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Abstract

This paper applies the decomposition block control
technique to design a discontinuous regulator that
guarantees asymptotic reference tracking for a class of
linear delayed systems with disturbances. This class of
systems is those presented in so-caled Block
Controllable Form with Delay. The block control
technique is used to derive a diding manifold on which
the motion of the closed-loop system is stable, and the
tracking error is zeroed. Example of the application of
the proposed control strategy design isillustrated.

1 Introduction

Stabilization of time-delay system (TDS) via continuous
feedback control [8,9,23] has been extensively studied using
various techniques such as H,, contral, Riccati equation and
Linear Matrix Inequality approaches (see [2,5,11,12,13,18]).
In order to introduce the robustness property in the closed-
loop system, diding mode discontinuous controllers [21] for
TDS have been designed in [6,7,10,14,19,20].

Another problem of major importance in control theory is that
of synthesizing feedback controllers to achieve asymptotic
tracking of prescribed reference output while rejecting
disturbance [3]. The problem in question is to find, for every
reference output function y,4 (! in a prescribed family of

functions, a control law, such that the corresponding response
y(D) of the plant satisfies

im(y(t) = yrer (1) =0.

The solution of this problem includes two subproblems: first,
the stabilization of the system in the absence of perturbation,
and second, eliminating the effect of a perturbation. In [3] a
complete solution for multivariable, linear, time-invariant,
systems without delays and with continuous control was
presented based on the existence of a solution of a set of

linear matrix equations. On the other hand, in [20] the sliding
mode regulator problem was introduced and existence
conditions for its solution were derived for undelayed
systems. The underlying idea isto design a diding surface on
which the dynamics of the system is constrained to evolve by
means of a discontinuous control law, instead of designing a
continuous stabilizing feedback, asin the case of the classical
regulator problem. The diding surface contains the steady-
state surface, and the dynamics of the systems tend
asymptotically, along the diding surface, to the steady-state
behavior.

In this paper, we consider a linear system with delay in state
and control with both matched and unmatched perturbations.
First, a dliding mode regulator problem for TDS is
formulated. In order to solve this problem the block control
principle [1], is applied. To achieve this, a specia sate
representation, referred as the Block Controllable Form with
Delay (or BCD-form), consisting of a set of blocks, will be
used [15]. Using the block control technique, a dliding
manifold is designed such that the diding mode dynamics are
invariant with respect to delay and perturbations. Note that
designing a diding controller without taking in the account
the delay may cause chattering or even instability of the
closed-loop system dynamics [4].

2 State Feedback Sliding M ode Regulation Problem

Let us consider a multivariable, linear, time-invariant TDS
subject to an external disturbance, governed by

X(t) = AX(t) + Cx(t —1) + Bu(t) + Du(t —7) + Pw(t) (1)
y(t) = Mx(t) &)
with the reference signal to be tracked
Yrer () = Qu(t) ®)
and an exosystem
W(t) = S(t) 4



where xOR" isthe state vector, uJR™ isthe control input,
yORP isthe output, and wORY is the exogenous signal
representing the reference and/or disturbance signals.

For the delay system (1)-(4), the Siiding Mode Regulation
Problem with Delays (SM RPD) can be stated as the problem
of finding, if possible, adiding manifold

S(x(t), X(t = 7),..., X(t —ggT), W(t), W(t —T1),...,X(t—0;7) =0
©)

and discontinuous feedback

Py P>
u®) =y Kyut—in) +§ Ky x(t - j7) +
£ 1 ; 2,j

o, (6)
+ Z) Kz W(t —KkT) + K 4sign(s)

such that:

SD) The closed loop system (1) and (6) in the absence of
perturbations is asymptotically stable, i.e,, for any initial

condition qb(t)D[tO —T,to] - R" the corresponding solution
X(t) of (1) and (6) satisfies

RD) The output tracking error goes asymptotically to zero,
i.e

tIiﬁrgjo(y(t) Vg (1)) =0. @)

Trying to apply the classical regulation theory to solve the
SMRPD would imply to go through solving a set of matrix
equations that depend on the delay terms, which could be a
not simple task. In this paper, we propose an aternative way
of finding a solution by transforming the delay system into a
special form using the block control technique and then using
adiscontinuous control law.

3 Block Representation

The key idea of the block control technique is the use of a
change of coordinates to transform the system (1) to the so-
caled Block Controllable Form with Disturbances (or BCD-
form), consisting of r blocks:

X (1) = Ay X (1) + Cppxg (t—1) + Byvy (1) + Pw(t),

vy (t) = X, (1) + M X, (- 1) (89

="

%= 5 1A ;X 0 +Cjx; (=01 + B (O + Rw(D),
J=1

Vi(t) =%, ) +Nix,0t-1),i=2..,r-1 (8b)

% 0 = T TA 1% O +C, X, (D] +B,v, () + Pw(t),
2

v, (t)=u)+M,ut-1) (8c)

with the output

y(t) = Z Mix; (t) C)

where X =(x,..x ), xOR", M=[M, M.,

,
rankB, =n;, i =1...,r , and Zni =n.
1=

Theintegers ny,n,,--+,n, set the structure of the system, and
we assume that they satisfy the condition

N =n,=--=n,=m.

In this paper, we will assume that the initia system is
transformable to the form (8a)-(8c). The transformation and
the conditions, under which the system (1) can be reduced to
the BCD-form (8a)-(8c) in the absence of disturbances, are
derived in [15]. The modified transformation for the
perturbed TDS (1) is presented in [16]. Note that the case
when the output vector coincides with the state vector of the
first block (8a), that is, y(t) = X, (t) wasconsideredin[17].

4 Delay and Disturbances Block Cancellation

Asin the classical setup for state feedback regulator problem
we assume first that the state x(t) and disturbance w(t) are
measurable. The design procedure for obtaining a
discontinuous control law, which ensures asymptotic
regulation of the output tracking error, will be divided in two
steps. Firgt, exploiting the block control technique [9], the
system (8) will be transformed into a desired form, and a
sliding surface will be constructed. Then, a discontinuous
control law will be designed to make attractive this surface.
For, we need to assume the steady state existence. The
following result incorporates this condition.

THEOREM: Assume that
0] The system (1) is transformable to the BCD-
form (8a)-(8c) with the output (9);

(i) All eigenvalues of matrices INM;, i =1,...,r are
located inside the open unit circle;
(iii) There exist matrices I, i =1,...,r, that solve

the following matrix equations:
Ay +Cyhe ™ + B[, +M,M,e™]=TS-P (10
i
Z [A,j M)+ ; rje_ls]"' Bi[ri+l +MN,r,,e™ =rS-P
J:

i=2,..,r-1

2Miri_Q:0-

Then the SMRP is solvable.

(10b)

(11)



The procedure for proving this theorem is constructive and is
therefore included in the main text.

Proof. If the conditions (10a)-(10b) and (11) hold, then
defining the new state as

g =x@®)-rwt), i=L..,r (12)
the system (8a)-(8c) can be represented as
€1(t) = Apgy (1) + Cppgy (t—T) + By (1)
Vi(t) =€,(t) + Mg, (t—T) (139)
&)= _'zlm,jsj(t)+ci,js,-(t—T)1+ B, (),
v (t) :;+1(t)+r|isi+1(t—r), i=2..,r-1  (13h)

r

g (t)= Z[Ar,jgj (©+C, &, (t-T)]+B,v, (1) + Pw,
J:

v, () =ut)+N ut-1) (13c)
with the tracking error
e(t) r Mg (t) EQ r M Fglv (14)
= &)+ Q- ili
2 M0 R g M

where P =A I, +C, [,e™+P, -I,S. Here, we used

wt-1) =e™w(t) .

The desired form and diding manifold can be obtained in the
following iterative procedure that consistsin r steps.

Step 1. We put z; (t) =€, (t) , and then the first block (13a) can
be presented as

1
3(t) = Z Dijex(t—J7)+ By (t) (15)
]:
where D, = A;;, Di; =C,;. Now, we define the following
desired dynamics for the first transformed block as

(1) =Nz (1) + 2, ()

where A; isamatrix with desired eigenvalues, and z, OR"™
is a vector of new variables. From equation (15) and desired
dynamics (16), the following transformation between z,(t)

and v, (t) or €,(t), isderived:

(16)

1

2,(t)= Y DLjes(t = [0 +By(t) - Az (17a)
1=0
vi(t) =€, () + Mgt -1). (17b)

Step 2. Taking the derivative of (17a) along of the trajectories
of (8a)-(8b), the second block can be represented as

2
2= [P} 0= 10+ 0 tt - 0]+ Bk (a5
]:

where the entries of matrices, D}, i=12, j=012,
depend on the parameters of the systems (8a)-(8c) and (4),

B, = B;B,, and
V3 (1) =[x (1) + M x5 (t = 1))
+ Bz_lnle[Xs(t‘T)'*‘n2X3(t‘2T)]
or
V3 (1) = v, (1) + BBy, (t - 1)

Vo (t) = X3 (1) + M x5 (t - 1) (180)

Now we define the desired dynamics for z,(t) similar to
(16), that is

Zy(t) =Nz, () + 23(t)
where z;OR™, and A, is a matrix with desired
eigenvalues. Using this equation and (18a)-(18b), the

transformation between zy(t) and vi(t) or £4(t) can be
obtained of the form

2
zs(t):;[D%,jsl(t—Jr)+D§,js2(t—ir)] o
+B,v3 (1) - A\ ,2, (1)
and so on. This procedure can be performed iteratively

obtaining on the p" sep, p=3...r -1, the following

recursive transformation:

PP _
zpa®) =Y Y Dpeit-jn) + Bovh(t) = Az, (1)
EJE

(204)
where B, =B;---B,, A, O R isadesired matrix, and
VE(t) = V3 (t) + Bt BB, - BV (t - T)
Va(t) =va(t) + Byl - B3 ,Bs - BV (t - 1)
: (20b)
k_ — —
VE(t) =V, () + By 4BV, (= T)
Vp () =Xpua (O + 15X (t-T).
On the last step the system (8a)-(8c) is described in the new
variablesin the desired form

4(t) =Niz (1) + Z.44(0),

r r r-1
AOE Z D} j&i(t—jr)+ Z Fw(t =i7) + By (t)
1=0 1= 1=

i=1..r-1
(219)

where

z=(z,,z)", zOR",i=1--r, B, =B;---B, and

Vi) =V (1) + B+ By B, -+ B VE (t—T)
Vi) =V (1) + B B3 By By vl (- T)
: (21b)
Vi) = v, (1) + B 4B v, (- 1)
v, () =u(t)+M,ut-1).



A natural choice of the diding manifold (5), is

s=z,=0 (22)
r-1r-1 . _ 1
Z t)= Z Z D:—ljsi (t—jo) + Br—lVr—l(t) _Ar—lzr—l(t)
==

that is derived from (20a).
dynamics are then defined as

The desired discontinuous

§(t) =k, sign(s) (23)

with k, <0. The discontinuous control law calculated from
(21a) and (23) is

Or r r-1

0
vi(t)=-B™ DX (t—in)+ Fywit—ir)0
2,25 2" :

+k, B tsigns(t)] (24)

and it provides diding mode on (22) in a finite time. This
motion is described in the new variables z (t),::-,z,_;(t) by

the following (n—n, )M order system:

() =Niz;() +Z,4 (), 1=1---,r-2

25
2, () =A\42,4() )

with the desired dynamics.

The stability of the closed loop system (8a)-(8c) and (24) is
defined first by eigenvalues of the system (25) that can be
chosen arbitrarily, and second, by the property of the state and
control internal dynamics, presented by (17b), (18b), (20b)
and (21b), respectively. It follows that the state and control
internal dynamics are asymptotically stable if the condition
(ii) of the Theorem holds. To show this, the control internal
dynamics (21b) can be represented in discrete time as
U = =TT Uy + v
Vik = _Br_ll_I r—lBrVr,k—l + Vrr,_kl
: (26)
Vik = =B B3 5By By Vi + Vi
Vik = =B B B, - BV + Vi
where
U =U(KT), Uy =u((k=DT), Vi, =Vi (KT),
Vgt =V ((K=DT), i =1.r -1 and vy, =vy(kt),
T=1,t=KT, k=01....

We may observe that the system (26) is stable if the condition
(i) holds. In this case, the output u, of system (26), is
bounded for any bounded input v},k . In the same manner it is

possible to show sability for the state internal dynamics
(17b), (18b) and (20b). If the matrices A;, i =1,---,r =1 in
the diding mode dynamics (25) are Hurwitz, then

tIim z(t)=0,i=1..,r-1
and by condition (ii) of the Theorem, we have
tIimsi ®t=0,i=1..,r-1

on the manifold €, (t)=0. Hence, the requirement SD) is

fulfilled. Finaly, if the condition (11) holds the tracking error
(14) converges asymptotically to zero, and therefore the
requirement RD) is also fulfilled.

5 Example

Consider the following second order system with delay in
control and state that isin the BCD form:

Xp = % (1) + X, (1= 1) + Pw(t) + v (1),

Vi (t) = X (1) + Ty X, (- 1) (279)

Xp = X (1) + % (t = 1) + X (1) + X, (t = 1) + Pow(t) + v, (1),
V, (1) =u(t) + LUt - 1) (27b)
with the output

y(t) = Mx(t) (28)

where x=[x,x%,]", M=[11, P =P, =[1 0], ad

parameters Ty, and TT, which satisfy the condition (ii) of the

Theorem, that is, |Ty|<1 and |m,|<1. The reference signal
Vi =QW(t), Q=[10] isgenerated from the exosystem

add

0
WO=SM), S=7 . of a>0 (29)
Ta 0g

where w=(w;,w,) ". Now we apply the block control
technique described in the Section 4. Defining the steady state
for x;(t) and x,(t) as [;w(t) and I',w(t), respectively, we
introduce the following tracking errors:

£1(0) = % (1) ~TywW(t) and &, (t) = X, (t) = Fpw(t) .

The parameters of the matrices I :[yll ylz] and
r, :[y21 y22] are calculated as a solution of the following
equations:

r+re ™+, +mr, =rS-P and M+, =Q
of theform
Y11 = Tul(Ty —D)(en1€ —€12€5) +0€, + 28] — 265,
Vi =Yoo = -Ty(0€ +26,) —2(0 —€p,),
Vo1 = (Th —1)(e11€5 — €16, —0€y —26x) +a(a —ep),
s _ By e,0 [Eos(ar) -sin(at)Od
B %21 €» %_ %in(m) cos(at) E
Then the system (27a)-(27b) is represented in g,(t) and
€,(t) as

e

€1(t) =& () +ea (t-T) +vy (1) (309)



Ex(1) =, (t) + &, (t—T) +&,(t) +£,(t—T) + P,w(t) +, (1)
(30b)
where P, =T+, +P, =[,S+ ([, +,)e ™.
The change of variables similar to (17a)

z)(t) =&, (1),
Z,(t) =& () &, (t-T) +&, (1) + 16, (1 —T) — Ky Zy (1), Ky <O

reduces the system (30a)-(30b) to
2 (t) =k zy (1) + 2, (1)

2 2
ZZ(t):;d%,jgl(t_jr)+zd22,j£2(t_jr)

+PoW, (1) + 11, P,w, (t—T) + V3 (1)
where
di, =2-k;, di =2-k +m, di =1+m, di =2-k,,
d221 =2T[1 —T[1k1+2 and d222 =2T[l'

Then the control
2 2
v%(t)=—Zd%,,—el(t—Jr)—Zdijsz(t— jT)
1= 1= ’

- Pyw; (t) = Pw, (t —7) + kpsign[Z, (1)]

with k, <0 guarantees the diding mode motion on z, =0
described by 7, (t) =k, z, (t) .

Simulation results.

For this example we selected the following parameters:
a=1, m;=04, 1, =05, 1=0.5, k; =-5, k, =-5. Figures

1 and 2 show responses for the output y, reference w; and
tracking error e=y -y, , respectively. Responses for the
diding variable z, and control input u are depicted in
Figures 3 and 4, respectively.

Fig. 1. The plant output y = X; + X, and reference y,4 =w;.

Control "u"

20

15+

10F

-10f
151

-20
0

05

Time (s)

Fig. 2. Thetrackingerror e=y -y, .
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Fig. 3. The switching function z, .
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Fig. 4. Thecontrol u
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6. Conclusions

In this work the dliding mode regulator problem with delay is
introduced, and conditions for the existence of a solution for a
class of multivariable linear TDS presented in BCD form and
which satisfies a controllability condition on the non delay
part of the TDS, are derived. Based on this form, and using
the block control technique, a discontinuous feedback which
ensures trajectory tracking, is designed. The simulation
results confirm the effectiveness of the proposed method.
Possible extension to the class of TDS for which the
controllability condition may include the delay part aswell, is
object of further research.
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