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Abstract

A 2-sliding algorithm to stabilise a class of nonlinear systems
of relative degree two with respect to the input is presented. It
does not require the output derivative to be measured or ob-
served.

1 Introduction

Sliding Mode Control (SMC) is known to be a robust control
method that is appropriate for controlling uncertain systems.
High robustness is maintained against various kinds of uncer-
tainties such as external disturbances and measurement error
[4, 12]. It is also straightforward to implement the resulting
algorithms.

In traditional sliding mode control, or first order sliding mode
(1-sliding mode, 1-SM) controller design, the sliding variable
is selected such that it has relative degree one with respect to
the control. The control acts on the first derivative (with respect
to time) of the sliding variable (ṡ) to keep the system trajecto-
ries in the sliding set s = 0. Essentially, the discontinuous
control signal acts on the first derivative of s. This condition
will of course limit the choice of sliding variable.

The notion of 1-SM control has recently been extended and the
concept of higher order sliding modes (HOSM) [5, 11] as the
generalisation of first order sliding modes (FOSM) has been
developed. In HOSM control, the control acts on higher deriva-
tives of the sliding variable. For example, the case of second
order sliding modes (2-SM) corresponds to the control acting
on the second derivative of the sliding variable, namely s̈, and
the sliding set is defined as s = ṡ = 0. It is readily seen
that such a HOSM control provides a natural means to avoid
the chattering of the control signal in 1-SM control. Several
such 2-sliding algorithms have been presented in the literature
[1, 2, 7]. Levant [7] presented 2-sliding algorithms to stabilise
second order uncertain nonlinear systems but these use knowl-
edge of the output-derivative, ṡ, to implement so called twist-
ing or drift algorithms [9, 10]. Bartolini et al. [3] presented
an optimised version of the twisting algorithm. However, this
requires at least knowledge of the sign of the output-derivative
which is implemented by incorporating a memory element into

the controller.

The super twisting algorithm [6], however, does not require this
output derivative to be measured but it has been originally de-
veloped and analysed for systems with relative degree one with
respect to the input. A robust exact finite-time-convergent dif-
ferentiator is proposed in [9] which is based on this controller.
An arbitrary-order sliding differentiator with similar features
was developed in [8]. Using such a differentiator, an output
feedback 2-sliding controller is shown to be effective for sys-
tems with relative degree 2. An alternative output feedback
2-sliding controller for relative degree 2 systems is proposed
in this paper. This new controller does not include any explicit
differentiator. This simplification yields higher robustness with
respect to input noise.

Section 2 provides a statement of the original super twisting
algorithm. The behaviour of this super twisting algorithm in
the presence of unmodelled dynamics is addressed in Section 3.
The new algorithm is proposed in Section 4 and comments on
its stability are presented in Section 5.

2 Super Twisting Algorithm

The super twisting algorithm [6] has been developed and anal-
ysed for systems with relative degree one with respect to the
input as in (1)

ṡ = φ(s, t) + γ(s, t)u (1)

where, 0 < |φ(·)| ≤ Φ and 0 < Γm ≤ γ(·) ≤ ΓM . The
super twisting algorithm defines the control law, u(t), as the
combination of two terms.

u(t) = u1(t) + u2(t)

u̇1 =

{

−u, |u| > 1
−W sign(s), |u| ≤ 1

u2 =

{

−λ|s0|
ρsign(s), |s| > s0

−λ|s|ρsign(s), |s| ≤ s0


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

(2)

where, |s| < s0. The trajectories of the algorithm ‘twist’
around the origin in the phase portrait of the sliding variable.
The super twisting algorithm converges in finite time and the
corresponding sufficient conditions for finite time convergence
are:

W >
Φ

Γm

> 0; λ2 ≥
4ΦΓM (W + Φ)

Γ3
m(W − Φ)

0 < ρ ≤ 0.5







(3)



For ρ = 1, this algorithm converges to the origin exponentially.

3 Unmodelled dynamics

Consider a first order system to be controlled

ẋ = φ(x) + Γ(x)v + d(t)

with an actuator having first order dynamics

v̇ = γ(v) + η(v)u

where d(t) represents a bounded external disturbance. The
complete dynamics of the system with actuator can be written
as

ẍ =

(

∂φ

∂x
+

∂Γ

∂x
v

)

(φ + Γv + d(t)) + ḋ(t) + Γγ + ηΓu

which may be represented by a second order SISO system of
the following type

ẋ1 = x2

ẋ2 = f(x1, x2, t) + g(x1, x2, t)u (4)
y = x1

where 0 ≤ |f(·)| ≤ F and 0 < Gmin ≤ g(·) ≤ Gmax are
uncertain, bounded functions. The time derivative of f and g,
namely ḟ and ġ, are also bounded.

This type of system appears naturally due to the presence of
actuator or sensor dynamics [13]. It is required to stabilize the
output y of this system using a sliding mode control with the
condition that neither measured nor observed x2 is available
to the controller. The system output y can be considered as a
suitable sliding variable s.

It has been noticed that the algorithm (2) is not robust against
such unmodelled dynamics. A simple example is simulated
here to support this claim. Three cases for the term f(x, t) in
equation (4) are considered:

• f(x, t) = 0. The system model becomes similar to that of
a double integrator.

• f(x, t) = 2. The system has constant matched uncer-
tainty.

• f(x, t) = 2 sin(t). The system has variable but bounded
and matched uncertainty.

The controller (2) with parameters λ = 7, W = 3, k = 1
and ρ = 0.5 is used to simulate the system with an integration
step size of 0.1 millisecond. The simulation results show the
existence of a limit cycle. The limit cycle is due to the increased
system order due to the unmodelled dynamics.
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Figure 1: Limit cycle for f(x, t) = 0
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Figure 2: Limit cycle for f(x, t) = 2
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Figure 3: Limit cycle for f(x, t) = 2 sin(t)

The simulation results show limit cycle behaviour for all three
cases in Figures 1, 2 and 3. It has been noticed that if ρ in (2)
is reduced to 0 rather than the recommended value of 0.5, the
modified algorithm may be successfully applied to systems of
type (4). The results of this modification are presented in this
paper.

4 The modified algorithm

The modified algorithm is defined by the following control law
with respect to systems of type (4). The phase plot of the algo-
rithm is shown in Figure 14.

u(t) = −λ sign(y) + u1(t)

u̇1 =

{

−k u, |u| > u0

−W sign(y), otherwise.











(5)

where λ,W, k, u0 > 0 are positive constants.



It has been observed that the following conditions assure local
convergence at least:

λ > 2u0; u0 > F/Gmin

kGminu0 > sup(|ḟ | + (2λ − u0)|ġ|)

W > 0











(6)

Consider a system of type (4) having relative degree two with
respect to the output. The 2-sliding algorithm (5) is suggested
to steer y to zero and achieve the control task. For tracking
problems, the controller can be defined in a similar manner,
where y(e) in the error space is used as the sliding variable.
All cases proposed in Section 3 will be discussed in turn and
simulation results presented.

Case 1: f(x,t) = 0

This case corresponds to the control of an ideal double integra-
tor. The controller coefficients are selected as λ = 6, W = 0.5,
k = 4 and u0 = 1 with initial conditions [0.1, -0.01, 0]. The
simulation is carried out at a fixed step size of 0.1 milliseconds.
The steady state error in the output |e|, as shown in Figure 4, is
of the order of 10−8 and that of ṡ is of the order of 10−4.
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Figure 4: Sliding variable,s
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Figure 5: Sliding variable derivative ṡ

Case 2: f(x,t) = a constant

The value of f(x, t) in the system dynamics (4) is considered
as 2, which is independent of the system parameters and does
not vanish as y → 0 but has derivative equal to zero. The
controller coefficients are selected as λ = 4, W = 0.5, k = 3
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Figure 6: Control effort u

and u0 = 3 with initial conditions [0.1, -0.01, 0]. The results
are shown in Figures 7- 9. The simulation is carried out at the
same fixed step size of 0.1 milliseconds. The steady state error
in the output |e|, as shown in Figure 7, is of the order of 10−8

and that of ṡ is of the order of 10−4.
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Figure 7: Sliding variable, s
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Figure 8: Sliding variable derivative ṡ
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Figure 9: Control Effort, u(t)

Case 3: f(x,t) = sin(t)

The value of f(x, t) considered in the system dynamics (4)
is sin(t) which is independent of the system parameters, has
bounded derivative and does not vanish as y → 0. The con-



troller coefficients are selected as λ = 7, W = 0.5, k = 3 and
u0 = 1 with initial conditions [0.1, -0.01, 0]. The results are
shown in Figures 10− 12. The simulation is carried out at the
same fixed step size of 0.1 milliseconds. The steady state error
in the output |e|, as shown in Figure 7, is of the order of 10−6

and that of ṡ is of the order of 10−3.
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Figure 10: Sliding variable, s

0 5 10 15 20
−1

0

1

ds

time

Figure 11: Sliding variable derivative ṡ
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Figure 12: Control Effort

Even for very large values of initial conditions such as
[100, 50], the controller stabilizes the system output to zero.
Controller coefficients chosen for this are λ = 25, W = 0.5,
k = 0.5, u0 = 10.
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Figure 13: Large initial conditions

5 Comments on stability

The controller (5) is a 2-sliding controller as it ensures the con-
vergence of s and ṡ within a region of size τ 2 and τ respectively
[6]. The ode45 integration algorithm from Matlab is used for
the simulations presented in the paper, where τ is the sampling
step. The accuracy, when the Euler method is used for integra-
tion, is of the order of the sampling step τ and τ
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Figure 14: Phase plot of algorithm (5)

The control effort consists of two parts. The first part is a
discontinuous switching signal while the second one (u1) is
smooth. In the u−scale, u1 is bounded by ±(λ − u0) and
the control effort u remains bounded by ±(2λ − u0) with
u0 < |u| < (2λ − u0). Hence, the optimal values of λ and
u0 are constrained by the permissible control. It is a 2-sliding
mode with chattering because of the discontinuous control ac-
tion.

In digital implementation, the sequence {ṡi} of the intersection
points with the axis s = 0, is a convergent series because it
satisfies

∣

∣

∣

∣

ṡi+1

ṡi

∣

∣

∣

∣

< 1 (7)

before it settles into the real 2-sliding set. The equation (7) im-
plies that |ṡ| → 0 as i → ∞. The settling time can be estimated
as the sum of the encircling time sequence by a geometric se-
ries. The settling time is a function of (λ − u0). It seems that
selection of λ and u0 that give larger (λ−u0) and λ/u0 will be
more suitable. Increased values of (λ− u0) reduce the settling
time but increase the amplitude of oscillations in x2. Suitable
choice of k helps in reducing oscillations in the output.

6 Conclusions

A new 2-sliding algorithm has been presented for systems with
relative degree two with respect to the input. The only input
to the controller is the measured output; the algorithm does not
require measurement or estimation of the output derivative.
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