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Abstract 

This paper applies the decomposition block control 
technique to design a discontinuous regulator that 
guarantees asymptotic reference tracking for a class of 
linear delayed systems with disturbances. This class of 
systems is those presented in so-called Block 
Controllable Form with Delay. The block control 
technique is used to derive a sliding manifold on which 
the motion of the closed-loop system is stable, and the 
tracking error is zeroed. Example of the application of 
the proposed control strategy design is illustrated. 
 

1 Introduction 
 

Stabilization of time-delay system (TDS) via continuous 
feedback control [8,9,23] has been extensively studied using 
various techniques such as ∞H  control, Riccati equation and 

Linear Matrix Inequality approaches (see [2,5,11,12,13,18]). 
In order to introduce the robustness property in the closed-
loop system, sliding mode discontinuous controllers [21] for 
TDS have been designed in [6,7,10,14,19,20].   
 
Another problem of major importance in control theory is that 
of synthesizing feedback controllers to achieve asymptotic 
tracking of prescribed reference output while rejecting 
disturbance [3]. The problem in question is to find, for every 
reference output function )(⋅refy  in a prescribed family of 

functions, a control law, such that the corresponding response 
)(⋅y  of the plant satisfies 

 
0))()((lim =−

∞→
tyty ref

t
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The solution of this problem includes two subproblems: first, 
the stabilization of the system in the absence of perturbation, 
and second, eliminating the effect of a perturbation. In [3] a 
complete solution for multivariable, linear, time-invariant, 
systems without delays and with continuous control was 
presented based on the existence of a solution of a set of 

linear matrix equations. On the other hand, in [20] the sliding 
mode regulator problem was introduced and existence 
conditions for its solution were derived for undelayed 
systems. The underlying idea is to design a sliding surface on 
which the dynamics of the system is constrained to evolve by 
means of a discontinuous control law, instead of designing a 
continuous stabilizing feedback, as in the case of the classical 
regulator problem. The sliding surface contains the steady-
state surface, and the dynamics of the systems tend 
asymptotically, along the sliding surface, to the steady-state 
behavior. 
 

In this paper, we consider a linear system with delay in state 
and control with both matched and unmatched perturbations. 
First, a sliding mode regulator problem for TDS is 
formulated. In order to solve this problem the block control 
principle [1], is applied. To achieve this, a special state 
representation, referred as the Block Controllable Form with 
Delay (or BCD-form), consisting of a set of blocks, will be 
used [15]. Using the block control technique, a sliding 
manifold is designed such that the sliding mode dynamics are 
invariant with respect to delay and perturbations. Note that 
designing a sliding controller without taking in the account 
the delay may cause chattering or even instability of the 
closed-loop system dynamics [4]. 

 

2 State Feedback Sliding Mode Regulation Problem 
 

Let us consider a multivariable, linear, time-invariant TDS 

subject to an external disturbance, governed by 

)()()()()()( tPwtDutButCxtAxtx +−++−+= ττ�     (1) 

)()( tMxty =                                            (2) 

with the reference signal to be tracked 
 

)()( tQwtyref =                                         (3) 
 

and an exosystem  
 

)()( tSwtw =�                                          (4) 



 

where nRx ∈  is the state vector, mRu ∈  is the control input, 
pRy ∈  is the output, and qRw ∈  is the exogenous signal 

representing the reference and/or disturbance signals.  
 
For the delay system (1)-(4), the Sliding Mode Regulation 
Problem with Delays (SMRPD) can be stated as the problem 
of finding, if possible, a sliding manifold  
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and discontinuous feedback 
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such that: 
 
SD) The closed loop system (1) and (6) in the absence of 
perturbations is asymptotically stable, i.e., for any initial 

condition [ ] nRttt →−∈ 00 ,)( τϕ  the corresponding solution 

)(tx  of (1) and (6) satisfies  

0)( →tx  as ∞→t . 

 
RD) The output tracking error goes asymptotically to zero, 
i.e. 

0))()((lim =−
∞→

tyty ref
t

.                   (7) 

 
Trying to apply the classical regulation theory to solve the 
SMRPD would imply to go through solving a set of matrix 
equations that depend on the delay terms, which could be a 
not simple task. In this paper, we propose an alternative way 
of finding a solution by transforming the delay system into a 
special form using the block control technique and then using 
a discontinuous control law. 
 
3 Block Representation 
 
The key idea of the block control technique is the use of a 
change of coordinates to transform the system (1) to the so-
called Block Controllable Form with Disturbances (or BCD-
form), consisting of r blocks: 
 

)()()()()( 1111111111 twPtvBtxCtxAtx ++τ−+=� , 

)()()( 2121 τ−Π+= txtxtv                                        (8a) 
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,, twPtvBtxCtxAtx iii
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j
jjijjii ++τ−+= ∑

=

� ,  

)()()( 11 τ−Π+= ++ txtxtv iiii , 1,...,2 −= ri            (8b) 
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with the output 
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where T
rxxx ),...,( 1= , in

i Rx ∈ , ][ 1 rMMM �= , 

ii nrankB = , ri ,...,1= , and  ∑
=

=
r

i
i nn

1

.  

The integers rnnn ,,, 21 �  set the structure of the system, and 

we assume that they satisfy the condition  
 

mnnn r ==== �21 . 

 
In this paper, we will assume that the initial system is 
transformable to the form (8a)-(8c). The transformation and 
the conditions, under which the system (1) can be reduced to 
the BCD-form (8a)-(8c) in the absence of disturbances, are 
derived in [15]. The modified transformation for the 
perturbed TDS (1) is presented in [16]. Note that the case 
when the output vector coincides with the state vector of the 
first block (8a), that is, )()( 1 txty =  was considered in [17]. 

 
4 Delay and Disturbances Block Cancellation 
 

As in the classical setup for state feedback regulator problem 
we assume first that the state x(t) and disturbance w(t) are 
measurable. The design procedure for obtaining a 
discontinuous control law, which ensures asymptotic 
regulation of the output tracking error, will be divided in two 
steps. First, exploiting the block control technique [9], the 
system (8) will be transformed into a desired form, and a 
sliding surface will be constructed. Then, a discontinuous 
control law will be designed to make attractive this surface.  
For, we need to assume the steady state existence. The 
following result incorporates this condition.  
 

THEOREM: Assume that  
(i) The system (1) is transformable to the  BCD-

form (8a)-(8c) with the output (9); 
(ii) All eigenvalues of matrices rii ,...,1, =Π  are 

located inside the open unit circle;  
(iii) There exist matrices iΓ , ri ,...,1= , that solve 

the following matrix equations: 
 

112121111111 ][ PSeBeCA SS −Γ=ΓΠ+Γ+Γ+Γ −− ττ    (10a) 
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Then the SMRP is solvable. 

 



 

The procedure for proving this theorem is constructive and is 
therefore included in the main text. 
 

Proof. If the conditions (10a)-(10b) and (11) hold, then 
defining the new state as 
 

)()( twtx iii Γ−=ε ,   ri ,...,1=                (12) 
 

the system (8a)-(8c) can be represented as 
  

)()()()( 111111111 tvBtCtAt +τ−ε+ε=ε� , 

 )()()( 2121 τ−εΠ+ε= tttv                               (13a) 
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 )()()( 11 τεε −Π+= ++ tttv iiii , 1,...,2 −= ri        (13b) 
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with the tracking error 
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where SPeCAP rr
S

rrrrrrr Γ−+Γ+Γ= −τ
,, . Here, we used 

)()( twetw Sττ −=− . 

  
The desired form and sliding manifold can be obtained in the 
following iterative procedure that consists in r steps.  
Step 1. We put )()( 11 ttz ε= , and then the first block (13a) can 

be presented as 

)()()( 11

1

0
1

1
,11 tvBjtDtz

j
j +−= ∑

=

τε�                  (15) 

where 11
1
10 AD = , 11

1
11 CD = . Now, we define the following 

desired dynamics for the first transformed block as 
 

)()()( 2111 tztztz +Λ=�                           (16) 
 

where 1Λ  is a matrix with desired eigenvalues, and 2
2

nRz ∈  

is a vector of new variables. From equation (15) and desired 
dynamics (16), the following transformation between )(2 tz  

and )(1 tv  or )(2 tε , is derived: 
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)()()( 2121 τ−εΠ+ε= tttv .                      (17b) 

 
Step 2. Taking the derivative of (17a) along of the trajectories 
of (8a)-(8b), the second block can be represented as 
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where the entries of matrices, i
jD ,2 , 2,1=i , 2,1,0=j , 

depend on the parameters of the systems (8a)-(8c) and (4),  

212 BBB = , and  
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or  

        )()()( 221
1

22
1
2 τ−Π+= − tvBBtvtv , 

 )()()( 3232 τ−Π+= txtxtv .                               (18b) 

 
Now we define the desired dynamics for )(2 tz  similar to 

(16), that is 
)()()( 3222 tztztz +Λ=�  

 

where 3
3

nRz ∈ , and 2Λ  is a matrix with desired 

eigenvalues. Using this equation and (18a)-(18b), the 

transformation between )(3 tz  and )(1
2 tv  or )(3 tε  can be 

obtained of the form  
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and so on. This procedure can be performed iteratively 

obtaining on the thp  step, 1,...,3 −= rp , the following 

recursive transformation: 
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where kk BBB �1= , knkn
k R ×⊂Λ  is a desired matrix, and  
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On the last step the system (8a)-(8c) is described in the new 
variables in the desired form  
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A natural choice of the sliding manifold (5), is  
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that is derived from (20a).  The desired discontinuous 
dynamics are then defined as 
 

)()( ssignkts r=�                                 (23) 
 

with 0<rk . The discontinuous control law calculated from 

(21a) and (23) is 
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and it provides sliding mode on (22) in a finite time. This 
motion is described in the new variables )(,),( 11 tztz r−�  by 

the following th
rnn )( −  order system: 
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with the desired dynamics. 
 

The stability of the closed loop system (8a)-(8c) and (24) is 
defined first by eigenvalues of the system (25) that can be 
chosen arbitrarily, and second, by the property of the state and 
control internal dynamics, presented by (17b), (18b), (20b) 
and (21b), respectively. It follows that the state and control 
internal dynamics are asymptotically stable if the condition 
(ii) of the Theorem holds. To show this, the control internal 
dynamics (21b) can be represented in discrete time as 
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We may observe that the system (26) is stable if the condition 
(ii) holds. In this case, the output ku  of system (26), is 

bounded for any bounded input 1
,krv . In the same manner it is 

possible to show stability for the state internal dynamics 
(17b), (18b) and (20b). If the matrices 1,,1, −=Λ rii �  in 

the sliding mode dynamics (25) are Hurwitz, then  
 

0)(lim =
∞→

tzi
t

, 1,...,1 −= ri  

and by condition (ii) of the Theorem, we have  
 

0)(lim =
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ti
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ε , 1,...,1 −= ri  

on the manifold 0)( =ε tr . Hence, the requirement SD) is 

fulfilled. Finally, if the condition (11) holds the tracking error 
(14) converges asymptotically to zero, and therefore the 
requirement RD) is also fulfilled.  
 
5 Example 
 
Consider the following second order system with delay in 
control and state that is in the BCD form:  
 

        )()()()( 11111 tvtwPtxtxx ++τ−+=� , 

 )()()( 2121 τ−π+= txtxtv                                            (27a) 
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with the output 
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parameters 1π  and 2π  which satisfy the condition (ii) of the 

Theorem, that is, 11 <π  and 12 <π . The reference signal 
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where Twww ),( 21= .  Now we apply the block control 

technique described in the Section 4. Defining the steady state 
for )(1 tx  and )(2 tx  as )(1 twΓ  and )(2 twΓ , respectively, we 

introduce the following tracking errors: 
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The parameters of the matrices [ ]12111 γγ=Γ  and 

[ ]22212 γγ=Γ  are calculated as a solution of the following 
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Then the system (27a)-(27b) is represented in )(1 tε  and 

)(2 tε  as 
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The change of variables similar to (17a) 
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 Then the control  
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with 02 <k  guarantees the sliding mode motion on 02 =z  

described by )()( 111 tzktz =� . 

 
Simulation results. 

 
For this example we selected the following parameters: 

1=α , 4.01 =π , 5.02 =π , 5,5,5.0 21 −=−==τ kk . Figures 

1 and 2 show responses for the output y, reference 1w  and 

tracking error refyye −= , respectively. Responses for the 

sliding variable 2z  and control input u are depicted in 

Figures 3 and 4, respectively. 
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Fig. 1. The plant output 21 xxy +=  and reference 1wyref = . 
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Fig. 2.  The tracking error refyye −= . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  The switching function 2z . 

 

 

 

 

 

 

 

 

 

Fig. 4.  The control u. 

 

 

 

 

Fig. 4.  The control u 
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6. Conclusions 
 

In this work the sliding mode regulator problem with delay is 
introduced, and conditions for the existence of a solution for a 
class of multivariable linear TDS presented in BCD form and 
which satisfies a controllability condition on the non delay 
part of the TDS, are derived. Based on this form, and using 
the block control technique, a discontinuous feedback which 
ensures trajectory tracking, is designed. The simulation 
results confirm the effectiveness of the proposed method. 
Possible extension to the class of TDS for which the 
controllability condition may include the delay part as well, is 
object of further research. 
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