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Abstract
This paper is concerned with the local stability of a piece-

wise affine system. In terms of piecewise quadratic Lyapunov
functions, we derive a new matrix inequality condition that ex-
plicitly characterizes an inner approximation of the domain of
attraction for the piecewise affine system. We also show the ef-
fectiveness of the present method by two numerical examples.

1 Introduction
Hybrid systems are composed of both continuous dynamics

governed by physical laws and discrete-event dynamics driven
by logic and rules [14]. In particular, there are many works on
piecewise affine (PWA) systems [2,5,6,9,11] as a typical model
of the hybrid systems. Johansson and Rantzer [6,11] considered
the global stability and the optimal control of the PWA sys-
tem by means of linear matrix inequalities (LMIs). Hassibi and
Boyd [2] proposed a design method of a piecewise state feed-
back controller. In general nonlinear control systems, the global
stability can not be guaranteed. For example, it is impossible to
globally stabilize an exponentially unstable linear system with
input saturation [12].

In such a case, the above global stability conditions are no
longer applicable, and hence we need to consider the local sta-
bility of the PWA system. Mignoneet al. [9] considered the
local stability of a discrete-time PWA system. Johansson [7]
proposed a local stability condition of a saturating system based
on the results in [6,11]. Although Johansson’s condition is quite
successful in the analysis of saturating systems, it is not appli-
cable to a more general class of PWA systems. This is because
the condition makes use of a quadratic Lyapunov function ob-
tained from the circle criterion [4, 8, 13] in order to construct a
less conservative piecewise quadratic Lyapunov function.

In this paper, we consider the local stability of a PWA sys-
tem. We will characterize an inner approximation of the DA of
a PWA system in terms of a level set of a piecewise quadratic
Lyapunov function. By using this level set, we derive a new lo-
cal stability condition for a PWA system which explicitly pro-
vides an inner approximation of the DA. Our result is a lo-
cal version of the global stability condition by Johansson and
Rantzer [6, 11]. We also demonstrate the effectiveness of the
present method by two numerical examples.

We use the following notations in this paper. For two vec-
tors u andv, u > (≥)v implies uj > (≥)vj , ∀j whereuj

andvj are thej-th elements ofu andv, respectively. We de-
fine He(M) = M + MT. The ellipsoid associated with a

positive symmetric matrixM ∈ R
n×n is defined byE(M) ={

x ∈ R
n| xTMx ≤ 1

}
. For a symmetric matrix

N̂ =
[
N1 N2

NT
2 N3

]
∈ R

(n+1)×(n+1), N1 ∈ R
n×n,

we define a set

Ê(N̂) =
{

x ∈ R
n

∣∣∣ x̂TN̂ x̂ ≤ 1, x̂ =
[
xT 1

]T
}

.

The setÊ(N̂ ) becomes an ellipsoid if and only if the conditions
N1 = NT

1 > 0 andN3−NT
2 N−1

1 N2 < 1 hold [1]. The interior
of a regionR is represented byint(R).

2 Piecewise Affine (PWA) System
We consider a piecewise affine (PWA) system

ẋ = Aix + ai, x ∈ Xi, i ∈ I. (1)

Here,

Xi = {x ∈ R
n| Eix ≥ ei} , i ∈ I1, (2)

Xi = {x ∈ R
n| Eix ≥ 0} \ int


 ⋃

j∈I1

Xj


 , i ∈ I0 (3)

are polyhedral cells on the state space. Note that each of the
cells is identified by the indexi. I denotes the index set. Let
I0 be the index set for the cells that contain the origin, and
defineI1 = I \ I0. All coefficient matricesAi ∈ R

n×n, ai ∈
R

n, Ei ∈ R
qi×n, ei ∈ R

qi (i ∈ I) are known. The state vector
x : [0,∞) → R

n is a continuous piecewiseC1 function on the
time interval[0,∞), and we assume that the state trajectoryx(t)
does not exhibit singular phenomena such as jumps of the state,
sliding modes, dead-locks, live-locks, and so on.

On the boundary between two different cellsX i andXj , i.e.,
Xi ∩ Xj �= ∅ (i, j ∈ I, i �= j),

Fix + fi = Fjx + fj, x ∈ Xi ∩ Xj (4)

holds, whereFi ∈ R
r×n, fi ∈ R

r are given matrices. The
affine terms satisfyai, fi = 0, ∀i ∈ I0.

We can express the PWA system (1) as

ẋ = Aix, x ∈ Xi, i ∈ I0,

˙̂x = Âix̂, x ∈ Xi =
{
x ∈ R

n
∣∣∣ Êix̂ ≥ 0

}
, i ∈ I1,

where

x̂ =
[
x
1

]
∈ R

n+1, Âi =
[
Ai ai

0 0

]
, Êi =

[
Ei −ei

]
.

Then, the boundary condition (4) is equivalent to

F̂ix̂ = F̂j x̂, F̂i =
[
Fi fi

]
, x ∈ Xi ∩ Xj .
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Figure 1: Outer polyhedral bounding ofLV i (i ∈ IV 1).

3 Local Stability Analysis
Definition 1 The domain of attraction (DA)D is the set of the
initial states for which the state trajectories converge to the ori-
gin as time goes to infinity, namely,

D =
{
x0 ∈ R

n
∣∣∣ lim

t→∞x(t) = 0, x(0) = x0

}
.

The DA of the PWA system is too complicated to compute
exactly. Instead, we wish to find its inner approximation in
terms of a level set of a piecewise quadratic Lyapunov function.

We define a piecewise quadratic function

V (x) =

{
xTPix, Pi = FT

i TFi, x ∈ Xi, i ∈ I0,

x̂TP̂ix̂, P̂i = F̂T
i T F̂i, x ∈ Xi, i ∈ I1.

(5)

for a symmetric matrixT ∈ R
r×r. We chooseT so that

(i) E(Pi) and Ê(P̂i) are ellipsoidal regions, as described in
Section 1,

(ii) the level set

LV = {x ∈ R
n| V (x) ≤ 1} (6)

is a connected set.

We see from (4) thatV (x) is continuous on the boundariesX i∩
Xj �= ∅ (i, j ∈ I, i �= j). Our purpose is to derive a sufficient
matrix inequality condition forLV ⊆ D.

Because the level setLV is a local region containing the ori-
gin, LV may not intersect all cellsXi (i ∈ I). Let IV denote
the index set of the cells that intersectLV . IV 0 andIV 1 are
index sets defined by

IV = IV 0 ∪ IV 1 ⊆ I,

IV 0 = {i ∈ I0| LV ∩ Xi �= ∅, LV ∩ Xi �= {0}} ,

IV 1 = {i ∈ I1| LV ∩ Xi �= ∅} .

Then, we can express the level setLV as

LV =
⋃

i∈IV

LV i ⊆ D, LV i =

{
E(Pi) ∩ Xi, i ∈ IV 0,

Ê(P̂i) ∩ Xi, i ∈ IV 1.

Since eachLV i is a bounded region, there exist vectorsρ i ∈
R

qi (i ∈ IV ) such that

0 ≤ Eix ≤ ρi, ∀x ∈ LV i, i ∈ IV 0,

ei ≤ Eix ≤ ρi, ∀x ∈ LV i, i ∈ IV 1.

This means that we can confineLV i into a polyhedron which is
smaller thanXi (see Figure 1).

Theorem 1 For the PWA system (1), letT be a given con-
stant symmetric matrix such that the level setLV defined by
(6) is a connected set. Suppose that there exist symmetric
matricesUi, Yi, Vij , with non-negative entries, a matrixZi

with non-negative entries, non-negative scalarsα i, ρij (j =
1, 2, . . . , qi; i ∈ IV ) and positive scalarsδ1, δ3 satisfying

Pi − ET
i UiEi ≥ δ1I, Pi = FT

i TFi (i ∈ IV 0), (7)

P̂i − ÊT
i UiÊi ≥

[
δ1I 0
0 0

]
, P̂i = F̂T

i T F̂i (i ∈ IV 1), (8)

He (PiAi) + ET
i YiEi ≤ −δ3I (i ∈ IV 0), (9)

He
(
P̂iÂi + ÊT

i ZiĤi

)
+ αi

([
0 0
0 1

]
− P̂i

)
≤

[−δ3I 0
0 0

]
(i ∈ IV 1), (10)

ρ2
ijPi − ET

i VijEi ≥ ET
ijEij , ρij ≥ 0

(j = 1, 2, . . . , qi; i ∈ IV 0), (11)

ρ2
ijP̂i − ÊT

i VijÊi ≥
[
ET

ijEij 0
0 0

]
, ρij ≥ eij

(j = 1, 2, . . . , qi; i ∈ IV 1), (12)

Ĥi =
[−Ei ρi

]
, ρi =

[
ρi1 . . . ρiqi

]T (i ∈ IV 1),

whereEij andeij denote thej-th row of Ei and thej-th ele-
ment ofei, respectively. Then, the PWA system (1) is locally
exponentially stable, andLV ⊆ D holds.

Proof From (11), we obtain

ρ2
ijx

TPix ≥ ρ2
ijx

TPix − xTET
i VijEix ≥ |Eijx|2,

∀x ∈ LV i (j = 1, 2, . . . , qi; i ∈ IV 0).

SincexTPix ≤ 1 andEix ≥ 0 hold for allx ∈ LV i (i ∈ IV 0),
0 ≤ Eijx ≤ ρij (j = 1, 2, . . . , qi; i ∈ IV 0), namely,0 ≤
Eix ≤ ρi (i ∈ IV 0) is satisfied. Moreover, we see from (12)
that

ρ2
ij x̂

TP̂ix̂ ≥ ρ2
ij x̂

TP̂ix̂ − x̂TÊT
i VijÊix̂ ≥ |Eijx|2,

∀x ∈ LV i (j = 1, 2, . . . , qi; i ∈ IV 1).

It follows from x̂TP̂ix̂ ≤ 1 andEix ≥ ei for all x ∈ LV i (i ∈
IV 1) that

ei ≤ Eix ≤ ρi ⇔ Êix̂ ≥ 0, Ĥix̂ ≥ 0 (i ∈ IV 1). (13)

In the remainder of this proof, we shall show the local expo-
nential stability of the PWA system (1). We adoptV (x) in (5)
as a candidate of Lyapunov function. The matrix inequalities
(7) and (8) yield

V (x) = xTPix ≥ xTET
i UiEix + δ1‖x‖2 ≥ δ1‖x‖2,

∀x ∈ LV i (i ∈ IV 0)

V (x) = x̂TP̂ix̂ ≥ x̂TÊT
i UiÊix̂ + δ1‖x‖2 ≥ δ1‖x‖2,

∀x ∈ LV i (i ∈ IV 1).

Hence,V (x) ≥ δ1‖x‖2, ∀x ∈ LV is satisfied. From the
absence of affine terms in the Lyapunov candidate in an open



neighborhood of the origin, we conclude that there exists a
δ2 > 0 satisfyingV (x) ≤ δ2‖x‖2, ∀x ∈ LV [6]. In order
to complete the proof, we need only to show that the time dif-
ferentiation ofV (x(t)) along the state trajectoryx(t) ∈ LV

satisfiesV̇ (x(t)) ≤ −δ3‖x(t)‖2 for almost all t ≥ 0. If
x(t) ∈ int(LV i) (i ∈ IV 0), the inequality

V̇ (x(t)) = He
(
xT(t)PiAix(t)

)
≤ −xT(t)ET

i YiEix(t) − δ3‖x(t)‖2 ≤ −δ3‖x(t)‖2.

immediately follows from (9). Similarly, if x(t) ∈
int(LV i) (i ∈ IV 1), then we obtain from (10) and (13)

V̇ (x(t)) = He
(
x̂T(t)P̂iÂix̂(t)

)
≤ −He

(
x̂T(t)ÊT

i ZiĤix̂(t)
)

− αi

(
1 − x̂T(t)P̂ix̂(t)

)
− δ3‖x(t)‖2

≤ −δ3‖x(t)‖2.

Hence,V̇ (x(t)) ≤ −δ3‖x(t)‖2 holds for almost allt ≥ 0.
Consequently, we have shown that the PWA system (1) is

locally exponentially stable, andLV ⊆ D holds. �

Remark 1 We regard the symmetric matrixT as an unknown
variable in order to maximize the size of the level setLV by
a numerical calculation of the matrix inequalities (7)–(12). As
for the objective function in the calculation, it is not easy to
characterize its volume with a numerically tractable function.
However, noting thatLV consists of several ellipsoids, we at-
tempt to maximize the size ofLV by solving the optimization
problem

(OP) inf
T,Ui,Yi,Vij ,Zi,αi,ρij ,δ1,δ3

∑
i∈IV 0

tr(Pi) +
∑

i∈IV 1

tr(P̂i)

subject to (7)–(12).

The objective function of(OP) is motivated by the fact that the
minimization oftr(Pi) is often used in maximizing the size of
E(Pi). If we fix the variablesαi andρij , (OP) is reduced to an
optimization problem with LMI constraints.

In solving(OP), it is difficult to specify the matrix inequali-
ties to be solved, because the index setIV depends on the vari-
ableT . To overcome this difficulty, we solve the optimization
problem(OP) based on the following iterative algorithm.

Step 1: We choosei0 ∈ I0 so that the matrix inequalities (7)–
(12) are feasible, and setIV = IV 0 := {i0}.

Step 2: Add an indexj ∈ I which corresponds to a neighbor-
ing cell toXi (i ∈ IV ) to the setIV .

Step 3: We solve (7)–(12). If (7)–(12) is infeasible, then we
remove the indexj from the setIV and go to Step 2. If
(7)–(12) is feasible, go to Step 2.

Step 4: If there is no index to be added toIV , then stop.

Note that we have to check in each step whether the level set
LV is connected or not.
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Figure 2: Inner approximations of the DA of the saturating sys-
tem by(OP) and the local circle criterion [4,8,13].

4 Numerical Examples
4.1 Saturating System

First, we consider a saturating system given by

ẋ = Ax + Bu, y = Cx, u = σ(y) = sgn(y)min{1, |y|},

where

A =
[
0.5 6
0.1 2.1

]
, B =

[ −1
−0.1

]
, C =

[
1 1

]
.

Corresponding to the saturation functionσ, let X0, X1 and
X2 be the unsaturated (linear) region(|Cx| ≤ 1), the up-
per saturated region(Cx ≥ 1) and the lower saturated region
(Cx ≤ −1), respectively. As shown below, this system can be
represented as a PWA system (see also [7,10]).

ẋ = A0x, x ∈ X0,

ẋ = Aix + ai, x ∈ Xi, i = 1, 2,

A0 = A + BC, A1 = A2 = A, a1 = B, a2 = −B.

Obviously, the following equalities are satisfied on the satu-
ration boundariesCx = ±1.

F0x = F̂1x̂, ∀x ∈ X0 ∩ X1 =
{
x ∈ R

2 | Cx = 1
}

,

F0x = F̂2x̂, ∀x ∈ X0 ∩ X2 =
{
x ∈ R

2 | Cx = −1
}

,

F0 =


I

0
0


 , F̂1 =


 I 0
C −1
0 0


 , F̂2 =


 I 0

0 0
−C −1


 . (14)

The choice ofF0, F̂1 andF̂2 in (14) stems from the references
[7,10], though another choice is possible.

Johansson’s condition [7] did not give a meaningful result
for this example, because the resulting approximation of DA
was not a connected set.

We have obtained the optimumtr(P0) + tr(P̂1) + tr(P̂2) =
6.832 at (αi, ρij) = (0.75, 1.71), ∀i, j by the algorithm(OP)
in the previous section.

Figure 2 illustrates the inner approximations of the DA ob-
tained by (OP) (solid curve) and the local circle criterion
(dashed curve) [4,8,13]. The two solid lines represent the satu-
ration boundariesCx = ±1.



From this figure, we can conclude that the present local sta-
bility condition (Theorem 1) gives a better approximation of
the DA for the saturating system than the local circle crite-
rion [4,8,13].

4.2 Local Flower System
We consider a local flower system described by

ẋ = Aix, x ∈ Xi (i = 1, 2, 3, 4), (15)

ẋ = ai, x ∈ Xi (i = 5, 6, 7, 8), (16)

where

A1 = A3 =
[−0.1 5
−1 −0.1

]
, A2 = A4 =

[−0.1 1
−5 −0.1

]
,

a5 =
[
1
0

]
, a6 =

[
0
1

]
, a7 =

[−1
0

]
, a8 =

[
0
−1

]
,

and the polyhedral cellsXi (i = 1, 2, . . . , 8) are given by (2),
(3) with

E1 = −E3 =
[
1 −1
1 1

]
, E2 = −E4 =

[−1 1
1 1

]
,

E5 = −E7 =


1 −1

1 1
1 0


 , E6 = −E8 =


−1 1

1 1
0 1


 ,

ei =
[
0 0 1

]T (i = 5, 6, 7, 8).

The local flower system (15), (16) is obtained from a slight
modification on the global flower system considered in [3,6,11].
Evidently, the DA of this system is limited in the cellsXi (i =
1, 2, 3, 4), because the state trajectories starting fromXi (i =
5, 6, 7, 8) diverge to infinity. Note that the previous analysis
methods [2,6,7,9,11] can not be applied to this system.

The matrices and vectors in the boundary condition (4) are

Fi =


 I
Ei

0


 , fi = 0 (i = 1, 2, 3, 4),

Fi =
[

I
Ei

]
, fi =

[
0

−ei

]
(i = 5, 6, 7, 8).

By solving(OP) with ρij = 1, ∀i, j fixed, we have obtained
the optimum

∑4
i=1 tr(Pi) = 27.164.

The resulting inner approximation of the DA is shown by
solid curve in Figure 3. In this figure, the solid lines rep-
resent the boundaries between the polyhedral cellsX i (i =
1, 2, . . . , 8). The dashed curves denote the several state tra-
jectories starting from some initial states (asterisks). We have
obtained these trajectories by using PWLTOOL [3].

From the above numerical results, we can conclude that the
present method is applicable to more general PWA systems as
well as saturating systems.

5 Conclusion
In this paper, we have derived a local stability condition

which explicitly characterizes an inner approximation of the
DA of the PWA system in terms of a level set of a piecewise
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Figure 3: Inner approximation of the DA of the local flower
system.

quadratic Lyapunov function. We have also applied the present
condition to analyses of a saturating system and a local flower
system. The numerical results have revealed the effectiveness
of the present local stability condition.

References

[1] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan.Linear Ma-
trix Inequalities in System and Control Theory, SIAM, (1994).

[2] A. Hassibi, S. Boyd. “Quadratic stabilization and control of
piecewise-linear systems,”Proc. of American Contr. Conf.,
pp. 3659–3664, (1998).

[3] S. Hedlund, M. Johansson. PWLTOOL, A Matlab toolbox for
analysis of piecewise linear systems;Technical Report, Depart-
ment of Automatic Control, Lund Institute of Technology, Swe-
den, available from http://www.control.lth.se/, (1999).

[4] H. Hindi, S. Boyd. “Analysis of linear systems with saturation
using convex optimization,”Proc. of 37th IEEE Conf. on Deci-
sion & Control, pp. 903–908, (1998).

[5] J. Imura, A. van der Schaft. “Characterization of well-posedness
of piecewise linear systems,”IEEE Trans. on Automat. Contr.,
45-9, pp. 1600–1619, (2000).

[6] M. Johansson, A. Rantzer. “Computation of piecewise quadratic
Lyapunov functions for hybrid systems,”IEEE Trans. on Au-
tomat. Contr., 43-4, pp. 555–559, (1998).

[7] M. Johansson. “Piecewise quadratic estimates of domains of at-
traction for linear systems with saturation,”IFAC 15th Triennial
World Congress, (2002).

[8] T. Kiyama, T. Iwasaki. “On the use of multi-loop circle criterion
for saturating control synthesis,”System & Control Letters, 41,
pp. 105–114, (2000).

[9] D. Mignone, G. Ferrari-Trecate, M. Morari. “Stability and sta-
bilization of piecewise affine and hybrid systems: an LMI ap-
proach,” Proc. of 39th IEEE Conf. on Decision & Control,
pp. 504–509, (2000).

[10] E.F. Mulder, M.V. Kothare. “Synthesis of stabilizing anti-
windup controllers using piecewise quadratic Lyapunov func-
tions,” Proc. of American Contr. Conf., pp. 3239–3243, (2000).

[11] A. Rantzer, M. Johansson. “Piecewise linear quadratic optimal
control,” IEEE Trans. on Automat. Contr., 45-4, pp. 629–637,
(2000).

[12] H.J. Sussmann, E.D. Sontag, Y. Yang. “A general results on the
stabilization of linear systems using bounded controls,”IEEE
Trans. on Automat. Contr., 39-12, pp. 2411–2425, (1994).

[13] K. Takaba. “Local stability analysis of saturating feedback sys-
tem based on LPV descriptor representation,”Int. J. Control, 76-
5, pp. 478–487, (2003).

[14] A. van der Schaft, H. Schumacher.An Introduction to Hybrid
Dynamical Systems, Springer, (2000).


	Session Index
	Author Index



