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Keywords: Input to state stability (ISS), nonlinear robust conin this paper, we consider the practical ISS (PISS) controller
trol, [*° criteria, dynamic programming, controller synthesis. synthesis problem when the disturbance gains and bounds on
transients are given. A related analysis problem of finding the
Abstract “minimal” ISS gain and transient bounds is considered in [6].
For simplicity, we present only results on full state feedback
A novel technique for synthesizing dynamic state feedbackntrol — the partial state feedback (measurement) problem is
controllers that achievgractical input to state stabilityPISS) solved in a forthcoming paper. We present a new technique for
property for nonlinear discrete-time systems is presented. Tthe synthesis of controllers achieving PISS that is based on a
PISS controller design for the original system is solved via dgiacently obtained result oft°-bounded (LIB) robustness for
auxiliary 1°°-bounded (LIB) robustness synthesis problem faronlinear systems [5]. By introducing two new state variables,
an auxiliary system. A complete solution for the LIB synthethe PISS controller synthesis problem for the original system
sis problem has been presented recently in the literature. Th&ransformed into an equivalent uniform LIB dissipation syn-
obtained static state feedback LIB controller for the auxiliatpesis problem for an auxiliary system. The full state feedback
system can be interpreted as a dynamic state feedback P38tion for the LIB problem for the auxiliary system is then
controller for the original system. The obtained solution is imterpreted as a dynamic full state feedback PISS controller
terms of a dynamic programming equation (or inequality).  for the original system. Dynamic programming techniques are
used to obtain necessary and sufficient conditions for the ex-
istence of such controllers that yield PISS for the closed loop
system with a given disturbance gain and transient bound.
Theinput to state stabilitflSS) property for systems with dis-
turbances was first proposed by Sontag in 1989 [10]. SinThe paper is organized as follows. Preliminaries are presented
then, ISS has received a lot of attention with a range of its a@p-Section 2. In Section 3, the state feedback PISS synthesis
plications and different characterizations reported in the litenaroblem and the state feedback uniform LIB synthesis problem
ture. For example, a systematic analysis of the ISS property la@s stated. In Section 4, we transformed the PISS synthesis
been conducted in [13, 14], where its many different charactgroblem into a uniform LIB synthesis problem for an auxiliary
izations have been described. The discrete-time 1SS propesygtem and use uniform LIB results to obtain a solution to PISS
and ISS small-gain theorems were studied in [9]. Further rgynthesis problem. Two examples are given in Section 5 to
sults on ISS and many related properties can be found in ftestrate the method.
survey paper [12] and the references therein.

1 Introduction

ISS can be regarded as a particular typ&of (or [*°) stability o
that is fully compatible with Lyapunov theory and in particula? Preliminaries

it can be checked using the so called ISS Lyapunov functions.

To date there is no systematic way to generate ISS Lyapurfgts of real numbers, nonnegative real numbers, integers and
functions. Besides ISS, a range of alternatie (or />°) sta- nonnegative integers are denoted respectiveR & |, Z and

bility properties have been investigated recently in [2, 3, 74+. Moreover, we denot® = R U {+oco}. Recall that a

An interesting difference between this literature and the ISS fignction-y : [0, 00) — [0, 00) is of classK if it is continuous,
lated literature is that the analysis is carried out via robust ag¥ictly increasing ang(0) = 0 itis of classC ifitis of class

timal control techniques instead of Lyapunov based methodsand alsoy(s) — oo ass — oo. A function 3 : [0, 00) x
These optimization approaches typically make use of appf8-c0) — [0,00) is said to be a function of classL if for

priate dynamic programming equations that solve the analygich fixed > 0, (-, ¢) is of classkC and for each fixed > 0,

and synthesis problem. It appears that investigation of the 188, -) decreases to zero.

property via optimization based techniques such as dynamic

programming is an open question in the literature. Givenw, € W C R* Vk € Z,, we exploit the following



notation: State Feedback Practical ISS Synthesis Problem
(SFPISS):Giveny € K,w; : R" = R, w2 : R" —

Wok—1 = {wo, w1}, Yk >0, R, A € Randay,as € Ko that defined € KL
Wor-1 = {wo-1:w; € W,0<i <k -1} (1) via (3), find an admissible state feedback controller
Wo,co = {wo,00 : wi € W} K € Kgaqte Such that the trajectories of the closed-
loop system consisting of the controll&r(-) and the

In the sequelgo i, X0k, X000, Uo,k, Uo k, Uo, .o have the sim-

ilar meaning forz;, € R™ andu; € R™. We also use the plant (4) satisfy
following notation: |wi(zk)| < B(lwa(zo)] k) +v([[wo,c0lloc) +A, (5)
|wo, 00 |oo = sup |w;| ; lwok—1llcc = max |w;] forall zp € R™, w00 € Wo 0o andk € Z..
i>0 0<i<k—1

When the trajectories of the closed-loop system satisfy the
above bound, then we say that the closed-loop system is PISS.
Note that from causality and the form of (3), the inequality (5)
Definition 2.1 A mapK : Xopo — uO,oo is causalf its value is equi\/a|ent to the f0||owing inequa“ty

at any timek is independent ok, ;1 ., meaning that for each

timek > 0if 21,22 € Xy oo anda! = a2 forall 0 <1<k |wi(zx)| < ar(aa(lwa(zo))e™) + y(|[wok-1lle) + A (6)
thenK(wl)k = K(xQ)k.

where|-| is the Euclidean norm.

forall 2y € R™, wo,x—1 € Wo x—1 andk € Z.

Inequality (5) is a compact way to write a range of ISS-like
properties that have been considered in the literature. Indeed,
- _ different forms of functionsv;, wo, different values for\, and
Lemma 2.2 [11, Proposition 7] Given any} ¢ KL, there ex- (ifferent setsW result in different kind of properties that have
istsarg, o € Koo Such that been considered in the literature. For exampley(f) = 0
and\ = 0 we obtain the stability with respect to two measures
considered in [16]. If we let;(z) = wa(z) = z, A = 0,
W = R?*, we obtain the standard Input to State Stability (ISS)
Hence, there is no loss of generality to suppose that £ property [10, 9]. Whenv,(z) = wz(z) = |z|,,W = R?,
has the form the property is the Input to State practical Stability (ISpS) with
respect to set that is not necessarily compact [8, 14]. When
B(s, k) = ai(az(s)e™ ), Vs >0, Vk € Z,. (3) A =0W =R* andw;(z) = h(z),ws(x) = x whereh(z)
defines the output function, i.ey, = h(zy), then the prop-
wherea, az € K. erty is the Input to Output Stability (I0S) property [15]. When
W G R?, the corresponding properties are local ISS-like prop-

3 The PISS and LIB Controller Synthesis Prob- €rties.
lems

The following lemma is used in the sequel.

B(s,t) < ai(as(s)e™), Vs, t > 0. 2

Remark 3.2 The SFPISS problem requires only that a desired
In this section we define two problems that we investigate rpund is achieved on the solutions of the plant whereas no such
the sequel. Consider the nonlinear discrete-time system  requirement is imposed on the states of a possibly dynamic
controller. So when dynamic controllers are used, this require-
Tpr1 = f(zg, up, wi), k>0 (4) ment does not guarantee the ISS property of the closed-loop
system. However, we still think (5) is@ractical requirement
Herez, € R"ux € U C R™ andw, € W C R® are because the initial states of the controller can be chosen by the
the state, control input and input disturbance, respectiyely, designer, which are different from the initial states of the plant.
R" xU x W — R"™. We will also show in Remark 4.4 that the requirement (5) can

The class of admissible controllers for the plant (4) that yiiarantee some kind of robustness of the closed-loop system.

consider is defined below. )
We will show that the SFPISS problem for system (4) can be

solved by solving the following controller synthesis problem
for an auxiliary system. We first state the problem itself and
then introduce the auxiliary system in the next section. To state
the following problem we also need to introduce the perfor-
mance output equation for system (4)

Definition 3.1 An admissiblestate feedback controller is a
causal mapK : Xy . — Uy The set of all admissible
state feedback controllers is denotedias ...

We sometimes abuse the notation by writing= K (x¢ ) or
u=K(z). zp = g(wk), k>0 (7)

The problem that we consider in this paper is stated next. wherez; € R, g: R™" — R.



State Feedback Uniform LIB Synthesis Problem Since the system (10) is higher dimensional than (4), we find it
(SFULIB): GivenBy C R™ and) € R, find an ad- convenient to introduce different notation for sets of admissible
missible state feedback controll&r € KC,;q:e SUCh controllers. The set of admissible controllers for (10) and (4)
that the trajectories of the closed-loop system con- are respectively denoted &5;q:c andCgiate.

sisting of the plant (4), (7) and the controll&f(-)

satisfy Lemma 4.1 The SFPISS problem for system (4) with given
2 <\, (8) a1, 9,7, w1, w2, A IS equivalent to the SFULIB problem for
system defined by (10)-(13) witB, defined in (14) and

forall zo € Bo, wo k-1 € Wo k-1 andk = 0. A. That is, the SFPISS problem for system (4) with given

_ _ _ a1, Qa,7,wr,ws, A has a solutionK € Ky if and only if
When the trajectories of the closed-loop system satisfy thife SFULIB problem for the system defined by (10)-(13) with
above bound, we say that the closed-loop system is unifof) and \ has a solutionk € K

[*°-bounded (LIB) dissipative with respect i& and .

state-

PROOF  Suppose the SFPISS problem for system (4) has a
4 Solution to the PISS Synthesis Problem s_olutionK € Kstate- Then we can usé{ to constructk’ €
Kstate Dy u = K(2,(,n) = K(z). Consider the closed-loop
In this section we show how we can solve the SFPISS probl&ystem combining (10) with controlldt.
for system (4) by solving the SFULIB problem for an auxilgor anye, = (2, ¢o,n0) € Bo andwo j—1 € Wo 51, from
iary system. The auxiliary system is constructed next by aug- ’ ’
mentation of the state variables, appropriately defined perfor- zo € R", (o = az(|wz(wo)]), mo =0,
mance output equation and the €& on which the uniform and
LIB property should hold. We emphasize that the solution to P
the SFULIB problem has been already obtained in [5]. Git1 = € G, 1 2 0 _
Ni+1 = maX{Ui7w($i>Ui7 f(xl7ul7wl>>}7 2 Z 0
To this end, suppose, up 1 are fixed, and somey ,_, re- " L .
sult in the same; ;. We will be most interested in they ,—1 (note that the definition b is given in (3)), we have
such that|wo -1 || is the smallest. Since if (6) holds for this  (x = az(Jwa(zo)|)e*,
wo,k—1, then it will also holds for the othepg _1. This mo- e = Inf{||Wok—1lloo : f (@i, ui, W) = fms,us, w;),
tivates us to define the following functiaf(xzg, ug, z1). For 0<i<k-1}
;”gn"féi Eﬁovfegefoi such thatf (o, uo, wo) = 2101 gi 06 inequality (6) holds for ally 1, we have

zp = g(&k) = lwi(zr)| — aa(Ge) —v(me) <A (15)
So the controllerK’ solves the SFULIB problem for system

Notice that w(zg,up,z1) is well defined and0 < defined by (10)-(13) witfBy andA. _
(20, ug, 1) < |wol. Conversely, suppose the SFULIB problem for system defined
) by (10)-(13) withBy and A\ has a solutionk’ € K. Since
Consider system (4) and let, a2, 7, w1, w2, A come from the ¢« — o, (s (20)]), 0 = 0 and¢y, m, (k > 1) can be obtained

inequality (6). The auxiliary system is defined as follows:  fom zx (k > 0) by

wW(xo, ug, 1) = wlélév{|w| s flzo,ug,w) =1} (9)

Ees1 = F(Exup,wp), k>0 (10) Cear = € "G, k20 (16)
zp = §(€k), k>0 Mk+1 = max{ng, W(Tk, uk, Tkt1)}, k >0,
where we can usek and (16) to construct a causal controll§r €
Tp Kstate- Itis easy to show that the closed-loop system combin-
=1 G |, (11) ing (4) with this controllerK is PISS using similar argument
m as above. O
F(an, up, wr) Using Lemma 4.1 and the results of state feedback uniform LIB
F(Eps g, i) = ( e,_lC;c ) synthesis (see [5]), we have the following theorems.
max{nk, (T, uk, f(2r, ur, wy))} (12) Theorem 4.2 (Necessity) If there exists a state feedback con-
~ _ _ _ troller Ky € Kgiate SUCh that the closed-loop system (con-
9(&k) = lwr (@) = 1 (Ge) = 7 (m)- (13) sisting (4) with ' = I) is PISS, then the functiol, :
Also we define R™ x Ry x Ry — R defined by
o Va(§) = inf sup - sup {9(&) : an
5 . n n state k2> wo,k—1€Wo,k—1
By = QQ(‘W(Q)(IO)D 29 €R CR XRJr XR+. U:K(f),&):g}, VgERnXRJrXRJr

(14) satisfies:



1. By CdomV, 2 {¢ e R" x Ry x Ry : V,(€) < +o0); D Examples

2. sup V, (&) < Generally speaking, it is not possible to obtain explicit formu-
£€Bo las for solutiongV, S) to the DPI (19) or DPE (18). However,
in some special cases, the computation can be simplified sig-
nificantly, making it possible to obtain an explicit solution; this
Vo (&) = max{§(¢), inf sup Vu(f(&, u,w))}, is done in Segtion 5.1. In the following Section 5.2 we look at
u€U e W (18) a more complicated example numerically.

3. V, solves the dynamic programming equation (DPE)

V¢ € domV,.

- 5.1 An Example with Explicit Solution
LethR"xR+ ><R+andV:R"><R+ XR+—>R. Let

(V, S) solve the dynamic programming inequality (DPI) Consider one-dimensional discrete-time system with dynam-
ics:
V(S) > max{@(f),;g{fj Sggvv(f(g’ u7w))}7 vEe S, (19) L1 = f(‘rlﬁuk) + wy (23)

o ] ] o ] wherezy, wi, v, € R and functionf satisfies
(V, S) is said to be goodsolution to (19) if the infimum in (19)

is attained by a function*(¢) for all ¢ € S andS is invariant Vz € R,3u*(z) € R, such thatf(z,u*(z)) = 0. (24)
under the closed-loop dynamics determinediby See [5] for

further information. Consider the SFPISS problem with

Theorem 4.3 (Sufficiency) If(V, S) is a good solution to the  w;(z) = wy(z) = z, B(s, k) = se *, v(§) =5, A=0

DPI (19) with By C S and sup V(£) < ), then we can use (25)
£€Bo ie. = =s.
the static state feedback controller, = u* (&) to construct a ai(s) = az(s) = s
dynamic state feedback controll&rprss € Ksiare DY For this example,
Cop1 = €', k>0 W(xo,u,r1) = |21 — f(20,2)]. (26)
N1 = max{ng, W(Tg, Uk, The1)}, k >0 (20)
U = u*(fk) = U*($k7<ka77k)7 k 2 0 Hence
where(y = az(|w2(z0)]),m0 = 0 andx, € R", k > 0 are Fan, g, wi)
known. The closed-loop system combining (4) \#th is 7 _ -1
PISS P Sy g (4) by 55 J (&> ur, wi) e Ck ; @7)
' max {7y, [w|}

9(&k) = |zkl — G — M-
The structure of the dynamic state feedback contrdtierss
is shown in Figure 1. We first solve the corresponding SFULIB problem. It can be
proved that the value function is
Remark 4.4 Suppose there are disturbances on the initial
states of the controller, i.e. the true initial states of the con- Va(z,¢,n) = max{|z| — { —n,0}. (28)
troller are given by

The controllerK’ in (20) is
Co = as(|wa(x0)]) + 8¢, no = 0+ dn. (21) pr1ss in (20)

up =u*(zg), k>0 (29)

We can prove that
whereu*(z) is given in (24).

<
‘|Zk} < Eza}a{f@v’ gﬁ%ﬁ&“ﬁ‘;};’k In fact, when applying the above controller, the closed-loop
ki = 1242120 - (22) system becomes
wi(zr)| < on((ez(lwa(zo)]) + 16¢])e™™)

Tht+1 = Wkg. (30)

Obviously, it is PISS with they;, ws, 3, v, A defined by (25).
This means that the trajectories of the closed-loop is robust to
the disturbances of the initial states of the controller. 5.2 An Example with Numerical Solution

+vy(max{|dn]|, [[wo,k—1llec }) + A

Remark 4.5 Some other ISS-like synthesis problems can aI&aonSIder system

be dealt with using similar methods by simply changing the

§(€) function in (13). Thyr = o)+ (2 + Dug + ke (31)

1+xi+uiw
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Figure 1: The dynamic state feedback controligs; s g, whereqg~! denotes the a step delay.

We consider the SFPISS problem for the wo, 3,7, A defined  [4] J.W. Helton and M.R. James, “Extendif Control to

by (25). We use a numerical algorithm to solve the DPE Nonlinear Systems: Control of Systems to Achieve Per-
formance Objectives”, Advances in Design and Control,
Va(z,¢n) = Va(§) N SIAM, 1999.
= max{g({), inf sup Vo (f(&, u, w))
v ~ [5] S. Huang and M.R. JameE?-Bounded Robustness for
= max{|z[ — ¢ — 7, infsup Vo (f (&, u, w))}. Nonlinear Systems: Analysis and Synthel§i§E Trans.
b (32) Aut. Control, (to appear).

The obtained value functioW, (z, ¢, ) is given in Figure 2. [6] S. Huang, M.R. James, D. Bié and P. DowerAnaly-
sis of Input to State Stability for Discrete Time Nonlinear
Systems via Dynamic Programmijrgubmitted to Auto-
matica, 2002.

The optimal controllerK prss in (20) is quite closed to the
static state feedback controller given in (a) of Figure 3. A sim-
ulation of the closed-loop system is illustrated in (b) of Figure

3, which demonstrates consistency with the PISS inequality. [7] M.R. James,L> Bounded Robustness: State Feedback
Analysis and DesigrNOLCOS 2001.
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