
p2 admits a coprime factorization iffJ2 is a non-zero principal
fractional ideal ofA. Moreover,J2 = (k), with 0 6= k ∈ K, is
equivalent toJ−2 = (J2)−1 = (1/k), which proves 3.

4. If p admits a coprime factorization, then, by 4 of Theorem 1,
there exists0 6= k ∈ K such thatJ = (k). Then,J2 =
(1, p2) = (k2) is also a principal ideal ofA and the result
follows from 4 of Theorem 1.

Theorem 2. Let A be an integral domain of (proper) stable
SISO systems,K = Q(A), p ∈ K andJ = (1, p) , A + A p
the fractional ideal ofA defined by 1 andp. Let us suppose that
p is internally stabilizable. Then, all stabilizing controllers of
p have the form

c(q1, q2) =
b + r1 q1 + r2 q2

a + r1 p q1 + r2 p q2
, (4)

wherec = b/a is a stabilizing controller ofp (see (2)),{r1, r2}
is a set of generators ofJ−2, i.e. J−2 = (r1, r2), andq1, q2

are free parameters ofA such thata + r1 q1 p + r2 q2 p 6= 0.

In particular, we can chooser1 = a2 andr2 = b2 or any two
elementsr1, r2 ∈ A satisfyingr1 − r2 p2 = 1 andr1 p2 ∈ A.

1. (4) has only one free parameter, i.e.q2 = 0, iff p2 admits
a coprime factorization.

2. If p2 admits a coprime factorizationp2 = s/r, where
s, 0 6= r ∈ A, then (4) becomes:

c(q) =
b + r q

a + r p q
, ∀ q ∈ A : a + r p q 6= 0. (5)

3. If p admits a coprime parametrizationp = n/d, where
d x− n y = 1 for certainx, y ∈ A, then (4) becomes

c(q) =
y + d q

x + n q
, ∀ q ∈ A : x + q n 6= 0, (6)

i.e. (4) is the Youla-Kǔcera parametrization of all stabi-
lizing controllers ofp [10].

Proof. Let ci = bi/ai, i = 1, 2, be two stabilizing controllers
of p. Then, by (2), we have: 0 6= ai, bi ∈ A,

ai − bi p = 1,
ai p ∈ A,

⇒

 (b2 − b1) ∈ A,
(b2 − b1) p = (a2 − a1) ∈ A,
(b2 − b1) p2 = (a2 − a1) p ∈ A,

which proves thatb2 − b1 ∈ (A : (1, p, p2)) = J−2. Then, by
1 of Lemma 2, there existr1, r2 ∈ A such thatJ−2 = (r1, r2).
Thus, there existq1, q2 ∈ A such thatb2 − b1 = r1 q1 + r2 q2

and we havea2 − a1 = (b2 − b1) p = r1 p q1 + r2 p q2. Thus,
if a + r1 p q1 + r2 p q2 6= 0, then we have:

c2 =
b2

a2
=

b1 + r1 q1 + r2 q2

a1 + r1 p q1 + r2 p q2
. (7)

Hence, ifc1 and c2 are two stabilizing controllers ofp, then
there existq1, q2 ∈ A such that we have (4). Let us show that



any controller defined by (4) is a stabilizing controller ofp. We
have

(a + r1 p q1 + r2 p q2)− (b + r1 q1 + r2 q2) p = a− b p = 1,
(a + r1 p q1 + r2 p q2) p = a p + (r1 p2) q1 + (r2 p2) q2 ∈ A,

becausea p, r1 p2 andr2 p2 belong toA. Hence, (4) is the fam-
ily of all stabilizing controllers ofp if a+r1 p q1 +r2 p q2 6= 0.

1. It directly follows from 3 of Lemma 2 and the fact that
J−2 = (r1, r2).

2. If p2 admits a coprime factorization, then, by 3 of Lemma 2,
J−2 is a principal ideal ofA, and thus, there existsr ∈ A such
thatJ−2 = (r). Then, (5) follows directly from (4).

3. If p = n/d is a coprime factorization andd x − n y = 1,
wherex, y ∈ A, then we have(d x) − (d y) p = 1, and thus,
a = d x, b = d y ∈ A anda p = xn ∈ A. From 4 of Theo-
rem 1, we haveJ = (1/d), and thus,J−2 = (d2). Using 3 of
Lemma 2, then (5) becomes:

c(q) =
d y + d2 q

d x + d2 p q
=

y + d q

x + n q
, ∀ q ∈ A : x + n q 6= 0.

Definition 3. [2, 5] Let us denote byP(A) thegroup of non-
zero principal fractional idealsof A andI(A) the group of
non-zero invertible fractional idealsof A. Then, thePicard
groupof A is defined byC(A) , I(A)/P(A).

Proposition 3. 1. If C(A) ∼= Z/2 Z, then every stabilizable
plant p ∈ K = Q(A) has a parametrization of all its
stabilizing controllers of the form (5).

2. If C(A) ∼= 1, then every stabilizable plantp ∈ K = Q(A)
has a Youla-Kǔcera parametrization of its stabilizing con-
trollers (e.g.A = H∞(C+), RH∞, Bézout domains).

Proof. 1. If C(A) ∼= Z/2 Z, then every invertible fractional
idealJ of A is such thatJ2 is principal. Therefore, the result
directly follows from 3 of Lemma 2 and 2 of Theorem 4.

2. If C(A) ∼= 1, then every invertible fractional ideal ofA is
principal. Then, the result directly follows from 4 of Theorem 1
and 3 of Theorem 4.

Example 4. Let us consider the example defined in [1]:

p = (1 + i
√

5)/2 ∈ K = Q(A), A = Z[i
√

5].

Let J = (1, p) be the fractional ideal ofA. Then, we have
A : J = (2, 1 − i

√
5). By 2 of Theorem 1, we know that

p does not admit weakly coprime factorizations, and thus, co-
prime factorizations [1]. We have(−2)− (−(1− i

√
5)) p = 1

and2 p ∈ A, i.e. p is internally stabilized byc = (1− i
√

5)/2.
Let us find all the stabilizing controllers ofp. The integral ideal
J−2 = (2, 1− i

√
5)2 = (2) is a principal ideal ofA, and thus,

p2 = (−2 + i
√

5)/2 admits a coprime factorization. By (5),
we find that all the stabilizing controllers ofp are given by:

c(q) =
−1 + i

√
5 + 2 q

−2 + 2 ((1 + i
√

5)/2)) q
=

1− i
√

5− 2 q

2− (1 + i
√

5) q
, q ∈ A.

A = Z[i
√

5] is aDedekind domain[2, 4], i.e. an integral do-
main such that every non-zero fractional ideal ofA is invertible,
andC(A) ∼= Z/2 Z [5]. Thus, every SISO plant is internally
stabilizable and has a parametrization of all the stabilizing con-
trollers of the form (5) or (6).

5 Conclusion

The introduction of the theory of fractional ideals within
the fractional representation approach to linear systems gives
new insights to stabilization problems (internal stabilizability,
parametrization of all stabilizing controllers . . . ). For more re-
sults and details, we refer the reader to [5]. The extension of
these results to MIMO systems is obtained in [6] and a be-
havioural interpretation to the operator-theoretic approach is
developed in [7]. Robust stabilization can also be recovered
using the theory of fractional ideals. See forthcoming publica-
tions.
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