
SLIDING MODE CONTROL WITH ADAPTIVE FUZZY 
APPROXIMATOR FOR MIMO UNCERTAIN SYSTEMS 

 
N. Manamanni, A. Hamzaoui and N. Essounbouli 

Université de Reims Champagne Ardenne 
Laboratoire d'Automatique et de Micro-électronique 

LAM, Faculté des Sciences - Moulin de la housse BP 1039 51687 Reims Cedex 2. 
Tel : + 33326918386, Fax : + 33326913106, noureddine.manamanni@univ-reims.fr ,  

 
 
 
Keywords: Sliding mode control, fuzzy logic systems, 
uncertain systems, MIMO systems, adaptive control  
 
Abstract 

 
This paper deals with the combination of sliding mode 
control (SMC) and fuzzy logic system (FLS) for a class of 
non-linear multi-input multi-output (MIMO) uncertain 
systems. An adaptive scheme for the fuzzy control is 
developed to approximate the unknown system functions. 
A SMC is then applied to reduce the effects of both 
approximation errors and external disturbances. Thanks to 
Lyapunov’s theory, the stability of the closed loop system 
is demonstrated. Finally, simulation results, concerning 
the case of a MIMO uncertain system with external 
disturbances is considered in order to show the efficiency 
of the combination of the used controllers. 
 
1 Introduction 

 
The tracking trajectory problem, subjected to external 
perturbations, can be solved essentially by an H∞ 
approach or a SMC one. In the case of time variant 
uncertain systems, an adaptive control is required. Hence, 
handling this problem by an H∞ control with fuzzy 
approximation [3,6] consists in synthesizing an adaptation 
law that approximate the system, and then adding a 
control law (deduced from Riccati equation) in view of 
attenuating the effect of both the approximation error and 
external disturbances. A drawback of this kind of 
approach is that it requires the determination of the 
weighting matrix by the designer, our mean by drawback 
here, is to find a trade off between the initial values of the 
control signal and the attenuation level. To avoid this 
drawback, one can choose the method using SMC. 
Obviously, the sliding mode control [19,20,2], and the 
fuzzy logic control [8,18,21] have been widely used and 
already proved their efficiency in modern control theory 
for non-linear dynamic systems. Moreover, the 
combination of sliding mode control (SMC) and fuzzy 
logic control (FLC) has been recently applied for robust 
control of non-linear systems [11,1,15]. This is certainly 
due to the fact that this combination allows to avoid the 
drawbacks of each controller. Indeed, one of the problems 
can be the chattering in SMC, which is quite undesirable 
in some dynamic systems. The other is the difficulty to 

prove the stability of FLC, whereas the stability of SMC 
is inherent. Hence, one can take benefit of the two 
controllers, in one hand, the ability of SMC to decouple 
high dimensional systems and, therefore, reduce the rule 
base size of FLC [19] and in other hand, the benefit of a 
FLC to approximate the uncertain and perturbed model 
[11,1] and also, the robust property given by the two 
controllers. It’s known that in general, there is a direct 
trade-off between chattering and robustness. 
In the other hand, these two controllers are very similar 
and complementary [16]. They both use rules, logic rules 
for FLC and decision rules for the SMC. Note that, for the 
SMC, the rule called switching function uses the state 
measure as an input to produce as an output the 
implemented feedback control. 
In [23] Wong used this combination by adding a PI 
controller, which uses a FLC to eliminate the steady state 
error. Lin and Chen [10] use Genetic algorithms to mix 
the SMC and FLC in order to reduce chattering in the 
system. In Ha et al [4,5], a combination of the two 
controllers for a linearised system [4] and a class of non 
linear system [5] is considered. The system robustness is 
improved by reducing the influence of unmodelled 
uncertainties and fuzzy tuning is used to move the sliding 
surfaces. Other works [9,24] have also dealt with the 
concept of combination of SMC using adaptive law for 
the FLS. These applications consider simple-input simple-
output (SISO) systems, or decoupled MIMO systems [9]. 
This paper deals with a class of uncertain non-linear 
MIMO systems whose accurate mathematical model is 
difficult to formulate or not available and where external 
disturbances are considered.  
The contribution of this work is to use the combination of 
SMC and adaptive FLC for a particular class of systems, 
the non decoupled MIMO systems. Hence, one uses, in 
one hand, the robustness of the SMC, and in the other 
hand the “intelligence” of the FLC. This method is 
particularly attractive for non-linear systems since it can 
result in many cases in invariant control systems, i.e. 
systems completely insensitive to parametric uncertainties 
and external disturbances. Thus, this approach improves 
the tracking performance in the sense that the FLC 
approximates as closely as possible the model plant and 
the SMC attenuates the effect due to both the 
approximation error and the external disturbances. 
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2 Tracking by Sliding Mode control 
 
Let us consider a MIMO plant described by the following 
state equations:  
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Where and are supposed to be unknown 
(uncertain) but with a limited bound, u  are the 
inputs,  are the outputs of the system, x is the state 
vector, which is assumed to be available for measurement 
and  represents the unknown but bounded and 
smooth external disturbances (load, white noise….). In 
order for the system to be controllable, we require that 
det(G(x)) 0 for x in the operational field of the system. 
Thus, the above n-degree system is in the normal form.  
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The control objective is to let y track a reference signal yr; 
i.e. in the presence of unknown but bounded 
perturbations, the tracking error, e = y – yr, should be as 
small as possible under the constraints that the closed-
loop system must be globally stable and robust in the 
sense that all variables are uniformly bounded. When the 
system is well known, a sliding mode control can be 
applied. 
The sliding hyperplanes are selected as Hurwitz 
polynomials of the tracking errors of the associated state. 
Thus, the sliding surface s (switching line for second 
order system) is defined in the state space as: 

0)t(s =   where   and Λ=[Λ1,Λ2,…Λn-1,1] 
guarantees the stability of the systems dynamics on the 
sliding surface if Λi>0 I=1,..,n-1. 

Λes =

Given the initial condition, the problem of tracking, y=yr 
is equivalent to that of remaining on the surface s(t)=0 for 
all t>0. Then, a sufficient condition of this behavior is to 
satisfy the attractivity condition 0<η−≤ sssT & , where η 
is a positive constant given by the designer [17]. 
A possible choice of the SMC, satisfying the condition 
above, can be given by [17,13,14] which leads to: 
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Where , P is a diagonal positive definite 

matrix and K=diag(ki), with ki >0 . The ki express the 
switching gains which are used to guarantee a sliding 
regime on the switching surface s(t), see [17] for further 
details. These gains (ki) are selected, in the presence of 
perturbations, in order to maintain the attractivity 
condition, so in the wo y [7]:  
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this section, the system is assumed well known and the 

perturbations bounded, so by choosing a Lyapunov 
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 is satisfied. This condition guarantees a 
finite time convergence to the sliding surface. 
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The controller given in (2) will have chattering 
phenomena near the sliding surface due to the sgn 
function involved. This can be avoided [16] by 
introducing a boundary layer with width Φ. Thus 
replacing sgn(s) by sat(s/Φ), gives: 
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Moreover, the system may be subject to parameter 
variations and external disturbances. Consequently the 
control given in (2) may be sensitive to uncertainties 
during the reaching phase, since F and G are not known. 
Therefore, F and G should be approximated, to maintain 
the same structure of the controller. To solve this 
problem, we propose an adaptive scheme using fuzzy 
logic system.  
 
3 Fuzzy adaptive law and stability analysis 
 
3.1 Fuzzy logic system (FLS) 
 
An FLS consists of four parts: the knowledge base, the 
fuzzifier, the fuzzy inference engine manipulating fuzzy 
rules, and the defuzzifier [8]. The knowledge base for the 
FLS comprises a collection of fuzzy IF-THEN rules. The 
fuzzifier maps a real point in the input space 
(measurement of the system’s state) to a fuzzy set. In 
general there are two possible choices of this mapping, 
namely singleton or non-singleton. In this paper we use 
the singleton fuzzifier mapping. The fuzzy inference 
engine performs a mapping from fuzzy sets of the input to 
fuzzy sets in the output space, based on the fuzzy IF-
THEN rules (in the fuzzy rule base) and the compositional 
rule of inference. The defuzzifier maps fuzzy sets in the 
output space to a crisp point in this space; in this study we 
use the center-average defuzzifier mapping [15]. 
The output of a MIMO-FLS with center-average 
defuzzifier, product inference, and singleton fuzzifier are 
of the following form: 
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Where, is the membership function of the input, Iµ p
jy  is 

the point where the memberships function of the output 
y=(y1, y2,…,ym) achieves its maximum value, which is 
assumed to be 1, M is the number of fuzzy rules, and n 
and m are the dimensions of the input x = (x1, x2,…,xn) and 
the output vectors, respectively. This FLS can be viewed 



as a kind of neural network [7] with only three layers as 
shown in Figure 1. 
If the  terms are fixed and the )x(µ iI

py terms are viewed 
as adjustable parameters, thus, a MIMO-FLS can be 
rewritten as: 

ΘTξ(x)y =             (5) 
where,  is a parameter vector, and ξ(x) the regressive 
matrix ξ(x)=(ξ1(x),…,ξM(x)) , which the pth component of 
the ith regressive vector is given by:  

Θ

∑ ∏

∏

= =

=



















=
M

1p

n

1i
iip

n

1i
iip

p

)x(

)x(
)x(

µ

µ
ξ          (6) 

This relation provides a justification for applying the FLS 
to almost any non-linear modeling problem. It also 
provides an explanation for the practical success of the 
FLS in engineering applications. 
Based on the universal approximator theorem, this 
adaptive FLS can approximate any continuous function 
over a compact set to an arbitrary accuracy as 
demonstrated in [21]. Although y(x) is a non-linear 
function of x, it is linear in its parameter Θ  Therefore, 
the adaptive fuzzy logic system is relatively easier to 
construct and to analyze. 
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Figure 1: The structure of a MIMO-FLS. 
 

3.2 Controller synthesis 
 
Now, the system functions (F and G) are unknown. 
Hence, in order to maintain the same control law as 
presented in equation (2), the unknown functions should 
be substituted by their fuzzy approximations )Θx(F̂ f  

and )  respectively. Where Θ , and Θ  are the 
parameter’s vector and matrix respectively of the fuzzy 
logic systems approximating F and G respectively. Thus, 
the control can be given by: 
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It is known that this control law satisfies the attractivity 
condition 0<η−≤ sssT &  and yields a desirable s 
dynamics in the presence of uncertainties and 
perturbations if the following form is used: 
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after some straightforward manipulations we obtain the 
dynamic error equation in the matrix form: 

( ) ( ) ( ) WuΘxξΘxξsKsgnPss g
T

f
T +++−Ω−−=

~~
&

~
 (9) 

where, , and  is the optimal parameter [21], 
and, 
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is the sum of the external disturbances and the error due to 
the fuzzy approximation of F(x) and G(x). We note that 
the optimal values are only used for the mathematical 
tools, and are not needed for control implementation. 
The adaptive FLS depicted in Figure 2 can approximate 
these functions as closely as possible. 
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Figure 2: Adaptive fuzzy controller achieving SMC 

tracking. 
 
3.3 Adaptation law and stability analysis 
 
The control law generated must insure not only the 
convergence toward zero of the tracking error, but also the 
boundedness of all the involved variables of the closed-
loop system. Let’s choose the following Lyapunov 
function: 

)θ~θ~(tr
γ2
1θ~θ~

γ2
1ss

2
1V g

T
g

2
f

T
f

1

T ++=  

where 1γ and 2γ  are the learning parameters, and tr(.) is 
the trace of the function (.). 
The derivative of the Lyapunov equation yields to: 
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Then, substituting equation (9) and since θ  is constant, 

one can write , leading to:  
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which can be written as,  
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In order to ensure the system stability, the following 
adaptation laws are considered: 
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So, since, the function F and G, and the external 
disturbances are assumed to have well-known bounds, and 
in order to satisfy the sliding condition, one can choose 

η+≥ w)ikmin( , which implies that V  [7]. Hence, 
we can deduce that the system remains stable and that the 
tracking error converges to zero in a finite time. 
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4 Results 
 
The proposed method is applied for the position tracking 
control of a two-link robot manipulator driven by DC 
motors. We will show that the proposed control law can 
enhance the performance of tracking. 
The system parameters are as follows: link masses m1 = 5 
kg, m2= 2.5 kg, lengths l1 = 0.5 m, l2 = 0.5 m. The 
dynamic model is described by the following equation: 
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where,  are the angular position, velocity, and 
acceleration vectors respectively. 

q,qq, &&&

)q(M'  is the inertia matrix, which is symmetric positive 
definite and its inverse exists. The matrix  
is skew, and the dynamic structure is linear in terms of 
suitable selected set of robot and load parameters. 
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where: s1 = sin(q1); s2 = sin(q2); c1=cos(q1); c2 = cos(q2). 
)qq,(C &  is the vector of the centripetal and Coriolis forces: 
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Gr(q) is the vector of gravitational force: 
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d ′ ∈R2 represents the structural and unstructural 
disturbances, and Γ(q) is the vector of torque developed at 
the joint side of the gearbox. 
The relation between the joint position q and the motor-
shaft position qm is given by qm =N q, where N is the 2×2 
diagonal positive matrix of the gear ratios for the two 
joints. 
The electrical equation of a DC motor can be written as: 
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Furthermore, 
Γ(q)=NKtI             (16) 

Substituting (16) into (15) we obtain: 
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Substituting (11) into (17) after some rearrangements we 
obtain: 
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state vector, equation (18) can be written as: 
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This equation (20), which represents typical dynamics of 
a non-linear system, is similar to (1).  
Our objective now is to determine a control U to obtain a 
tracking error dqqe −= as small as possible, where  is 
the desired trajectory to be followed by the robot 
manipulator. Next, The designed procedure is applied to 
this plant. 

dq

In order to approximate the system, the inputs of the 
correspondent fuzzy system are first defined and then, 
their fuzzy sets. Seven gaussian membership functions are 
defined as follows: 
µ1(x1)=1/(1+exp(15 (x1+1.6))); µ2(x1)=exp(-2.5(x1+1.3)2) 
µ3(x1)=exp(-2.5(x1+0.65)2); µ4(x1)=exp(-2.5 ( x1)2); 
µ5(x1)=exp(-2.5(x1-.65)2); µ6(x1)=exp(-2.5 (x1-1.3)2); 
µ7(x1)=1/(1+exp(-15(x1-1.6))). 
To adjust the parameters, we choose: γ1=10 and γ2=0.01. 
The external disturbances are chosen in the following 
form: d(t)=0.1sin(2t). Initially the robot is supposed in 
rest, at the two link positions, q1=π/4 and q2=π/4.  The 
initial positions are chosen so far to prove the efficiency 
of the approach. 
The results of simulation of the two links robot using the 
control law (7) will be presented to illustrate the 
performances of the combination of the SMC and the FLS 
used as approximator for a MIMO uncertain system. 
Results using the sign function in the control law are 
presented in figures 3 and 4. Figure 3 (a) and (b) illustrate 
the simulated and the desired trajectory for the two links 
and their tracking errors (c) and (d) respectively. The 
obtained steady state error is more less than with the one 
given by the control law (2); this is foreseeable since the 
FLS acts mainly on the structural uncertainties. Despite 
external disturbances, the system remains stable and 
robust with a good time response and a weak-tracking 
error. Nevertheless, the chattering phenomenon persists 
(figure 4), it results in low control accuracy and high heat 
loss in electrical power circuits is inevitable. It may also 
excite unmodelled high frequency dynamics, which 
degrades the performances of the system and may even 
lead to instability. The phase plane depicted in figure 4 
((a) and (b)) gives the convergence of the system but 
unfortunately shows also the induced chattering. In order 



to avoid this undesirable phenomenon, the function sat is 
used instead of the sign function and the control law 
becomes 

[ ])Ksat(sPsy)Θx(F)Θx(Gu (n)
rfg

1 φΩ /ˆˆ −−−+−= − . 
Figure 5 and 6 depict the system’s states behavior during 
the tracking and their correspondent errors. In this case, 
the velocities and accelerations signals are smooth and 
their errors converge towards zero. These results reveal 
the robustness of the implemented controllers and the 
efficiency of the combination of SMC and FLS. Figure 7 
(a) and (b) show the acceleration errors, their great values 
at the beginning are due to the initial chosen positions. 
Figure 7 (c) depicts the desired and the obtained phase 
plane of all the states (position, velocity and acceleration), 
we see that the proposed control scheme results in 
satisfactory tracking performances. Figure 7 (d) illustrates 
the quadratic integral error, it constant value during the 
steady state implies that all the variables involved are 
bounded. The chattering has been greatly attenuated as 
shown in figure 8 (a) and (b), and the applied voltage 
depicted in figure 8 (c) and (d) shows a smooth behavior 
for the signal during the steady state however in the 
transient time the solicitations are more important.  
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Figure 3: Simulated and desired angular position for the 

first link (a) the second link (b) and their 
respective tracking errors (c) and (d) when 
using sign function. 
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Figure 4: The phase plan (a), (b) and the applied voltage 
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Figure 5: Simulated and desired angular position for the 

first link (a) the second link (b) and their 
respective tracking errors (c) and (d) when 
using sat function. 
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Figure 6: Simulated and desired angular velocities (a), (b) 

and their tracking errors (c) and (d) when using 
sat function 
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Figure 7: Accelerations errors for each robot axe (a) and 

(b), the simulated and desired phase plan of 
all the state vector (c) and quadratic integral 
error (d) 
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Figure 8: The phase planes (a), (b) and the applied 

voltage using sat function(c), (d). 
 

5 Conclusion 
 

In this paper, a combination of sliding mode control and 
fuzzy logic systems for the tracking trajectory problem is 
proposed. This approach is applied for a class of non-
linear MIMO systems involving plant uncertainties and 
external disturbances. The tracking performances are 
greatly improved by the use of both the SMC and FLS. 
Indeed, the FLS approximates as closely as possible the 
model plant and the SMC attenuates the effect due to both 
the approximation error and the external disturbances. In 
this paper replacing the sign function by a sat one has 
reduced the chattering phenomenon. However, in this 
case, the boundary layer width (Φ) is chosen with a trade 
off between robustness and high control signal variation. 
To improve this choice, the authors intend, in their future 
work to use a fuzzy adaptation law for the chosen sliding 
surface. 
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