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Abstract

Sliding mode control synthesis is developed for a class of non-
linear time-delay systems. The corresponding free-delay sys-
tem is assumed to be controllable whereas no stability assump-
tions are imposed on the open-loop system. The synthesis is
based on a new delay-dependent stability criterion. The con-
troller constructed proves to be robust against sufficiently small
delay variations and external disturbances. An admissible up-
perbound such that the corresponding closed-loop system re-
mains globally asymptotically stable for all delay values less
than this upperbound is derived.

1 Introduction

The primary concern of the paper is robust control of uncer-
tain time-delay systems within the framework of sliding mode
control methods.

The sliding mode control paradigm implies the deliberate in-
troduction of so-called sliding motions (i.e., the motions along
a manifold where the control signal undergoes discontinuities)
into the control system and it consists of two steps [19]. First, a
manifold, such that if confined to this manifold the system has
desired dynamic properties, is designed. Second, a discontin-
uous control law, which drives the system to this manifold in
finite time, is synthesized.

The sliding mode control strategy is to construct a feedback
that guarantees a Lyapunov function, selected for a nominal
system, to remain negative on the trajectories of the perturbed
system. The controller, thus constructed, asymptotically sta-
bilizes the system and since the motion along the manifold
proves to be uncorrupted by matched disturbances, the closed-
loop system is additionally guaranteed to have strong robust-
ness properties against matched disturbances. Due to these ad-
vantages and simplicity of implementation, sliding mode con-
trollers have widely been used in various applications [20].

Motivated by technological advances, the interest recently
emerged in extending the sliding mode control approach to
infinite-dimensional dynamic systems such as distributed pa-
rameter systems and time-delay systems. The earlier works
[15, 23] on extensions of sliding mode control algorithms to
infinite-dimensional systems ran into a major difficulty, caused
by the presence of an unbounded infinitesimal operator in the
plant equation, and called for further theoretical investigations.

Presently, the sliding mode control synthesis in the infinite-
dimensional setting is well documented [10, 11, 13, 14]. This
synthesis retains robustness features, similar to those possessed
by its counterpart in the finite-dimensional case, and being
complementary to the H,-design, it constitutes a more prac-
tical approach to infinite-dimensional systems than the ones of
high computational complexity outlined in [2, 3, 5, 8].

The existing results [4, 6, 7, 16, 21] on application of slid-
ing mode control algorithms to time-delay systems, governed
by functional differential equations (FDE), have corroborated
their utility for this class of systems as well. However, these
results, being inherited from the finite-dimensional treatment,
contained no arguments supporting the well-posedness of FDE
solutions to substantiate the stability analysis. Even the solu-
tion concept for discontinuous time-delay systems has not yet
been addressed. This fundamental issue on the precise mean-
ing of FDE with discontinuous right-hand side is resolved in
the present paper, and substantial stability analysis and sliding
mode control synthesis are subsequently developed for time-
delay systems.

The outline of the paper is as follows. Plant description and
formal problem statement appear in Section 2. After giving
background materials on discontinuous time-delay systems in
Section 3, Section 4 presents a new delay-dependent stability
criterion for a class of nonlinear time-delay systems. Based on
this criterion, in Section 5 we synthesize a sliding mode con-
troller which asymptotically stabilizes the system for any value
of the delay less than an upperbound obtained via solving a
convex optimization problem. Finally, Section 6 presents some
conclusions.

1.1 Notation

The matrix inequality M > 0 (M < 0) means that M is posi-
tive (respectively, negative) definite; I denotes the identity ma-
trix of an appropriate dimension. The vector norm ||e|| stands
for the Euclidean norm of a vector e whereas the matrix norm

[[M]|| = sup |[Me]| stands for the induced norm of a matrix
llefl=1

M; L%[—7,0] denotes the Hilbert space of square integrable

(n)-vector functions defined on the segment [—7, 0].



2 Problem statement

In this paper, we focus on time-delay systems that are repre-
sentable by means of a nonlinear change of state coordinates
and a feedback transformation, in the form

dz (t) _ Z (Allzz( ) + Bz (t — T))
dt
+P1(t 21(t)) + p2(t, 21 (¢ — 7)),
dz(t)
o = E (A2izi(t) + Baizi(t — 7)) + u + f(t, 20),
i=1
z(t) = ¢(¢) fort € [—-7,0].
ey

Hereinafter, 2(t) = (21, 22)7 is the state vector with compo-
nents z; € R™ 2, € R", A;;,B;; 4,57 = 1,2 are constant

matrices of corresponding dimensions, v € R” is the input
vector; p1,p2 € R™ and f € R” are external disturbances, ¢
is the initial piecewise continuous function defined on [—7, 0],
z¢(9) is the function associated with z and defined on [—7, 0] by
z(0) = z(t + 0). Since the delay value 7 is typically unknown
a priori, in the sequel we shall also use the notation z; ., (6)
for the function 2, ;.. (8) = z(¢ + #) defined on some larger
interval [—Tpqz, 0] With Tyaq > 7.

:(All Au)
A21 A22
o Pi . 0
PZ_<0>7Z_17a (I

system (1) can be simplified to

Setting

A
S

11 Blz >
21 B22

e (t)

2(t) = Aoz(t)+Boz(t)+Cu+Pi(t, 2(t))+Pa(t, 20)+F (¢, 21).

3

Although our investigation is confined to time-delay systems
with delayed states, however, the extension to the case of de-
layed inputs is straightforward. Indeed, let a system with an
input delay be governed by

#(t) = Az(t) + Bx(t —7) + Du(t —7), t >0
:L‘(t) = '¢1 (t)a te [_T> 0] ’ C))
u(t) = d)?(t)a te [_7_7 0]

where z € R"; A, B are constant n X n matrices, D is a
n X m matrix, u € R™ is the input vector, 11 and 1), are piece-
wise continuous functions. Then, an additional input integrator
transforms the system into the above form

dz;_t(t) =Az(t)+ Bz1(t — 7) + Dzo(t — 7),
darlt) _ )
a

with the control input v € R™.

Throughout the paper, the following assumptions are made for
technical reasons:

A1) pi(t, 2(t)) and pa(t, z(t—7)) are Lipschitz continuous and
satisfy the linear growth conditions ||p; (¢, z(¢))|| < aq ||z(2)]],

[lp2(t, z(t — 7))|| < aal|z(t — 7)|| with some positive con-
stants av, aia.

A2) f is Lipschitz continuous and it is bounded || f (%, z¢)|| <
U(t, 2t,r,,..,) by a continuous functional ¥(t, 2 ... ), known
a priori.

A3) (All + Bi1, Ais + Blg) is controllable.

Assumptions Al and A2, coupled together, guarantee the well-
posedness of the unforced FDE (1) with v = 0. Apart from
this, Assumption A2 allows us to reject the uncertain distur-
bance f by a bounded-gain feedback. Assumption A3 is in-
duced by the controllability of the delay-free system (1) and, in
addition, it ensures that time-delay systems of the form (1) are
stabilizable for all 7 < 7,4, With some positive, sufficiently
small 7p,4.

The goal of the present investigation is to construct a stabilizing
sliding mode controller of (1) that makes the value of 7,,,, as
large as possible.

3 Background materials on discontinuous time-
delay systems

Since the closed-loop system, driven by a sliding mode con-
troller, is governed by a FDE with discontinuous right-hand
side, the precise meaning of such an equation should first be
defined. For this purpose, let us represent the time-delay sys-
tem (3) as a dynamic system

9

’ = A +Cu+Pi(t, u(t)) +Pa(t,v(—

T))_l_]:(tﬂ/t) (6)
evolving in the Hilbert space M3 = R"" x LI [—r,0]
where the state vector ¢; = (u(t),v4(-))7 at a time moment ¢
consists of the components u(t) = z(t) € R* and v4(6) =
2(0) € LY"[—7,0], and the linear operators A : D(A) C
M3 — MYt C : R" — MJ"" and nonlinear operators
Pi: R — M =1,2 F : MJ — Myt are given

by
Aol )= (75 ).

(§)7=(5) () @

Apparently, C is a bounded operator on R” whereas the non-
linear operators P;, ¢ = 1,2 and F are Lipschitz continuous
on their domains due to Assumptions Al and A2. In turn, it
is well-known [3], that the infinitesimal operator 4 generates a
(strongly continuous) Cy-semigroup on M. ;J” and its domain
T e %€ L3,0]

D) = {o = (uw e aapre: AT TON

is dense in Mt

Thus, solutions of the Hilbert space-valued dynamic system (6)
with discontinuous right-hand side can rigorously be defined in



the sense of [14]. For convenience of the reader, we recall the
basic idea of that definition.

Let the control input u(¢) undergo discontinuities on some lin-
ear manifold G{ = 0 in the state space and let u({) be con-
tinuously differentiable beyond this manifold. Then trajecto-
ries of (6) are well-defined in the conventional sense when-
ever they are beyond the discontinuity manifold whereas in a
vicinity of this manifold the original system is replaced by a
related system, whose solutions also exist in the conventional
sense. A motion along the discontinuity manifold, if any, is
then obtained by making the characteristics of the new system
approach those of the original one. Such a motion is further
referred to as a sliding mode that has become standard in the
literature.

It is worth noting that given an initial condition (4 =
(#(0), $(-)) € M7, the Cauchy problem, thus stated for sys-
tem (6) with the assumptions above, proves to be well-posed
whenever the operator GC is continuously invertible. Just in
case, the sliding motion of the system on the discontinuity
manifold is governed by the so-called sliding mode equation
derived through the equivalent control method.

The extension of the equivalent control method to infinite-
dimensional systems has been made in [13, 14]. According
to this method, the sliding mode equation is obtained by sub-
stituting the solution

Ueq = —[GCTT GLAG +Pu(t, () + Pa(t, v(=7)) + F(t, )]

of the equation Qé = 0 into (6) for u.

The sliding mode equation plays an important role in the subse-
quent stability analysis of the discontinuous time delay system
in question. Since this equation contains no discontinuities in
the right-hand side, its stability is established via standard tech-
niques.

4 Delay-dependent stability criterion

For later use, we derive delay-dependent stability conditions
for the time-delay system

dz(t)
dt

= Ax(t) + Bx(t — 1) + p1(t,z(t)) + p2(t, z(t — 7))
z € R, z(t) = ((t) fort € [-7,0]
®

with a piece-wise continuous initial function {(¢), some con-
stant matrices A, B, and the same nonlinearities as before. Our
objective is to find an upperbound 7,,,,, of admissible delay
values 7 such that the above system, while being asymptoti-
cally stable with 7 = 0, is so for all delays 0 < 7 < 7,45 This
upperbound 7,,,,, relates to a positive solution of the following

optimization problem

Tinaz = SUDT
subject to the constraints
H(r) P P TPB TPB TPBA tPB2
P —y1l 0 0 0 0 0
P 0 —voI 0 0 0 0
+BT P 0 0 —~g7I 0 0 0 <0
BT p 0 0 0 —ygrl 0 0
+ATBTp 0 0 0 0 —TRy 0
+B2T p 0 0 0 0 0 —TRo
9

over all positive constants v;, ¢ = 1,2,3,4 and sym-
metric positive definite matrices P, Ry, Rs € R"™*", and
H(r) = (E"P + PE) + (miaf + 1a3)l) + 7(y;af +
y403)I + TRy + TRy, with E = A + B.

Theorem 1 Let the matrix E = A + B be Hurwitz. For
ay,as > 0 sufficiently small, the above optimization problem
has a positive solution T,,q. and system (8) is globally asymp-
totically stable for each delay value T € [0, Timaz )-

Proof. Consider the following Lyapunov-Krasovskii func-
tional V' (z¢) = Vi (2¢) + Va(ze) + Va(z) with
Vi(ze) = 27 (t) P2 (1)

2T (w)(Ry 4 402 1,)z(w)dwds

¢
Va(z) = ’ygag/ 2T (w)z(w)dwds
t—1

with P, Ry, Rs symmetric positive definite matrices, and pos-
itive v;,4 = 1,2,3,4. The functional V(z;) is positive
definite and radially unbounded. Noting that z(t — 7) =
- ft 0)dé + z(t), we can rewrite the system in the form

dz( )

B)z(t) + P(t)
—Bft TAzw z(w — 1) + P(w)dw
P(t) = pi(t, 2(t) + pa2(t, 2(t — 7).

=(A+
)+ B

Let us now calculate the derivative of V'(z;) along the trajecto-
ries of the system (8):

Vi =27 (E"P + PE)z + 22" Pp, + 2" Pp,
¢ t
-2:TPBA z(w)dw — 227 PB? / z2(w — 7)dw
t—r1 t—T1
t t
p1(w, z(w))dw — 22T PB

t—1

-2:TPB p2(w, z(w

t—r1
Vy = TZT(R1 + ’73&%_[)2 + TZT(R2 + 'y4a§I)z

- / T (w) (Ry + 302 )z (w)dw

- /t 2T (w — 7)(Ry 4+ ma)z(w — 7)dw,

Vs = maiz’ (1)2(t) — a3z’ (t = 1)z(t = 7). (10)

- 7))



Due to the well-known inequality 2u”’v < ou”Ru +
a T Ry, valid for any vectors u,v € R", symmetric pos-
itive definite matrix R € R™*™ and positive constant «, the
following six inequalities are in force:

227 Ppy < 27 (3, P+ matl)z,

2:TPpy < 752 TP2z +y002z(t —7)T2(t — 1),
—22TPBAft w)dw <

TZTZ12’+ft L2 )Rlz( Ydw,

-2:TPB? j;_T —7)dw <

21 Zs2 + ftt (w = 7)Raz(w — 7)dw,
—2zTPBft p1(w, z(w ))dw <

75 2T Zs2 + 303 ft 2T (w)z(w)dw
—-22TPB ftt_sz (w, z(w — h))dw <
Ty, 2T Z32 + a0l ftiT 2T (w - 1)z(w — 7)dw

with I identity matrix, Z, = PBAR;'ATBTP, 7Z, =
PB?R;'B*"P, Zs = PBBTP,~; > 0,i =1,2,3,4. Now
it follows from (10) that the inequality

V(zt) < ZTM(T)Z
holds for

M(r) = (ETP +PE) + (v +7 )P? + 7(B1 + Ra)+
(v1a} +7203 +1y303 + TY403) [+TPBAR ' AT BT P+
TPB*R;,'B*"P + 7' PBBTP + 77, ' PBBTP.

The matrix E is Hurwitz and hence M (0) = (ET P + PE) +
(vt +75 ) P? + (1103 +7203) 1 is negative definite if P is a
symmetric positive definite solution P of the Lyapunov equa-
tion ET P + PE = —I and positive constants ; , v, are suf-
ficiently small. By continuity M (7) remains negative definite
for sufficiently small positive 7. Since by Schur’s lemma [1],
M (7) < 0if and only if inequality (4) holds, it follows that the
afore-given optimization problem has a positive solution 7y, ax-
Thus, the matrix M (7) is negative definite for all 7 € [0, Tmax)
and system (8) is therefore globally asymptotically stable for
all delays 0 < 7 < Tynqz. Theorem 1 is proven. m

Remark 2 The inequality (4) is a linear matrix inequality in
P, Ry, Ro, v1,72,Y3,74 and can efficiently be solved by convex
optimization algorithms (see [1]).

Example 3 (Comparison with other criteria)
Let system (8) be specified by

-2 0 -1 0
(0 )= (5
and let p; and py be such that ||p1|| < 0.2|z1||and ||p2|] <
0.2|z1(t — 7)||. Using Theorem 1, we find Tya, = 0.623
whereas the largest upperbound of time-delay available in the
literature ( see [12, 17, 18]) is Tar = 0.4428. It should also
be noted that the delay independent criterion [22] cannot pro-

vide any conclusion. Thus, the example shows that the pro-
posed criterion makes a step beyond the existing results.

(In

5 Sliding mode state feedback controller

The following state feedback control law

S
~[Q0(t, 2t,r0.) + U (2, 20) + gllsl] 7

g>0,e€[0,1) (12)

is proposed to drive the uncertain time-delay system (1) to a
linear manifold s(z) = 0 with

s(z) =20+ K= (13)

in finite time thereby globally asymptotically stabilizing the
system for each 7 € [0, Tynq. ). Hereinafter,

Z[Aglzz (t)+B2iZi (t—T)—FK(AuZi (t)—FBMZi (t—T)]

i=1

Q(t, Zt) =

is a linear functional on the trajectories of the controlled system
(1), and
Qo(t, 2t,7m00) = (1, z ()l

sup
0€[—Tmaxz,0]

is its upperbound on a time interval € [—T;;44, 0] whereas
Tmax > 0 and K € R™*™ are subject to the optimization

Tmaz — sup 7™
under the constraints

0 s s 8 1S ~45L(r) ~gL(7)

s ) 0 0 0

s 0o 0 0 0 0 0

s 0o 0 0 0 0 0 1

TS 0o 0 0 0 0 0 + Dlag < 0’
vsL(mT 0 o 0 0 0 o
v6L(mT 0 o 0 0 0

(All — Ang)S < ’}/55
(B11 — Bng)S < ’)/65
S5>0,01>0,0Q2>0,v>0,i= 1,,6}

(14)
with symmetric positive definite matrices S,Q1,Q2 €
R(r=m)x(n=m) " Digg = diag( ( ), = tag I,
—fyz_laz_QIn, —773_1041_2]m —T’)/4_10A ny —TQ1, —7Q2),
L(T) = T(Bll — B12K)S and

J(7) = [(A11 + Bu1) — (A2 + B12) K]S
+S[(A11 + B11) — (A2 + 312)K]T
H T e DB+ (@ + Qa).

It is of interest to note that if system (1) is only affected by
external disturbances f(¢, z;), vanishing in the origin, then an
upperbound ¥(t, 2 ,...), such that ¥(¢,0) = 0 for all ¢, be-
comes available so that the corresponding controller (12) with
a positive parameter ¢ is continuous in the origin with no unde-
sirable effects of switching in the steady state.

It should also be pointed out that the control law (12) appears
to be applicable even if the system delay is unknown a priori.

We are now in a position to state the main result of this section.



Theorem 4 For upperbounds «, as sufficiently small the op-
timization problem (14) has a positive solution T,,., and the
closed-loop system (1), (12) is globally asymptotically stable
for each delay value T € [0, Tyaz)-

Proof. We break up the proof in 3 simple steps. Firstly, we
prove that the discontinuity manifold s(z) = 0 is reached in
finite time, secondly, we derive the state equations along the
manifold s(z) = 0, and thirdly, we prove the asymptotic stabil-
ity of the system motion on this manifold, thereby completing
the proof of Theorem 4.

1) Attractivity of the manifold. Taking into account that the
time derivative of s(z(t)) along the solutions of (1) is given by

5(2(t)) = Qt, ze) +u+ f(t, 2e),
differentiating of the Lyapunov-Krasovskii functional
V(t) = sT(2(t)s(2(t)) (15)

on the trajectories of the closed-loop system under Assump-
tions 1-3 yields

e+1

V(1) = 25T (2(1)3(2(1)) < —2gV (1) F.

(16)

Since an arbitrary solution of the latter inequality is well-
known to vanish after a finite time moment, the finite-time con-
vergence of the trajectories of the closed-loop system to the
discontinuity manifold s(z) = 0 is concluded.

2) Sliding mode equation. In order to describe the system mo-
tion on the discontinuity manifold s(z) = 0 one should fol-
low the extension [13] of the equivalent control method [19] to
infinite-dimensional systems driven in a Hilbert space. Accord-
ing to this method, the continuous solution u., = [2(¢,2) +
f(t,z)] of the equation § = 0 is substituted into (1) for u.
Thus, on the discontinuity manifold, the system is governed by
the differential equation

dz (t
% = (All — A12K)21 (t) + (B11 - BlQK)Zl (t — 7')
-I-pl(t,Zl(t)) +p2(t,zl(t—7)). (17)
3) Asymptotic stability of the reduced system. Since
system (1) is controllable by assumption, the matrix

FE = (All — Ang) + (Bll — Bng) is Hurwitz by a
proper choice of the matrix K. Then applying Theorem 1 to
system (17), we obtain that the optimization problem (14) has
a positive solution 7,4, and the sliding mode system (17) is
asymptotically stable if and only if

(SET + ES) + (7' + 75 ) In_r + 7(SR1S + SR»S)
+(1103 + 7203 + Ty303 + T1403)S? + TBART AT BT
+7B2R;'B*T + (175t + 7y, )BBT < 0.

(18)
Under constraints
Q1 =SRS5S, A11S — ApKS < 755,
Q2= SRS, B11S — B12KS < %S (19)

with some positive s, 6, inequality M (1) < 0 implies that

(SET+ES)+ (vi' + 7% D +7(v5 " + 75 )98 In—m
+7(Q1 + Q2) + (maj + 1203 + 7307 + T1a03)S?
+727(B11S — B1aW)Q7*(B11S — BioW)T
+’)’627'(B115 — BuW)Q;l(BHS — B12W)T < 0.

(20

By Schur’s lemma [1], (20) is equivalent to (14), thereby con-
cluding the global asymptotic stability of the sliding mode
equation (17) for each delay value 7 € [0, Typqe). Theorem
4 is thus completely proven. m

Remark 5 While v; > 0,1 = 1,...,6 being fixed, (14) is a
generalized eigenvalue problem which can efficiently be solved
by convex optimization. A suboptimal upperbound Ty, ax is thus
found by relaxation type algorithms.

Example 6 Consider system (1) with

2 0 1
An = ( 14 025 ) iz = ( 0.8

)7101:102:07
0 -1 0
Bz = ( 0.2 ) »Bu = ( —-0.1 025 ) ’
A21:(—1 0),A22:1,B21:(—0.2 4),

B22 = 5,D = 1,f = sin(zl(t - T)) and
zl(t):( N

05 ) ,22(t) =3 fort € [—,0]. 2n
The sliding surface is defined by (13) and K = (1.317, 3.979).

Constant gain : By using semi definite programming, system
(21) with control (12) and ¢ = 0 is asymptotically stable for
any delays 7 € [0,0.63]. The simulation provided in Fig 1 is
obtained with a 5t order integration scheme of step 10~2.

Nonlinear gain : By using a nonlinear gain, we can drastically
reduce the chattering phenomenon : the amplitudes of the os-
cillations are reduced from 2 to 0.02 on the simulation provided
in Fig. 2 without apparent changes in the convergence speed.

6 Conclusion

Discontinuous time-delay control systems are under study. The
system behavior on the manifold where the controller under-
goes discontinuities is shown to be governed by the equation
obtained through the equivalent control method extended to
Hilbert space-valued dynamic systems. Based on this observa-
tion, sliding mode control synthesis, robust against sufficiently
small delay variations and external disturbances, is developed
for a class of uncertain nonlinear time-delay systems. The syn-
thesis consists of two steps. First, a manifold, such that if con-
fined to this manifold the time delay system has desired dy-
namic properties, is designed. Second, a discontinuous control
law, which drives the system to this manifold in finite time, is
synthesized. An admissible upperbound such that the corre-
sponding closed-loop system remains globally asymptotically
stable for all delay values less than this upperbound is derived.



Figure 1: Response of (21) with control (12) , h = 0.63, m =
1.1,ande = 3.
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