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Keywords: Internal/strong/bistably stabilization, coprime faceontrollers was developed for plants that admit coprime factor-

torization, generalization of the Youla-Kera parametrization izations. We extend the Youla-iKera parametrization to every

of all stabilizing controllers, fractional representation approaaiabilizable plant which does not (necessarily) admit coprime

to analysis and synthesis problems, theory of fractional ideafactorizations. As the Youla-Kigra parametrization, this new
parametrization is affine in the free parameters but generally

Abstract has two free parameters. gfadmits a coprime factorization,
then we show that this parametrization is the Youla:é&a one

The purpose of this paper is to show how the theory of fragnd if p does not admit a coprime factorization kuft does,

tional ideals is a powerful mathematical framework for théhen this parametrization only admits one free parameter. Fi-

study of stabilization problems of linear SISO systems. In patally, using the concept d?icard group[2], we characterize

ticular, in terms of fractional ideals, we give necessary and sifte ringsA of SISO (proper) stable plants [3, 10] over which

ficient conditions for a plant to be internally/strongly/bistablgvery stabilizable plant, defined by a transfer functiea n/d,

stabilizable or to admit a (weakly) coprime factorization. FP # d, n € A, admits a Youla-Kdera parametrization or a

nally, we show how to extend the Youla-Kera parametriza- parametrization with one or two free parameters.

tion of all stabilizing controllers to every stabilizable plant

which does not (necessarily) admit coprime factorizations.

Notation: A will denote a commutative integral domain

Ma,b € A, ab =ba,ab =0, b# 0 = a = 0)and

K =Q(A) ={n/d| 0 # d, n € A} thequotient fieldof A

In the eighties,the fractional representation approach tol2]. U(A) = {a € A|3be A: ab= 1} will be thegroup

analysis and synthesis problerhas been developed by M.of invertible elementsf A, M, (A) the ring ofg x ¢ matrices

Vidyasagar, C. A. Desoer and co-authors in order to settleWith entries inA. Finally, if ai,...,a, € K = Q(A), then

a unique mathematical framework different stabilization protja1. - - -, an) Will denote theA-moduleAa; + ... + Aa, =

lems (internal/strong/simultaneous stabilization, parametriZe:.;—; Ai ai | Ai € A} and= will mean “by definition”.

tion of all stabilizing controllers, graph topology, gap metric,

margins of robustness, optimal controllers ...) [3, 10]. Inthg Fractional representation approach to syn-

nineties, certain ideas of this approach have been at the core of thesis problems

the successful development Bt,,-control for linear finite di-

mensional systems. However, for certain classes of linear inflhe main idea of the fractional representation approach to syn-

nite dimensional systems and multidimensional systems, sothesis problems [3, 10] is to write the stabilization problems

questions on stabilization problems are still open [3, 4, 8, 10jnto general forms so that they can be applied to different

In this paper, we show that the introductionfectional ide- classes of linear systems (e.g. ordinary differential equations,

als [2] within the fractional representation approach to Synthgme-delay SVSte”.‘S’ multidimensional systems, |nf|n|te d|mgn-
sis problems allows us to obtain general necessary and SLﬁ"ﬁ)-na_‘l syste_ms, discrete systems ...). More precisely, we first
cient conditions for internal/strong/bistable stabilization or focron5|dera ring A of (proper) stable SISO plante.g. A =

the existence of (weakly) coprime factorizations. The maiﬁHoo.' HOO.(C+)’ A, L(Z+)) [3, 10]. Then, the class of_sys-
idea is to replace transfer functions by means of ideals [ ms is defined by the set of plants whose transfer functions are

and then, to use the powerful theory of ideals to obtain cert the formp =n/dWith0 # d, n € A. Hence,l{ = Q(4)
information that could be difficult to find if we use differenlmOOlellzes the set of stable/unstable or proper/fimproper plants

approaches. This approach gives simple and tractable chaM&i—Ch have transfer functionse K = Q(A).

terizations of the structural properties of SISO systems. F@ﬁample 1. For finite dimensional systems, we considee

instance, it is possible to clarify the relationship between im%’tegral domainA — RH., of proper stable real rational
nal stabilizability and the existence of coprime factorization§ransfer functior{10], i.e Wog have:

In particular, we recover the fact that internal stabilizability
does not generally imply the existence of coprime factoriza- 4 _ (n/d|n,deR[s], degn < degd
tions [8]. The Youla-Kitera parametrization of all stabilizing ’ ’ - '

1 Introduction

d(s*) = 0 = Res* < 0}.



A transfer function which belongs t4 corresponds to a proper e [4, 5, 9] A transfer functiorp € K = Q(A) admits a

and stable plant. Now, we haveé = Q(A) = R(s), i.e. every weakly coprime factorizatioif there exist0 # d, n € A
elementp € K can be written ap = n/d withn, d € A. For such thap = n/d and:

instance, the unstable plaht(s—1) can be written ag = n/d

withn =1/(s+1) € Aandd = (s — 1)/(s + 1) € A. VEEK: kn, kd€ A=k € A.

There are different classes of “stable” infinite dimensional sys-e [3, 10] A transfer functionp € K = Q(A) admits a
tems depending on what criterium of stability we are dealing coprime factorizatiorif there exist0 # d, n € A and

with. A first example is the integral domaith = H..(C ) of x,y € Asuchthap = n/d and:
the holomorphic functiong in C, 2 {s € C | Res > 0}
which are bounded w.r.t. the norinf || = sup,cc, [f(s)]- dz—ny=1
H..(C4) is aBanach algebrg3, 10]. A transfer function
p € Ais stable in the sense that the linear operator For other structural properties and stabilization problems, we
refer to [3, 7, 10] and the references therein. For a lack of
T, Hy(Cy) — Ha(Cy), space, in this paper, we shall only study the previous ones.

u = pu,

is boundedwhere H,(C ;) denotes the Hilbert space of holo3 Theory of fractional ideals
morphic functions irC which are bounded w.r.t. to the norm

| w22 sup,ep, ()72 Jula + iy)? dy)'/? [3, 7]. For in-
stancep = ¢ */(s — 1) ¢ A because has the unstable pole

Let us recall that an idedlof A, defined byuy, ..., a, Of A, is

the A-submodule ofd defined byl = >~ , Aa,. The theory

. of fractional ideals is an extention of the well-known theory of
L f (Cfs Hovieverhwedh;v_@) B nl/d < Ii - 3<A)’ Wit ideals of a ringA. The main idea of this theory is to develop a
n=ef(s+1)edandd=(s—1)/(s+1) € A mathematical framework which can treat at the same time the
Another class of “stable” infinite dimensional systems is thelements ofd and the elements df = Q(A4). The motivation

Wiener algebra [3] defined by: of the introduction of this theory within the fractional repre-
. sentation approach to systems seems clear: we shall have the
A={ft) +2Zeaid(t —t;) | f € L1(Ry), possibility to study stable and unstable/improper plants in the
(a)is0 €11(Zy), 0=to <t; <ty < ...} same mathematical framework.

The two operations oft = A are-+ and the convolution and Definition 2.-We have the following definitions [2]:
the Dirac distributiord is the unit ofA. A is an integral domain

[3]. Endowed with the topology defined by the norm ¢ A fractional ideal J of A is an A-submodule ofK' =
Q(A) such that there exists# a € A satisfying:

lglla =l fllz.®e) + I (@i)izo i,z
“+o00 “+o0
£ 0 \f(t)|dt+27;:o |ai|7

A becomes a Banach algebra [3, 10]. The same properties hold
for A = {f | f € A}, where’ is the Laplace transform, and
with the norm|| f || ;=1 f [l.4. A transfer functiorp € A o Afractional idealJ of A is principal if there exists; € K

(a)J 2 {abe K|be J} C A

A fractional idealJ of A such that/ C A is called an
integral ideal ofA.

is stable in the sense that, for ahy< p < +oo, the linear such that/ = (k) £ Ak.
I, : L,(Ry)— L,(R fi = . . . . .
icfspsgitr?de% 3 p7(] +) p(R+), defined byl (u) = p+u, e A non-zero fractional ideal is invertibleif there exists a

non-zero fractional idedl of A such that we have:
Definition 1. e [3, 10] A transfer functiorp € K = Q(A)
is internally stabilizableif there existsa stabilizing con- 1J=A

troller of p, namelyc € K = Q(A), such that: Example 2. Let p € K be the transfer function of the system:

H(p,c) (]1) E )1_ C " y=pu©(1:—p)(z)=0-

= ( 1771;)6 L-pe > € My(A). Module theory approach to linear system tells us that the struc-
T—pc T-pec tural properties only depend on the whole system, i.e. input
and output together (without separation), and thus, ondthe
moduleJ = A(1) + A(-p) = A+ Ap [4, 5]. In fact,

J = (1,p) £ A+ Apis a fractional ideal ofd. Indeed,

e [10] A transfer functiorp € K = Q(A) is strongly stabi- there exist0 # d, n € A and such thap = n/d. Thus,
lizable (resp. bistably stabilizablgif there exists a stable we haveJ = (1,p) = (1/d)(d, n), wherel = (d, n)
(resp. stable with a stable inverse) stabilizing contralleris an integral ideal of4, i.e. I C A. Therefore, we have
of p,i.e.c € A (resp.c € U(A)). (d)J = (d, n) C A.

Equivalently, this means thay (1 —pc¢), p/(1—pc) and
¢/(1 —pc) are A-stable.



We shall denote byF(A) the set of non-zero fractional ideals 5. p is strongly stabilizable iff there existse A such that

of A. LetI, J € F(A), then the following ideals

INJ2{acl acJ},
I+J={a+blacl beJ},
IJé{Z?:laibi|ai€I,b,-€J,n€Z+},
12 e K=Qa) | (k) JC I},

are also fractional ideals of, i.e. belong taF(A4). Hence,

J=(1-pc).

6. p is bistably stabilizable iff there exists € U(A) such
thatJ = (1 —pc).

Proof. 1. If p is stable, ther/ = (1, p) = (1) = A, and thus,
A:J=A:A= A Conversely, if we havel : J = A, then
leA:J={keK |k, kpeA}={dec A|dpe A}, and

F(A) is stable under respectively intersections, sums, produtitys,1p = p € A, i.e. pis stable.

and residuals. Moreover, we have the following relations.

Lemma 1. [2] If I, J, L are elements aF (A), then we have
the following equalities:

|

Proposition 1.
A, then there exists a unique ideale F(A) such that
IJ = A. This fractional ideal is denoted by ! and we
haveJ ' =A:J={ke K=Q(A) | (k)J C A}.

[(J+L)=1J+IL,
I:(J+L)y={I:J)n{:L),
I:(JL)y=(I:J):L=({I:L):J

e [2]If Jis aninvertible fractional ideal ofl, then we have
(J=1)~! = J. Hence, an invertible fractional idedl of
Aisdivisorial, namelyJ satisfies] = A : (A : J).

2. Letp admit a weakly coprime factorization = n/d,

0 # d, n € A. Then, by definition of a weakly coprime factor-
ization, we haved : (d,n) ={k € K | kd, kn € A} = A.
Thus,J = (1, p) = (1, n/d) = (1/d) (d, n) which implies
thatA : J = (A: (d,n)):(1/d) = A: (1/d) = (d), by
the third equality of Lemma 1, and thud, : J is a principal
integral ideal ofA.

e [2] If Jis an invertible fractional ideal of Conversely, ifA : .J is a non-zero principal integral ideal df,

then there existd # d € A such thatd : J = (d). But, we
haveA : J ={d € A|dp € A}, and thusp = dp € A. Let
us prove thap = n/d is a weakly coprime factorization @f
We have

A:(dyn)=A: () )=(A:J):(d)=(d): (d)=A,

andthusA : (d,n) = {k € K | kd, kn € A} = A, which
shows thap = n/d is a weakly coprime factorization @f

The next theorem characterizes the structural properties_of

plants and the stabilization problems defined in Definition

in terms of the properties of the fractional idgak (1, p).

?1. Let us suppose thatis internally stabilizable. Then, there
exists a stabilizing controller € K such that we have (1). Let
us denotex = 1/(1 —pc) € A, b =¢/(1 —pc) € Aand

Theorem 1. Let A be an integral domain of (proper) stablel = (a, b) the integral ideal ofA defined bya andb. We have

SISO plants and{ = Q(A) its quotient field. Lep € K be
a transfer function of a plant and = (1, p) £ A + Ap the
fractional ideals ofA defined byt andp. Then, we have:

1. pis stable, i.e.p € A, iff J = A, or equivalently, iff
A:J=A.

2. p admits a weakly coprime factorization iff : J is a
non-zero principal integral ideal of4, i.e. there exists
0 # d e Asuchthatd : J = (d). Then,p = n/d, where
n=dp € A, is a weakly coprime factorization pf

3. pis internally stabilizable iff the fractional ideal is in-
vertible, or equivalently, there exigt b € A such that:

{

If a # 0, thenc = b/a is a stabilizing controller op and
J7t = (a, b). c € K internally stabilizep € K iff:

(L p) (L, ¢) = (1 —po).

a—bp=1,

ap € A. @

®)

4. p admits a coprime factorization iff is a non-zero prin-
cipal fractional ideal ofA, i.e. there exist§ # k € K
such thatJ = (k). Moreover, we have = 1/k € A,
n=dp € Aandp = n/dis a coprime factorization gf.

ap=p/(1-pc)€e A bp=(pc)/(1-pc)=—-1+ac A
=l=a-bpelJ=(a,bap,bp) CA=1J=A,

which shows that/ ! = I = (a, b). Moreover,c = b/a is a
stabilizing controller of.

Conversely, ifJ is an invertible ideal of4, then we have
(A:N)J={u—-vplu,veA:J} =4,

whereJ=1 = A:J={d € A|dp e A}. Thus, there exist
a,be Jlie a, b ap bp € A suchtha —bp = 1. If
a # 0, then let us define = b/a. Then, we have:

{ 1/(1—pc)=a€ A,
< a —b
—ap a

p/(1—pc)=ap€ A,

c¢/(l—pec)=be A,
= H(p, c)

Morever, we havéa, b) C J~!. Usinga — bp = 1 and the

fact thatu € J~! satisfiesu, up € A, we obtainu = (u)a —

(up)b,i.e.u€ (a,b)=J 1 C(a, b) = J ! =(a,b).

) € My(A).

Let us notice that p € A anda —bp = 1 implies that we have
bp=a—1 € A, and thus, the conditiobp € A is redundant
in (2). Finally, using the fact that= b/a, we have

A=JJ7 = (1,p)(a ) =(a)(1,p) (1, 0)



and thus(1, p) (1, ¢) = (1/a) = (1 — pe). Corollary 1. Letp € K = Q(A) atransfer function. We have

4. Let us suppose thatadmits a coprime factorization. Then,the following equivalences:

there existl, n, z, y € Asuchthap = n/danddz—ny = 1. ) i L

Then, we havd = dz —ny € (d,n) C A = (d, n) = A. 1. p admits a coprime factorization,

Thus, we havel = (1, p) = (1/d) (d, n) = (1/d),i.e. Jisa 2, admits a weakly coprime factorization add= (1, p)
principal fractional ideal ofd. of A is divisorial ideal ofA.

Conversely, ifJ is a non-zero principal fractional ideal of,
then there existé # k € K such that/ = (k). Thus, there Proof. 1 = 2. By the first point of Remark 1p admits a

existzx, y, d, n € A such that weakly coprime factorization. Moreover, we have= (k) for
acertain) # k € K. Thus,we havel : (A: J)=A:J 1 =
k=xz—yp, (J=1)~! = J, by the second point of Proposition 1, and thus,
{ 1=dF, =d=1/Fk, J is divisorial.
p=nk,

2 = 1. By 2 of Theorem 1, there exists# d € A such that

andthusp = n/dandl/d =z —y (n/d) = dz —ny=1. A:J = (d). Using the fact tha is divisorial, we obtain that
. . J=A:(A:J)=A:(d) = (1/d), and thus/J is a principal

5 (resp. 6). Let us suppose thais strongly stabilizable (resp. g5 fiona) ideal of4, i.e. p admits a coprime factorization by 4

bistably stabilizable). Then, there exists a stabilizing controllgf Theorem 1 0
of the forme € A (resp. ¢ € U(A)), and thus(1, ¢) = A. '
Using (3), we obtain thaf = (1, p) = (1 — pc). Proposition 2. Letp =n/d € K = Q(A), 0#d, n € A, be

any fractional representation gfand.J = (1, p) the fractional

Conversely, let us suppose that we have- (1 — pc) where ideal of A defined by 1 ang. Then, we have:

c € A(resp.c € U(A)). Then,1 € J = J # 0, and thus, we

havel — pc # 0. Moreover, there exist, n € A such that
1. (d)n(n)=(n)(4:J).

1=d(l-peo), _ p z ?ff 1/(de) 2. Ais agreatest common divisor domai@CDD), namely
p=n(l—pc), g —n/(1+nc) ’ every couple of elements dfadmits a greatest common

divisor, iff every transfer functiop € K admits a weakly
andl—pc=d(1-pc)—(nc)(1—pc) = (d—nc) (1-pc) = coprime factorization.

d —nc = 1. The controllerc € A (resp. ¢ € U(A)) is a
stabilizing controller ofp, i.e. p is strongly (resp. bistably)
stabilizable, because we have:

3. If Ais a GCDD, therp admits a coprime factorization iff
J is a divisorial fractional ideal, i.eJ = A : (A: J).

1 e\ ! . d —de We let the reader proves this theorem by himself. We refer to
H(p,c) = ( n/d 1 ) ( ) [5] for the proof and examples.

(d—nc) -n d
d —dc Example 3. Let us consider the following wave equation [3]:
= € Ms(A).
-n d 8%z 8%z
e (1,) — g5 (w,1) = 0,
] zen=o (e +e
- - = §(s) = o s).
Remark 1. Firstly, from 2 and 4 of Theorem 1, a coprime fac- &(1 t) = u(t) (e5 —e*)
Ox \™? - ’

torization is a weakly coprime factorization (this explains the 5

name). Indeed, i admits a coprime factorization, then, by 4 | y(t) = %5 (1,1),

of Theorem 1,7 = (1/d), for a certain) # d € A, andJ is The transfer functi

invertible. Thus, we have : J = J=! = (d) andA : J C A. € transter function

Hence,A : J is a principal integral ideal ofi, i.e. by 2 of p=(e+e %) /(e —e ) = (1+e2%)/(1

—2s
Theorem 1p admits a weakly coprime factorization. )

— €

Secondly, let us notice that;ifadmits a coprime factorization, Pelongs to the field of fractions of = H.(C4.) (or A = A)
thenp is internally stabilizable. Indeed, if admits a coprime Pecausd +e™°, 1 —e¢™* € A. Let us consider the fractional
factorization, then, by 4 of Theorem 1, there existé k € k'  1dealJ = (1, p) of A. Itis known thatA is a GCDD [9] (see
such that/ = (k). Thus,J is invertible with inverse/—* = /S0 [4]). We havel: J = {d € Aldp € A} = (1 —e*?),

(1/k), and thus, by 3 of Theorem gs internally stabilizable. and thus, by 2 of Theorem b, = (1 + e72*)/(1 — e72")

is a weakly coprime factorization gf. Moreover, we have
A strongly (resp. bistably) stabilizable plant always admits @71 — (1425 1 —e25) = A becausd = (1+e 25 +
coprime factorization: there existse A (resp. ¢ € U(A)) 1 —¢~25)/2. Thus,p is internally stabilizable and, using the
such that/ = (1 — pc) is a principal fractional ideal off. factthata — bp = 1 witha = —b = (1 — e25)/2 € (A : J),
Thus, by 4 of Theorem s admits a coprime factorization.  we obtain that: = b/a = —1 is a stabilizing controller of



p. Hence,A : J = J7! = (1 —e2%), and thus,J = 3. From 1, we havg/? = (1, p?). Thus, by 4 of Theorem 1,
(J~H=1 = (1/(1—e2%)) is a principal fractional ideal ofi, p? admits a coprime factorization iff* is a non-zero principal
and thus, by 4 of Theorem ,admits the coprime fatorization fractional ideal ofA. Moreover,J? = (k), with0 # k € K, is
p=(1+e2%)/(1—e2%), L (1+e2%) - (1—e2%) =1. equivalentto/ 2 = (J?)~! = (1/k), which proves 3.

Finally, we havel —pc = 1+ p = 2/(1 — e~2¢), and thus,
J=(1/(1—e"2%)) = (1-pc). Therefore, by 5 of Theorem 1
we find thatp is bistably stabilizable{1 € A is a stabilizing
controller ofp).

4. If p admits a coprime factorization, then, by 4 of Theorem 1,
'there existd) # k € K such that/ = (k). Then,J? =

(1, p?) = (k?) is also a principal ideal off and the result
follows from 4 of Theorem 1. O

4 Parametrization of all stabilizing controllers ~ Theorem 2. Let A be an integral domain of (proper) stable
SISO systemdy = Q(A),pc KandJ = (1,p) 2 A+ Ap

In Remark 1, we saw that the existence of a coprime factorizae fractional ideal ofd defined by 1 ang. Let us suppose that

tion for a transfer function implies that the plant is internally is internally stabilizable. Then, all stabilizing controllers of

stabilizable. The converse is generally not true because the fabave the form

that.J is an invertible fractional ideal oft does not imply that

it is principal (see 3 and 4 of Theorem 1). The Youlaékra c(qr,q2) = , 4)

parametrization of all stabilizing controllers of a plant was de- at+rmpa+r2pge

veloped under the condition that the planadmits a coprime \herec = b/ is a stabilizing controller op (see (2)){r1, 72}

factorization [3, 10]. Therefore, we may wonder if there exisig 5 set of generators of =2, i.e. J=2 = (ry, 72), andqi, go

a paramgtrization of all stabiliz_ing con_troIIers for a stabil_izat_)lgre free parameters of such that + 1 g1 p + 2 g2 p # 0.
plant which does not necessarily admit a coprime factorization. ) ) )

We are going to show that such a parametrization exists an#ifarticular, we can choo;el = a® andry = b or any two
generalizes the Youla-Kera one. elements, r € A satisfyingr; — o p* = 1 andr; p* € A.

b+riqr+raqe

Lemma 2. LetJ = (1, p) be an invertible fractional ideal of

1. (4) has only one free parameter, ig@. = 0, iff p> admits
A. Then, we have:

a coprime factorization.

1. J2 = (1, p?) and J? is also invertible whose inverse 2. If p? admits a coprime factorizatiop® = s/r, where

J72 = (J71)? = (a?, b?). s, 0 #r € A, then (4) becomes:
2. J72 = ()" = {a € Alap® € A} = (r1, r2), where c(q) = brrg , VgeA: a+rpg#0. (5
r1, 7o € A are such thai; — ro p?> = 1 andr; p? € A. a+rpq

3. p? admits a coprime factorization iff? is a non-zero prin- 3. If p admits a coprime parametrization = n/d, where
cipal fractional ideal of A, or equivalently, iff/=2 is a dx —ny = 1for certainx, y € A, then (4) becomes
non-zero principal fractional ideal ofl.

c(q)

i.e. (4) is the Youla-Kgera parametrization of all stabi-
lizing controllers ofp [10].

_y+dgq
_ernq7

4. If p admits a coprime factorization, thei also admits a Vged: a+qn#0, (©)

coprime factorization.

Proof. 1. We haveJ? = (1, p, p?), and thus(1, p?) C J2.
Using the fact that/ is invertible, from 3 of Theorem 1, there
exista, b € A suchthat —bp = 1 andap € A. Multiplying
this last equality by, we obtainp = (ap) 1 — (bp) p, where

Proof. Letc; = b;/a;, i = 1, 2, be two stabilizing controllers
of p. Then, by (2), we have:

ap, bp € A, and thusp € (1, p?), which proves that we have ( ¢ £ a;, b € A, (by — by) € A,
J% = (1, p?). Now, let us notice that we have ai—bip=1, =< (ba—b1)p=(az—ay) €A,
a;p €A, (b —b1)p? = (ag —a1)p € A4,

(JIH I =PI = A= ()7 = (7
which proves thaby — b, € (A : (1, p, p?)) = J~2. Then, by
1 of Lemma 2, there exist, 72 € Asuchthat/ =2 = (ry, o).
Thus, there exist;, g2 € A suchthaby —b; = r1¢1 +7r2¢2
and we havei, —a; = (ba —b1)p=ripq1 + r2pge. Thus,
2. J2 = (1,p>)"' = {a € Alap® € A} and, using if a+ripg +r2pg # 0, then we have:

the fact thatJ?.J~2 = A, there existri, ro € J72, ie. by by + 71+ T

;€ A, r;p* € A, such that; — 2 = 1. In particu- Cp = — = . 7
i > P Lo 2l P E az a1 +7r1pq+r2pqge "

and thus,/—2 2 (J2)~! = (J=1)2 = (a2, b2, ab) D (a2, b?).
Froma —bp = 1, we obtainab = (b) a*> — (ap) b* € (a2, b?),
becausé, ap € A, and thus, we obtaid =2 = (a2, b?).

lar, we have(ry, 7o) € J~2. Finally, for allr € J~2, we have
r = (r)r1 — (rp?)rq, with r, rp? € A, which shows that Hence, ifc; andc, are two stabilizing controllers gf, then
r € (r1, r2), and thus,J =2 = (71, o). there exisly;, g2 € A such that we have (4). Let us show that



any controller defined by (4) is a stabilizing controllepoe A = Z[i /5] is aDedekind domaiifi2, 4], i.e. an integral do-
main such that every non-zero fractional ideald§ invertible,
andC(A) = Z/2Z [5]. Thus, every SISO plant is internally
stabilizable and has a parametrization of all the stabilizing con-
trollers of the form (5) or (6).

have

(a+mpq+r2pq2) —(b+11q1 +r2q2)p=a—bp=1,
(a+rmpq+rapge)p=ap+ (r1p*) g+ (r2p?) g2 € A,

because p, r1 p? andr, p? belong toA. Hence, (4) is the fam-
ily of all stabilizing controllers op if a+71 pq1 +r2pge # 0.

J72: (7"17 ’I"Q).

J~2%is a principal ideal of4, and thus, there existsc A such
thatJ =2 = (r). Then, (5) follows directly from (4).

3. If p = n/d is a coprime factorization andz — ny = 1,

wherez, y € A, then we havédz) — (dy)p = 1, and thus,
a=dx,b=dy € Aandap = zn € A. From 4 of Theo-
rem 1, we have/ = (1/d), and thus,J~2 = (d?). Using 3 of
Lemma 2, then (5) becomes:

dy+d%q y+dg
c(q) = =

S dx+d2pg  x+ng

VgeA: x+ng#0.

O

Definition 3. [2, 5] Let us denote b§P(A) the group of non-
zero principal fractional idealof A andZ(A) the group of
non-zero invertible fractional idealef A. Then, thePicard
groupof A is defined byC(A) = Z(A)/P(A).

Proposition 3. 1. If C(A) = Z/2Z, then every stabilizable
plantp € K = Q(A) has a parametrization of all its
stabilizing controllers of the form (5).

2. IfC(A) = 1, then every stabilizable plapte K = Q(A)

has a Youla-Kgera parametrization of its stabilizing con-

trollers (e.9.A = H.(C.), RH.,, Bézout domains).

Proof. 1. If C(A) = Z/27Z, then every invertible fractional

5 Conclusion

1. It directly follows from 3 of Lemma 2 and the fact that
y The introduction of the theory of fractional ideals within

the fractional representation approach to linear systems gives
2. If p* admits a coprime factorization, then, by 3 of Lemma Ziew insights to stabilization problems (internal stabilizability,
parametrization of all stabilizing controllers ...). For more re-
sults and details, we refer the reader to [5]. The extension of
these results to MIMO systems is obtained in [6] and a be-
havioural interpretation to the operator-theoretic approach is
developed in [7]. Robust stabilization can also be recovered
using the theory of fractional ideals. See forthcoming publica-
tions.
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