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Abstract {NQT Ny

This paper is concerned with the local stability of a pieGga gefine a set
wise affine system. In terms of piecewise quadratic Lyapunov |
functions, we derive a new matrix inequality condition that ex-  €(V) = {93 €R"
plicitly characterizes an inner approximation of the domain of JUR o ) »
attraction for the piecewise affine system. We also show the'die Se€ (V) becomes an ellipsoid if and only if the conditions
= N/ > 0andN3; — Ny N; ' N, < 1 hold [1]. The interior

fectiveness of the present method by two numerical examplé\él. ; ’
. of a regionR is represented bint(R).
1 Introduction

Hybrid systems are composed of both continuous dynamzlcs Pi ecaylseAfflne (PWA) System
governed by physical laws and discrete-event dynamics drivel/& consider a piecewise affine (PWA) system
by logic and rules [14]. In particular, there are many works on i=Aix+a;, v€X, icl. (1)
piecewise affine (PWA) systems [2,5,6,9,11] as a typical model
of the hybrid systems. Johansson and Rantzer [6,11] considEleE:
the global stability and the optimal control of the PWA sys- x; — {1 ¢ R"| Bz > ¢;}, i€y, 2)
tem by means of linear matrix inequalities (LMIs). Hassibi and
Boyd [2] proposed a design method of a piecewise state feed- n . ,
back controller. In general nonlinear control systems, the gIobaIXi = {z €R"| Bz 2 0} \ int U G|, i€l (3
stability can not be guaranteed. For example, it is impossible to jeh
globally stabilize an exponentially unstable linear system wéte polyhedral cells on the state space. Note that each of the
input saturation [12]. cells is identified by the indek Z denotes the index set. Let
In such a case, the above global stability conditions areZaobe the index set for the cells that contain the origin, and
longer applicable, and hence we need to consider the locald&dineZ; = 7 \ Zy. All coefficient matricesA; € R"*", a,; €
bility of the PWA system. Mignonet al. [9] considered the R", E; € R%*" ¢, € R% (i € Z) are known. The state vector
local stability of a discrete-time PWA system. Johansson §7] [0,c) — R™ is a continuous piecewigg' function on the
proposed a local stability condition of a saturating system baset interval[0, oo ), and we assume that the state trajectty
onthe resultsin [6,11]. Although Johansson’s condition is quitees not exhibit singular phenomena such as jumps of the state,
successful in the analysis of saturating systems, it is not applding modes, dead-locks, live-locks, and so on.
cable to a more general class of PWA systems. This is becausn the boundary between two different celfs and X, i.e.,
the condition makes use of a quadratic Lyapunov function e§-NX; # 0 (i,j € Z, i # j),
tained from the circle criterion [4,8,13] in order to construct a
less conservative piecewise quadratic Lyapunov function. Fatfi=Fetf, zeXind “)
In this paper, we consider the local stability of a PWA sylselds, whereF; € R™*"  f;, € R" are given matrices. The
tem. We will characterize an inner approximation of the DA affine terms satisfy;, f; = 0, Vi € Z,.
a PWA system in terms of a level set of a piecewise quadratigVe can express the PWA system (1) as
Lyapunov function. By using this level set, we derive a new lo-
cal stability condition for a PWA system which explicitly pro-
vides an inner approximation of the DA. Our result is a lo- & = A;2, z€ X; = {x eR”
cal version of the global stability condition by Johansson and
Rantzer [6, 11]. We also demonstrate the effectiveness of Where
present method by two numerical examples. . x . A A a; ~
We use the following notations in this paper. For two vec® ~ [1] ERM, A= {0 0} , Bi=[B el
torsu andv, v > (>)v impliesu; > (>)v;, Vj whereu; iy . .
andv; are thej-th elements of: aéd v, respéctively. We dJe—Then’ the boundary condition (4) is equivalent to
fine He(M) = M + M™. The ellipsoid associated with a Fi=F# F=I[F f]. r€XnA’,.

N = :| c R(n-ﬁ-l)x(n—i—l), Ny € Rnxn,

PN <1 a= [T T

t=Ax, zeX;, i€l

Eig:ﬂzo}, i e,



Theorem 1 For the PWA system (1), Ieéf' be a given con-
stant symmetric matrix such that the level gt defined by

(6) is a connected set. Suppose that there exist symmetric
matricesU;, Y;, Vi;, with non-negative entries, a matrix;

with non-negative entries, non-negative scalars p;; (j =
1,2,...,q:; @ € Iy) and positive scalam,, 05 satisfying

Buz =" P, — ErU,E; > 6,1, P,=F'TF, (i€ Iy), 7)
011 0

~§
Ei3t = pi3 A)A

P, — EIUE; > [ ] , B=FI'TE, (i€Ty1), (8)

Figure 1: Outer polyhedral bounding 6f,; (i € Zy1). 0 0
- . A Ty p. < _ ;
3 Local Stability Analysis He(Piy) + BELYiBi < =051 (i € Ivo), ®)
Definition 1 The domain of attraction (DAP is the set of the He( A + EX Z; H) + ({0 0} - Pi) < {53[ 0}
initial states for which the state trajectories converge to the ori- 01 0 0
gin as time goes to infinity, namely, (i € Tva), (10)
2 T T
D— {350 cR” hm z(t) = 0, 2(0) = zg } pz’jpi —E; Vi;E; > EijEija pij =0
° (j:172;---;q'i; iEIVQ), (11)

The DA of the PWA system is too complicated to compute ETE. 0
exactly. Instead, we wish to find its inner approximation ipfjpi - E;_TVMEZ. > [ IJO ij O] L pij > e
terms of a level set of a piecewise quadratic Lyapunov function.

We define a piecewise quadratic function (G=1,2,...,q; 1 € Iy1), (12)

PN T .
Vi) = {xTPZ-x7 P,=F'TF,, zcX, icI, ) Hi=[-E;i pi], pi=|pan - pig] (i € Iy1),
TP, P =F'TF, z€X,ic. whereE;; ande;; denote thei-th row of E; and thej-th ele-

ment ofe;, respectively. Then, the PWA system (1) is locally
exponentially stable, angly C D holds.
(i) £(P,) and&(P,) are ellipsoidal regions, as described in

for a symmetric matrix” € R"*". We choosd" so that

Section 1, Proof From (11), we obtain
(i) the level set p?ijPix > p?jmTPim — 2V EMV, Bz > |Eijx)?,
Ly ={zeR"V(z) <1} (6) Ve e Ly, (j=1,2,...,q; i € Ivo).
is a connected set. Sincez™ P,x < 1andE;x > 0 hold forallx € Ly; (i € Zyo),

We see from (4) thalt’(z) is continuous on the boundariggn O < Eijz < pij (j = 1,2,....4;; @ € Zvo), namely,0 <
X; #0 (1,5 €I, i # j). Our purpose is to derive asufﬁuen@ﬂf < pi (i € Iyo) is satisfied. Moreover, we see from (12)
matrix inequality condition fory, C D. that

Because the level sél,, is a local region containing the ori- : GTETV Bod 2

. . Tps > 23T P EYV, Bz > |Eixl?,
gin, Ly may not intersect all cell&’; (i € 7). LetZy denote . p“ ‘ v ‘ 2 |Eial
the index set of the cells that interse®t. Zy, andZy, are Ve eLy: (G=1,2,...,q; i € Iy1).

index sets defined b .
y It follows from 2T P2 < 1 andE;xz > e; forallz € Ly; (i €

Iy =IyoUZy1 C I, IVI) that
Tvo = {Z EI()| LyvNX; 7é @, Lyv NX; 7§ {0}},
IVl:{i€I1|[:VﬁXi7é@}.

Then, we can express the level £at as

e <Ex<p & Ei>0 Hi@>0 (ielyy). (13)

In the remainder of this proof, we shall show the local expo-
nential stability of the PWA system (1). We addptz) in (5)

{E(Pi) NX;, ieZyy, asacandidate of Lyapunov function. The matrix inequalities

E - E 7 - IL ,E i = A A .
v U Vi= v EB)NX;, i€ Ty (7) and (8) yield

€Ly
_ T T T 2 2
Since eachCy; is a bounded region, there exist vectprs € V(z) =2 P >z Ej UiEx + 01|]|” = 61| =[]%,
R% (i € Zy) such that Ve € Ly; (i € Tyo)
0< Eix<p;, Vr€eLyi, i€Iyo, V(z) =2"Pi& > 2" ETU Bz + 61|z > 61|,
e;i < Bix < p;, Y& Ly; i€y Vo € Ly; (i € Iyq).

This means that we can confidg; into a polyhedron which isHence, V (z) > 6&;||z|?, Va € Ly is satisfied. From the
smaller thant; (see Figure 1). absence of affine terms in the Lyapunov candidate in an open



neighborhood of the origin, we conclude that there exists a
6 > 0 satisfyingV (z) < d2|z||?, V& € Ly [6]. In order

to complete the proof, we need only to show that the time dif-
ferentiation of V' (z(¢)) along the state trajectory(t) € Ly 1
satisfiesV (z(t)) < —ds||z(t)||* for almost allt > 0. If

Present Method

X1

x(t) € int(Ly;) (i € Tyo), the inequality Bo
V(x(t)) = He (2T (t) P Az (t)) -1
< () ETYiBa(t) — bl w(t)]|” < —dal|x(t)]*. g SR

immediately follows from (9). Similarly, ifx(t) € .
int(Lyv;) (i € Zy1), then we obtain from (10) and (13) B L

. ST ND e Figure 2: Inner approximations of the DA of the saturating sys-

V(x(t)) = He (*’” (t>PiAi=’”(t)) tem by(OP) and the local circle criterion [4, 8, 13].

AT T 2 g .
< —He (fc () E; ZiHifC(t)) 4 Numerical Examples
— (1 _ ch(t)P,-aE(ﬁ)) — 83|z (t)]? 4.1 Saturating System

) First, we consider a saturating system given by

< —dsll=(@)]"

. & = Ax + Bu, =Cz, wu=o(y)=sgn(y)min{l, ,

Hence,V (z(t)) < —ds]|=(¢)||* holds for almost alt > 0. Y () = sgnly) mintl, |y}
Consequently, we have shown that the PWA system (1jisere

locally exponentially stable, anfly, C D holds.
A:[O'5 6], B:{l], c=[1 1].

Remark 1 We regard the symmetric matriX as an unknown 0.1 2.1 —0.1
variable in order to maximize the size of the level £gt by
a numerical calculation of the matrix inequalities (7)—(12). AsCorresponding to the saturation functienlet X, A7 and
for the objective function in the calculation, it is not easy & be the unsaturated (linear) regi¢fCz| < 1), the up-
characterize its volume with a numerically tractable functigpgr saturated regiofC'z > 1) and the lower saturated region
However, noting thatly- consists of several ellipsoids, we atCr < —1), respectively. As shown below, this system can be
tempt to maximize the size afy by solving the optimizationrepresented as a PWA system (see also [7, 10]).
problem
= Aox, x€ Xy,
(OP) mﬁymj};{awm&hég Z tr(5;) + Z tr () i=Ax+a;, zeX, i=1,2,
i€tvo i€t Ay=A+BC, A =Ay=A, a=B, ay=-B.
subject to (7)—-(12)

Obviously, the following equalities are satisfied on the satu-
The objective function ofOP) is motivated by the fact that theration boun}éarieé?x _ ilg d

minimization oftr(P;) is often used in maximizing the size of
E(P;). If we fix the variablesy; andp;;, (OP)isreducedtoan . — f14, Vo e AynA; = {zeR?|Ca=1},
optimization problem with LMI constraints.

_ s _ 2 _
In solving (OP), it is difficult to specify the matrix inequali- 0% = 22, Vz € &N Az = {zeR?|Cx=-1},

ties to be solved, because the indexBetdepends on the vari- I R I 0 R I 0
ableT. To overcome this difficulty, we solve the optimizationF, = |0, Fy1 = |C —1|, Fy=| 0 0. (14
problem(OP) based on the following iterative algorithm. 0 0 0 —-C -1

Step 1. We choosgo € I so that the matrlx inequalities (7)Tl'he choice offy, £} andF} in (14) stems from the references
(12) are feasible, and s& = Zvo := {io}. [7,10], though another choice is possible.

Step 2: Add an indexj € Z which corresponds to a neighbor- Johansson’s condition [7] did not give a meaningful result
ing celltoX; (i € Zy) to the sety . for this example, because the resulting approximation of DA

was not a connected set.

Step 3: We solve (7)—(12). If (7)—(12) is infeasible, then we \we have obtained the optimum(Py) + tr(Py) + tr(Py) =
remove the indey from the setZy, and go to Step 2. Ifg g39 at (ci, pij) = (0.75,1.71), Vi, j by the algorithm(OP)
(7)-(12) is feasible, go to Step 2. in the previous section.

Figure 2 illustrates the inner approximations of the DA ob-
tained by (OP) (solid curve) and the local circle criterion
Note that we have to check in each step whether the level@gthed curve) [4,8,13]. The two solid lines represent the satu-
Ly is connected or not. ration boundarie€'r = +1.

Step 4: If there is no index to be added 7o, then stop.



From this figure, we can conclude that the present local sta-
bility condition (Theorem 1) gives a better approximation of
the DA for the saturating system than the local circle crite-
rion [4,8,13].

4.2 Local Flower System
We consider a local flower system described by

T = Ail', T e X (Z = ]-a 273’4)7 (15)
j}' = a;, T € Xz (Z - 5)677)8)7 (16)
where
—01 5 —01 1
Av=4s = [ -1 0.1] ) A2 =A4= [ =5 01] ’

I v e

and the polyhedral celld’; (: = 1,2,...,8) are given by (2),
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Figure 3: Inner approximation of the DA of the local flower
system.

quadratic Lyapunov function. We have also applied the present
condition to analyses of a saturating system and a local flower
system. The numerical results have revealed the effectiveness
of the present local stability condition.
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