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Abstract

A novel technique for synthesizing dynamic state feedback
controllers that achievepractical input to state stability(PISS)
property for nonlinear discrete-time systems is presented. The
PISS controller design for the original system is solved via an
auxiliary l∞-bounded (LIB) robustness synthesis problem for
an auxiliary system. A complete solution for the LIB synthe-
sis problem has been presented recently in the literature. The
obtained static state feedback LIB controller for the auxiliary
system can be interpreted as a dynamic state feedback PISS
controller for the original system. The obtained solution is in
terms of a dynamic programming equation (or inequality).

1 Introduction

The input to state stability(ISS) property for systems with dis-
turbances was first proposed by Sontag in 1989 [10]. Since
then, ISS has received a lot of attention with a range of its ap-
plications and different characterizations reported in the litera-
ture. For example, a systematic analysis of the ISS property has
been conducted in [13, 14], where its many different character-
izations have been described. The discrete-time ISS property
and ISS small-gain theorems were studied in [9]. Further re-
sults on ISS and many related properties can be found in the
survey paper [12] and the references therein.

ISS can be regarded as a particular type ofL∞ (or l∞) stability
that is fully compatible with Lyapunov theory and in particular
it can be checked using the so called ISS Lyapunov functions.
To date there is no systematic way to generate ISS Lyapunov
functions. Besides ISS, a range of alternativeL∞ (or l∞) sta-
bility properties have been investigated recently in [2, 3, 7].
An interesting difference between this literature and the ISS re-
lated literature is that the analysis is carried out via robust op-
timal control techniques instead of Lyapunov based methods.
These optimization approaches typically make use of appro-
priate dynamic programming equations that solve the analysis
and synthesis problem. It appears that investigation of the ISS
property via optimization based techniques such as dynamic
programming is an open question in the literature.

In this paper, we consider the practical ISS (PISS) controller
synthesis problem when the disturbance gains and bounds on
transients are given. A related analysis problem of finding the
“minimal” ISS gain and transient bounds is considered in [6].
For simplicity, we present only results on full state feedback
control – the partial state feedback (measurement) problem is
solved in a forthcoming paper. We present a new technique for
the synthesis of controllers achieving PISS that is based on a
recently obtained result onl∞-bounded (LIB) robustness for
nonlinear systems [5]. By introducing two new state variables,
the PISS controller synthesis problem for the original system
is transformed into an equivalent uniform LIB dissipation syn-
thesis problem for an auxiliary system. The full state feedback
solution for the LIB problem for the auxiliary system is then
interpreted as a dynamic full state feedback PISS controller
for the original system. Dynamic programming techniques are
used to obtain necessary and sufficient conditions for the ex-
istence of such controllers that yield PISS for the closed loop
system with a given disturbance gain and transient bound.

The paper is organized as follows. Preliminaries are presented
in Section 2. In Section 3, the state feedback PISS synthesis
problem and the state feedback uniform LIB synthesis problem
are stated. In Section 4, we transformed the PISS synthesis
problem into a uniform LIB synthesis problem for an auxiliary
system and use uniform LIB results to obtain a solution to PISS
synthesis problem. Two examples are given in Section 5 to
illustrate the method.

2 Preliminaries

Sets of real numbers, nonnegative real numbers, integers and
nonnegative integers are denoted respectively asR, R+, Z and
Z+. Moreover, we denotēR = R ∪ {+∞}. Recall that a
functionγ : [0,∞) → [0,∞) is of classK if it is continuous,
strictly increasing andγ(0) = 0; it is of classK∞ if it is of class
K and alsoγ(s) → ∞ ass → ∞. A function β : [0,∞) ×
[0,∞) → [0,∞) is said to be a function of classKL if for
each fixedt ≥ 0, β(·, t) is of classK and for each fixeds ≥ 0,
β(s, ·) decreases to zero.

Given wk ∈ W ⊆ Rs, ∀k ∈ Z+, we exploit the following



notation:

w0,k−1 = {w0, · · · , wk−1}, ∀k ≥ 0,
W0,k−1 = {w0,k−1 : wi ∈ W, 0 ≤ i ≤ k − 1},
W0,∞ = {w0,∞ : wi ∈ W}.

(1)

In the sequel,x0,k,X0,k,X0,∞, u0,k,U0,k,U0,∞ have the sim-
ilar meaning forxk ∈ Rn anduk ∈ Rm. We also use the
following notation:

‖w0,∞‖∞ = sup
i≥0

|wi| ; ‖w0,k−1‖∞ = max
0≤i≤k−1

|wi|

where|·| is the Euclidean norm.

Definition 2.1 A mapK : X0,∞ → U0,∞ is causalif its value
at any timek is independent ofXk+1,∞ meaning that for each
timek ≥ 0 if x1, x2 ∈ X0,∞ andx1

l = x2
l for all 0 ≤ l ≤ k

thenK(x1)k = K(x2)k.

The following lemma is used in the sequel.

Lemma 2.2 [11, Proposition 7] Given anyβ ∈ KL, there ex-
istsα1, α2 ∈ K∞ such that

β(s, t) ≤ α1(α2(s)e−t), ∀s, t ≥ 0. (2)

Hence, there is no loss of generality to suppose thatβ ∈ KL
has the form

β(s, k) = α1(α2(s)e−k), ∀s ≥ 0, ∀k ∈ Z+. (3)

whereα1, α2 ∈ K∞.

3 The PISS and LIB Controller Synthesis Prob-
lems

In this section we define two problems that we investigate in
the sequel. Consider the nonlinear discrete-time system

xk+1 = f(xk, uk, wk), k ≥ 0 (4)

Here xk ∈ Rn, uk ∈ U ⊆ Rm and wk ∈ W ⊆ Rs are
the state, control input and input disturbance, respectively,f :
Rn ×U×W → Rn.

The class of admissible controllers for the plant (4) that we
consider is defined below.

Definition 3.1 An admissiblestate feedback controller is a
causal mapK : X0,∞ → U0,∞. The set of all admissible
state feedback controllers is denoted asKstate.

We sometimes abuse the notation by writinguk = K(x0,k) or
u = K(x).

The problem that we consider in this paper is stated next.

State Feedback Practical ISS Synthesis Problem
(SFPISS):Givenγ ∈ K, ω1 : Rn → R, ω2 : Rn →
R, λ ∈ R andα1, α2 ∈ K∞ that defineβ ∈ KL
via (3), find an admissible state feedback controller
K ∈ Kstate such that the trajectories of the closed-
loop system consisting of the controllerK(·) and the
plant (4) satisfy

|ω1(xk)| ≤ β(|ω2(x0)| , k)+γ(‖w0,∞‖∞)+λ, (5)

for all x0 ∈ Rn, w0,∞ ∈ W0,∞ andk ∈ Z+.

When the trajectories of the closed-loop system satisfy the
above bound, then we say that the closed-loop system is PISS.
Note that from causality and the form of (3), the inequality (5)
is equivalent to the following inequality

|ω1(xk)| ≤ α1(α2(|ω2(x0)|)e−k) + γ(‖w0,k−1‖∞) + λ (6)

for all x0 ∈ Rn, w0,k−1 ∈ W0,k−1 andk ∈ Z+.

Inequality (5) is a compact way to write a range of ISS-like
properties that have been considered in the literature. Indeed,
different forms of functionsω1, ω2, different values forλ, and
different setsW result in different kind of properties that have
been considered in the literature. For example, ifγ(s) ≡ 0
andλ = 0 we obtain the stability with respect to two measures
considered in [16]. If we letω1(x) = ω2(x) = x, λ = 0,
W = Rs, we obtain the standard Input to State Stability (ISS)
property [10, 9]. Whenω1(x) = ω2(x) = |x|A,W = Rs,
the property is the Input to State practical Stability (ISpS) with
respect to setA that is not necessarily compact [8, 14]. When
λ = 0,W = Rs, andω1(x) = h(x), ω2(x) = x whereh(x)
defines the output function, i.e.yk = h(xk), then the prop-
erty is the Input to Output Stability (IOS) property [15]. When
W $ Rs, the corresponding properties are local ISS-like prop-
erties.

Remark 3.2 The SFPISS problem requires only that a desired
bound is achieved on the solutions of the plant whereas no such
requirement is imposed on the states of a possibly dynamic
controller. So when dynamic controllers are used, this require-
ment does not guarantee the ISS property of the closed-loop
system. However, we still think (5) is apractical requirement
because the initial states of the controller can be chosen by the
designer, which are different from the initial states of the plant.
We will also show in Remark 4.4 that the requirement (5) can
guarantee some kind of robustness of the closed-loop system.

We will show that the SFPISS problem for system (4) can be
solved by solving the following controller synthesis problem
for an auxiliary system. We first state the problem itself and
then introduce the auxiliary system in the next section. To state
the following problem we also need to introduce the perfor-
mance output equation for system (4)

zk = g(xk), k ≥ 0 (7)

wherezk ∈ R, g : Rn → R.



State Feedback Uniform LIB Synthesis Problem
(SFULIB): GivenB0 ⊆ Rn andλ ∈ R, find an ad-
missible state feedback controllerK ∈ Kstate such
that the trajectories of the closed-loop system con-
sisting of the plant (4), (7) and the controllerK(·)
satisfy

zk ≤ λ, (8)

for all x0 ∈ B0, w0,k−1 ∈ W0,k−1 andk ≥ 0.

When the trajectories of the closed-loop system satisfy the
above bound, we say that the closed-loop system is uniform
l∞-bounded (LIB) dissipative with respect toB0 andλ.

4 Solution to the PISS Synthesis Problem

In this section we show how we can solve the SFPISS problem
for system (4) by solving the SFULIB problem for an auxil-
iary system. The auxiliary system is constructed next by aug-
mentation of the state variables, appropriately defined perfor-
mance output equation and the setB̄0 on which the uniform
LIB property should hold. We emphasize that the solution to
the SFULIB problem has been already obtained in [5].

To this end, supposex0, u0,k−1 are fixed, and somew0,k−1 re-
sult in the samex1,k. We will be most interested in thew0,k−1

such that‖w0,k−1‖∞ is the smallest. Since if (6) holds for this
w0,k−1, then it will also holds for the otherw0,k−1. This mo-
tivates us to define the following function̂w(x0, u0, x1). For
x0, x1 ∈ Rn, u0 ∈ U ⊆ Rm such thatf(x0, u0, w0) = x1 for
somew0 ∈ W, we denote

ŵ(x0, u0, x1) = inf
w∈W

{|w| : f(x0, u0, w) = x1}. (9)

Notice that ŵ(x0, u0, x1) is well defined and 0 ≤
ŵ(x0, u0, x1) ≤ |w0|.
Consider system (4) and letα1, α2, γ, ω1, ω2, λ come from the
inequality (6). The auxiliary system is defined as follows:

ξk+1 = f̃(ξk, uk, wk), k ≥ 0
zk = g̃(ξk), k ≥ 0

(10)

where

ξk =




xk

ζk

ηk


 , (11)

f̃(ξk, uk, wk) =




f(xk, uk, wk)
e−1ζk

max{ηk, ŵ(xk, uk, f(xk, uk, wk))}


 ,

(12)
g̃(ξk) = |ω1(xk)| − α1(ζk)− γ(ηk). (13)

Also we define

B̄0 :=








x0

α2(|ω2(x0)|)
0


 : x0 ∈ Rn



 ⊆ Rn×R+×R+ .

(14)

Since the system (10) is higher dimensional than (4), we find it
convenient to introduce different notation for sets of admissible
controllers. The set of admissible controllers for (10) and (4)
are respectively denoted as̄Kstate andKstate.

Lemma 4.1 The SFPISS problem for system (4) with given
α1, α2, γ, ω1, ω2, λ is equivalent to the SFULIB problem for
system defined by (10)-(13) with̄B0 defined in (14) and
λ. That is, the SFPISS problem for system (4) with given
α1, α2, γ, ω1, ω2, λ has a solutionK ∈ Kstate if and only if
the SFULIB problem for the system defined by (10)-(13) with
B̄0 andλ has a solutionK̄ ∈ K̄state.

PROOF. Suppose the SFPISS problem for system (4) has a
solutionK ∈ Kstate. Then we can useK to constructK̄ ∈
K̄state by u = K̄(x, ζ, η) = K(x). Consider the closed-loop
system combining (10) with controller̄K.

For anyξ0 = (x0, ζ0, η0) ∈ B̄0 andw0,k−1 ∈ W0,k−1, from

x0 ∈ Rn, ζ0 = α2(|ω2(x0)|), η0 = 0,

and

ζi+1 = e−1ζi, i ≥ 0
ηi+1 = max{ηi, ŵ(xi, ui, f(xi, ui, wi))}, i ≥ 0

(note that the definition of̂w is given in (9)), we have

ζk = α2(|ω2(x0)|)e−k,
ηk = inf{‖w̃0,k−1‖∞ : f(xi, ui, w̃i) = f(xi, ui, wi),

0 ≤ i ≤ k − 1}.
Since inequality (6) holds for allw0,k−1, we have

zk = g̃(ξk) = |ω1(xk)| − α1(ζk)− γ(ηk) ≤ λ. (15)

So the controllerK̄ solves the SFULIB problem for system
defined by (10)-(13) with̄B0 andλ.

Conversely, suppose the SFULIB problem for system defined
by (10)-(13) withB̄0 andλ has a solutionK̄ ∈ K̄state. Since
ζ0 = α2(|ω2(x0)|), η0 = 0 andζk, ηk (k ≥ 1) can be obtained
from xk (k ≥ 0) by

ζk+1 = e−1ζk, k ≥ 0
ηk+1 = max{ηk, ŵ(xk, uk, xk+1)}, k ≥ 0,

(16)

we can useK̄ and (16) to construct a causal controllerK ∈
Kstate. It is easy to show that the closed-loop system combin-
ing (4) with this controllerK is PISS using similar argument
as above. ¤
Using Lemma 4.1 and the results of state feedback uniform LIB
synthesis (see [5]), we have the following theorems.

Theorem 4.2 (Necessity) If there exists a state feedback con-
troller K0 ∈ Kstate such that the closed-loop system (con-
sisting (4) withK = K0) is PISS, then the functionVa :
Rn ×R+ ×R+ → R̄ defined by

Va(ξ) = inf
K̄∈K̄state

sup
k≥0

sup
w0,k−1∈W0,k−1

{g̃(ξk) :

u = K̄(ξ), ξ0 = ξ}, ∀ξ ∈ Rn ×R+ ×R+

(17)

satisfies:



1. B̄0 ⊆ domVa
4
= {ξ ∈ Rn ×R+ ×R+ : Va(ξ) < +∞};

2. sup
ξ∈B̄0

Va(ξ) ≤ λ;

3. Va solves the dynamic programming equation (DPE)

Va(ξ) = max{g̃(ξ), inf
u∈U

sup
w∈W

Va(f̃(ξ, u, w))},
∀ξ ∈ domVa.

(18)

Let S ⊆ Rn ×R+ ×R+ andV : Rn ×R+ ×R+ → R̄. Let
(V, S) solve the dynamic programming inequality (DPI)

V (ξ) ≥ max{g̃(ξ), inf
u∈U

sup
w∈W

V (f̃(ξ, u, w))}, ∀ξ ∈ S, (19)

(V, S) is said to be agoodsolution to (19) if the infimum in (19)
is attained by a functionu∗(ξ) for all ξ ∈ S andS is invariant
under the closed-loop dynamics determined byu∗. See [5] for
further information.

Theorem 4.3 (Sufficiency) If(V, S) is a good solution to the
DPI (19) with B̄0 ⊆ S and sup

ξ∈B̄0

V (ξ) ≤ λ, then we can use

the static state feedback controlleruk = u∗(ξk) to construct a
dynamic state feedback controllerKPISS ∈ Kstate by





ζk+1 = e−1ζk, k ≥ 0
ηk+1 = max{ηk, ŵ(xk, uk, xk+1)}, k ≥ 0

uk = u∗(ξk) = u∗(xk, ζk, ηk), k ≥ 0
(20)

whereζ0 = α2(|ω2(x0)|), η0 = 0 and xk ∈ Rn, k ≥ 0 are
known. The closed-loop system combining (4) withKPISS is
PISS.

The structure of the dynamic state feedback controllerKPISS

is shown in Figure 1.

Remark 4.4 Suppose there are disturbances on the initial
states of the controller, i.e. the true initial states of the con-
troller are given by

ζ0 = α2(|ω2(x0)|) + δζ, η0 = 0 + δη. (21)

We can prove that

|ηk| ≤ max{|δη| , ‖w0,k−1‖∞},
|ζk| ≤ (α2(|ω2(x0)|) + |δζ|)e−k,

|ω1(xk)| ≤ α1((α2(|ω2(x0)|) + |δζ|)e−k)
+γ(max{|δη| , ‖w0,k−1‖∞}) + λ.

(22)

This means that the trajectories of the closed-loop is robust to
the disturbances of the initial states of the controller.

Remark 4.5 Some other ISS-like synthesis problems can also
be dealt with using similar methods by simply changing the
g̃(ξ) function in (13).

5 Examples

Generally speaking, it is not possible to obtain explicit formu-
las for solutions(V, S) to the DPI (19) or DPE (18). However,
in some special cases, the computation can be simplified sig-
nificantly, making it possible to obtain an explicit solution; this
is done in Section 5.1. In the following Section 5.2 we look at
a more complicated example numerically.

5.1 An Example with Explicit Solution

Consider one-dimensional discrete-time system with dynam-
ics:

xk+1 = f(xk, uk) + wk (23)

wherexk, wk, uk ∈ R and functionf satisfies

∀x ∈ R, ∃u∗(x) ∈ R, such thatf(x,u∗(x)) = 0. (24)

Consider the SFPISS problem with

ω1(x) = ω2(x) = x, β(s, k) = se−k, γ(δ) = δ, λ = 0.
(25)

i.e. α1(s) = α2(s) = s.

For this example,

ŵ(x0, u, x1) = |x1 − f(x0, u)| . (26)

Hence

f̃(ξk, uk, wk) =




f(xk, uk, wk)
e−1ζk

max{ηk, |wk|}


 ,

g̃(ξk) = |xk| − ζk − ηk.

(27)

We first solve the corresponding SFULIB problem. It can be
proved that the value function is

Va(x, ζ, η) = max{|x| − ζ − η, 0}. (28)

The controllerKPISS in (20) is

uk = u∗(xk), k ≥ 0 (29)

whereu∗(x) is given in (24).

In fact, when applying the above controller, the closed-loop
system becomes

xk+1 = wk. (30)

Obviously, it is PISS with theω1, ω2, β, γ, λ defined by (25).

5.2 An Example with Numerical Solution

Consider system

xk+1 = x3
k + (x2

k + 1)uk +
1

1 + x2
k + u2

k

wk. (31)



q−1
ηk−1

ζk = e−1ζk−1

q−1

η dynamics

ζ dynamics

LIB
feedback

Static state

controller

u∗(xk, ζk, ηk)

uk

xk xk

ζk−1

ηk = max {ηk−1, ŵ(xk−1, uk−1, xk)}
xk

q−1

xk−1

q−1
uk−1

ηk

ζk

Initialization:

ζ0 = α2(|ω2(x0)|)
η0 = 0

Figure 1: The dynamic state feedback controllerKPISS , whereq−1 denotes the a step delay.

We consider the SFPISS problem for theω1, ω2, β, γ, λ defined
by (25). We use a numerical algorithm to solve the DPE

Va(x, ζ, η) = Va(ξ)
= max{g̃(ξ), inf

u
sup
w

Va(f̃(ξ, u, w))

= max{|x| − ζ − η, inf
u

sup
w

Va(f̃(ξ, u, w))}.
(32)

The obtained value functionVa(x, ζ, η) is given in Figure 2.

The optimal controllerKPISS in (20) is quite closed to the
static state feedback controller given in (a) of Figure 3. A sim-
ulation of the closed-loop system is illustrated in (b) of Figure
3, which demonstrates consistency with the PISS inequality.
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