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Abstract

A general framework for designing antiwindup control systems
is developed. More traditional anti-windup schemes generally
suffer from several limitations, including the lack of (a priori)
robustness respect to plant uncertainty, and also have a con-
siderable heuristic component. The design method proposed
in this paper provides an accurate graphic design procedure
that guarantees closed loop global stability, in the presence of
saturation-type non-linearities and plant uncertainty. The case
of SISO LTI plant is considered.

1. Introduction

Actuator saturation is a common and significant non-linearity
in practical control systems. If input constraints are not taken
into account, harmful effects on system performance and sta-
bility may appear. If, in addition, the controller is unstable or
contains integrators the known phenomenon referred to as inte-
gral windup may occur. When the control signal saturates, the
feedback is broken and then the controller continues integrat-
ing the tracking error, providing larger control signals resulting
in undesirable large overshoots or even driving the system to
unstability. Control systems design with hard constraints has
become a very active research area, see for example [3]. An-
other important aspect in control practice is plant uncertainty.
Most of the techniques included in the anti-windup field does
not explicitly consider plant uncertainty in the (LTI) plant, this
being an important practical drawback. It seems to be funda-
mental to obtain robust control systems with acceptable per-
formance under uncertainty and design constraints. In this di-
rection, Quantitative Feedback Theory (QFT) ([6]) provides a
natural frequency domain framework for designing robust con-
trollers. And for the linear mode, linear QFT can be directly
used. In this paper, the previous work in [2] is extended to cope
with rate saturation, and a general framework is proposed, to
take the uncertainty into account in the design procedure and to
assure the global stability of the system. This framework can be
applied to some common anti-windup schemes, whose param-

eters are usually heuristically fixed in practice. The problem
considered is based on a three degrees of freedom (3DoF) con-
trol scheme (Figure 1), and consists in designing H to account
for the saturation element in a control loop. The compensators
F and G are considered to be previously designed for the linear
mode. As shown in [5] , an actuator model is assumed, so that
this model is inserted after the controller and before the actua-
tor. The paper is organized as follows. In section 2 the method
proposed in [2] is reviewed for amplitude saturation case and
is extended to deal with the rate saturation problem. In section
3 a general framework to cope with the saturation problem in
systems with uncertainty, from a frequency domain viewpoint
is proposed. Finally some conclusions are outlined in section
4.

2. Main result

In this section, we summarize two design methods that take
plant uncertainty into account when saturation elements exist
in a control system. In section 2.2 the most important results in
[2] are reviewed without proof, related to amplitude saturation
case. Analogously, in section 2.3, the rate saturation case is an-
alyzed. In both cases, emphasis is made on closed loop stability
of the nonlinear operation mode. Stability based on multipliers
([4]) is used as a basic result.

2.1. Preliminaries

The following notation is introduced: RH∞ is the set of proper
(bounded at infinity) complex variable rational functions with
real coefficients without poles in the closed right half plane
(right half plane including the origin), and R0H∞ is the same
set but including functions with poles in the origin. A mem-
oryless non-linearity ϕ : R → R belongs to sector[ε, k] if
ϕ(0) = 0 and ε ≤ ϕ(x)x ≤ kx2 ∀x ∈ R with ε > 0. A
memoryless non-linearity ϕ : R → R belongs to slope[ε, k] if
ϕ(0) = 0 and ε ≤ (ϕ(y1)−ϕ(y2))/(y1−y2) ≤ k ∀y1, y2 ∈ R,
with y1 6= y2 and ε > 0.

Consider the feedback system of Figure 1without the nonlinear
block, that is considering N = 1. Here P is a SISO LTI plant
belonging to some set ℘, G is a feedback compensator and F is
a precompensator. This simplified feedback system is the typi-



cal two degrees of freedom structure, commonly used in QFT.
The following assumptions are used in the rest of this work
regarding this simplified feedback system: i) the closed loop
system is stable for all P in ℘, ii) the open loop transfer func-
tion L(s) = P (s)G(s) must belong to R0H∞ for all P ∈ ℘,
iii) G(s) and H(s) must belong to R0H∞, iv)the number of
integrators in H must be greater or equal than the number of
integrators in G, and less than the number of integrators in G
plus one, and less or equal than the number of integrators in G
plus the number of integrators in P and v)(1 + H)−1 has the
same number of poles and zeros,its poles must belong to the
open LHP (not including the origin), and its zeros must belong
to the closed LHP. Note that typical Type 0, Type I or Type II
plants are allowed, and that integrators in the compensator G,
designed in a first step, are allowed too.

2.2. Systems with amplitude saturation

Figure 1 shows the basic control setup, where the block P
represents a SISO LTI plant with transfer function P (s) in a
set ℘ ⊂ R0H∞. The compensator consists of three blocks:
F (s), the precompensator, G(s), the feedback compensator,
and H(s), the anti-windup compensator. An ideal saturation
is assumed. In order to analyze system stability, is more con-
venient to transform the system to the equivalent system (from
the stability point of view) of Figure 2, consisting of a feed-
back interconnection of a linear block K, including all linear
dynamics present in the loop, and the non-linear block N . K
and R are systems with transfer functions given by

R(s) = F (s)G(s)/(1 + H(s)) (1)
K(s) = (P (s)G(s) − H(s))/(1 + H(s)) (2)

For design purposes, X is defined as
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Figura 1: A 3DoF control scheme with actuator amplitude sat-
uration.
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Figura 2: System with a feedback interconnection between a
linear block K and a non-linear block N .
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Figura 3: A single transformation for the system in Figure 2.

X(s) , 1 + K(s) = (1 + P (s)G(s))D(s) (3)

where D(s) = (1 + H(s))−1. When D is designed, the com-
putation of the anti-windup compensator H is straightforward.
One basic goal is to define regions in NP such that if X0 lies
within them, then closed loop stability may be guarantied. Al-
though it will be not detailed here, an algorithm to design H
has been proposed in [2] using QFT ideas. It is supposed that
the pair of compensators {F,G} was designed in a previous
step using (for example) QFT. The algorithm is strongly based
on the following result:

Lemma 2.1 Assume that

X(s) ∈ RH∞ ∀P ∈ ℘ (4)

N is static, odd, and belonging to slope[0, 1] (5)

and, there exists a LTI multiplier (possibly non causal) Z(s),
with impulse response z(t) satisfying ‖z(t)‖1 < 1, and

X(jω) 6= ja/(1 − Z(jω)) ∀ω > 0 ∀a ∈ R ∀P ∈ ℘ (6)

then the feedback system is globally stable system for all plants
P in ℘. If N is even, then additionally z(t) > 0 for all t ∈ R.
If there exists integrators in P , the above result can not be di-
rectly used. But it is possible to circumvent this problem by
means of blocks transformations. See Figure 3(a). This system
is equivalent to the system of Figure 3(b), that consists of a lin-
ear block R and a feedback interconnection between a linear
block Q and a non-linear block DZ with

DZ(x) =







0 if x(t) ∈ [ymin, ymax]
−x + ymin if x < ymin

−x + ymax if x > ymax

(7)

and

Q(s) =
K(s)

1 + K(s)
(8)

Lemma 2.2 Assume that

X(s) ∈ R0H∞ ∀P ∈ ℘ (9)

N is static, odd, and belonging to slope[0, 1] (10)

and, there exists a LTI multiplier (possibly non causal) Z(s),
with impulse response z(t) satisfying ‖z(t)‖1 < 1, and

1/X(jω) 6= ja/(1 − Z(jω)) ∀ω > 0 ∀a ∈ R ∀P ∈ ℘ (11)

then the feedback system is globally stable system for all plants
P in ℘. If N is even, then additionally z(t) > 0 for all t ∈ R.

2.3. Systems with rate saturation

In this section the robust stability problem of QFT designs for
linear systems with actuator rate saturation is analyzed, using a
similar reasoning as in previous section. Using a 3DoF scheme,
the design method previously proposed may be used in order
to stabilize systems with actuator rate saturation and uncertain



plants with one or zero integrators. In this case K and R blocks
in Figure 2 are transfer functions given by

R(s) = F (s)G(s)s/(1 + sH(s)) (12)
K(s) = (P (s)G(s) − sH(s))/(1 + sH(s)) (13)

If simple variable changes of variable are performed, Hv(s) =
sH(s), Gv(s) = sG(s) and Pv(s) = s−1P (s), the following
transfer functions Kv and Rv result

Rv(s) = F (s)Gv(s)/(1 + Hv(s)) (14)
Kv(s) = (Pv(s)Gv(s) − Hv(s))/(1 + Hv(s)) (15)

As it may be observed, equations (14) and (15) are equiva-
lent to (1) and (2) respectively, so that all the development
in section 2.2 is also applicable to the rate saturation prob-
lem, taking Kv and Rv in equations (15) and (14) respective-
ly, Gv(s) = sG(s), Pv(s) = s−1P (s), and when the func-
tion D = (1 + Hv)−1 has been shaped, computing H(s) as
Hv(s)/s. However, in the amplitude saturation problem the
maximum number of integrators in plant was two, and in the
rate case, as Pv = s−1P , the number of integrators in the plant
must be restricted to one.

2.4. QFT solution to the stability problem

Here we briefly discuss how QFT can be used to efficient-
ly solve the global stability problem according to the condi-
tions given in the above Lemmas. The basic idea is the shap-
ing of D(s) in such a way that the condition given by (6) or
(11), depending on the case, is satisfied. QFT can give an ef-
ficient and simple graphical solution to that equations. Once
D(s) is obtained, the anti-windup compensator H can be di-
rectly obtained. First, we define a nl-template =nl(ω) (tem-
plate for non-linear mode) as a set of complex values, given
by =nl(ω) , {1 + P (jω)G(jω) : P ∈ ℘}. This set will al-
low the designer to deal with the uncertainty in an explicit form
in the process design for the shaping of anti-windup compen-
sator H in the second step of classical anti-windup paradigm,
where the non-linear operation mode is taken into account. For
a nominal P 0 ∈ ℘, and taking D = 1 in (3), a nominal point
is obtained. In particular, X0(jω) = 1 + P 0(jω)G(jω) rep-
resents the nominal point in the nl-template for a frequency ω.
Note that shifting of nl-template for frequency ω in NP is equiv-
alent to add |D(jω)| decibels and Angle(D(jω)) degrees to
each point in =nl(ω), or equivalently to the nominal X0(jω),
assuming this as representative of the rest of points. So the in-
troduction of poles and zeros in D in (3) is equivalent to shift
the nl-templates in NP. Based on these ideas, regions on NP can
be easily computed that allow a efficient shaping (or design) of
D(s), an thus of H . A more detailed algorithm is out of the
scope of this work and will be given elsewhere.

3. A general framework

3.1. Conventional Anti-Windup technique (CAW)
The control scheme used in this technique is shown in Figure
4, where H is, in general, a transfer function, and the dynamic
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Figura 4: CAW Scheme.

of the element Sat is given by an ideal saturation. Two cases
are considered: (Case 1) H is a single gain, and (Case 2) H has
more complex dynamics. Transforming the system in Figure 4
into an equivalent one from a stability point of view, the system
in Figure 2 is obtained, where R and K blocks are given by

R = FG/(1 + GH) (16)
K = G(H − P )/(1 + GH) (17)

Plant without integrators

Supposing that P has no poles at the origin, it is clear that al-
though G contains integrators, K in equation (17) will be a
type 0 transfer function. So that, the result in Lemma 2.1 may
be used, without including any additional system transforma-
tion. Another condition that must be guaranteed to apply the
result in Lemma 2.1 is that K in equation (17) is stable1. For
this purpose necessarily P , H and G/(1+GH) must be stable
(the stability of G/(1 + GH) is a necessary condition for the
closed loop global stability of system). The function that will
be used to carry out the shaping, in NP, taking the uncertainty
of the plant into account is:

X(s) , 1 − K(s) =
G(s)

1 + G(s)H(s)
P (s) (18)

So that, the nl-template in this case is the same as the corre-
sponding l-template, and the X0(jω) nominal function shap-
ing (from equation (18) taking P 0 in place of P ) would be
carried out shifting the nl-template using the function D =
G(1 + GH)−1. When this function has been shaped, then the
computation of compensator H is straightforward

H(s) = D−1(s) − G−1(s) (19)

If H is a single gain (case 1), it is clear that the number of
poles and zeros of D is conditioned by the linear controller
G, designed in the design stage for the linear operation mode.
Variations in H will imply only a variation in the location of
poles of D, but not a variation in its number (supposing that
there are not cancellations). So, the root locus seems to be an
adequate tool for this case. The designer would may start with
left half plane of the root locus of 1 + GH , and choose poles
that shift the =nl(ω) to an allowed zone for each frequency ω.
The value for H is chosen directly from the root locus. For this
case the shaping of function D is not very flexible. The system
output ĉ in Figure 4 is given by the expression

ĉ = r̂
FPG

1 + PG
+ ẑ

P (1 + GH)

1 + PG
(20)

1A rational function of complex variable is stable if all of its poles are lo-
cated in opened left half plane



where it may be observed that ĉ is influenced by two terms,
one due to the linear operation mode, and other due to the non-
linear operation mode (ĉ denotes the Laplace Transform of the
signal c). If H has a more complex dynamic (case 2), as it may
be deduced from equation (20), necessarily H must be stable.
If a block H with an integrator is designed, the system may
be closed loop stable, but an offset will appear in the output.
In order to guarantee the stability of H , from equation (19) all
zeros in G and D must be minimum phase zeros (in order to
achieve null offset, zeros in the origin are not valid either). With
respect to realizability of H , from equation (19), if functions G
and D have a proper inverse then H will be proper, in other
case the excess m of poles over zeros of D and G must be the
same, and in addition the dG · nD product must have its m
first terms the same as the m first terms of the nG ·dD product,
where nG, dG and nD, dD are the numerator and denominator
of G and of D respectively. So, it may be deduced that the
D shaping is more complex (with respect to realizability of
the resulting compensator H) when G has not proper inverse.
Another possibility, in case 2, consists in the imposition of the
next structure for the dynamic in H:

H(s) =
H1(s)

G(s)
(21)

so, from equations (18) and (21) X = (1 + H1)
−1PG is

obtained. So that the nl-template will be given by the set
{PG : P ∈ ℘}, and the shaping will be carried out with
D1 = (1 + H1)

−1. Obviously the excess of poles over zeros
in D1 must be zero, which guarantees a proper function H1. It
is clear that in order to have H proper, a necessary condition is
that the excess of poles over zeros in G must be less or equal
than the excess of poles over zeros in H1.

Plant with one integrator

If the plant P contains exactly one integrator, the transforma-
tion in Figures 3(a) and 3(b) will have to be carried out, apply-
ing after that the result in Lemma 2.2. In this case H will be
given by the expression

H(s) = D(s) − G−1(s) (22)

When H is a single gain (case 1), for the plant without inte-
grators, it is clear that the number of poles and zeros in D is
conditioned by the linear controller G designed in the design
stage for the linear operation mode. Variations in H will imply
only a variation in the location of zeros of D, but the number
of zeros is not affected (supposing that there not exist cancel-
lations). So, as previously the designer could start from the left
half plane of the root locus of 1 + GH , in order to assure the
stability of R in (16), and choose zeros that achieve displace-
ments of =nl(ω) to an allowed zone for each frequency ω. The
value for H is chosen directly from the root locus. If the dy-
namics of H is more complex (case 2), as previously it was
indicated, H must be stable. If H is designed with an integra-
tor, the system may be closed loop stable, but an offset will
appear in the output. In order to guarantee the stability of H ,

from (22) all of zeros in G must be of minimum phase (in or-
der to obtain a null offset zeros in origin are not valid either),
and poles of D must belong to the opened left half plane. With
respect to the realizability of H , from equation (22), only if
inverse functions of G y D are proper then H will be proper.
Another possibility, in case 2, consists in fixing the structure
for H as in equation (21), so that from equations (18) and (21)
X = (1 + H1)

−1PG is obtained. So, the nl-template will be
given by the set {(PG)−1 : P ∈ ℘}, and the shaping will be
carried out using D1 = 1 + H1. Obviously the excess of poles
over zeros in D1 must be zero, which guarantees the proper-
ness of H1. It is clear that in order to achieve a proper H a
necessary condition is that the excess of poles over zeros in G
is less or equal than the excess of poles over zeros in H1. If the
plant is unstable a result based on Circle Criterion Case #1 in
[2] may be used to probe the local stability of the closed loop
system. The function D is strongly influenced by G in the pro-
posed two step anti-windup design, so that in some situations
it may be adequate to redesign the controller G for the linear
operation mode.

3.2. Hanus conditioning technique
x
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Figura 5: Scheme for the Hanus Conditioning.
In this case the number of degrees of freedom for the anti-
windup design is zero. Transforming the system in Figure 5
into an equivalent one from a stability point of view, a scheme
as that shown in Figure 2 is obtained, where R and K blocks
are given by

R = 0.5FG (23)
K = 0.5(1 − PG) (24)

The stability of R is a necessary condition for the closed loop
global stability, so that all of poles in G must belong to the
open LHP. In order to apply the result in Lemma 2.1 without
additional system transformations, K must be stable, so that P
must be stable too (unless the Circle Criterion Case #1 is used,
where P is allowed to have poles in closed RHP). If P contains
an integrator, it is necessary to apply the transformation in Fig-
ures 3(a) and 3(b) to the transformed Hanus scheme in Figure
2, applying after that, the result in Lemma 2.2. The function X
in this case will be given by the expression

X(s) =
1

2
− K(s) =

P (s)G(s)

2
(25)

Obviously in this case it is not adequate to work with a two
step anti-windup design because there are not enough degrees
of freedom. Here, in the design stage for the controller G for
the linear operation mode, the non-linear operation mode must
be taken into account too. For example, applying the result
in Lemma 2.1 for multiplier W (s) = 0 (equivalent to Circle



Criterion Case #2) to the scheme in Figure 5, the condition
Real(P (jω)G(jω)) < 3 ∀ω > 0 ∀P ∈ ℘ is enough to as-
sure the global stability of the system. This condition must be
transformed into a restriction over L0 so that for all plants in
℘ the condition is satisfied. This new restriction must be added
to the set of restrictions in NP over function L0 and then the
controller G must be obtained (nominal loop shaping stage in
QFT). In [1], where the Circle Criterion is used to probe the
stability for the system in Figure 1 with H = 0, the condition
Real(P (jω)G(jω)) > −1 ∀ω > 0 ∀P ∈ ℘ is derived. De-
pending on the particular problem the scheme in Figure 1 with
H = 0 and the restriction Real(P (jω)G(jω)) > −1 ∀ω >
0 ∀P ∈ ℘, or the scheme in Figure 5 with the restriction
Real(P (jω)G(jω)) < 3 ∀ω > 0 ∀P ∈ ℘ will be used (sup-
posing that in both cases the Circle Criterion is used to assure
the global stability of system). Notice that the scheme handled
in this section is a particular case of Case 2 in the proposed
scheme in the previous section, taking H = 1/G.

3.3. Anti-reset Windup technique
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Figura 6: Anti-Reset Windup scheme.
Due to the importance of PID controllers in practice applica-
tions, the scheme handled in this section is one of the most
extended in the industry, to deal with the saturation problem.
In general, the design of an anti-windup mechanism for PID
controllers has a strong heuristic component. First of all a PID
controller is designed and after that, a mechanism is includ-
ed to reduce the effect of the controller integrator when satu-
ration occurs. In this section some guides to design this type
of anti-windup mechanisms are introduced, so that the system
stability in presence of saturation and uncertainty in the plant
is assured, following the same techniques that in previous sec-
tions. Transforming the scheme in Figure 6 into an equivalent
scheme, from a stability point of view again, a system as in
Figure 2 is obtained, where R and K blocks are given by

R =
FKpTr(Tis + 1)

Ti(Trs + 1)
(26)

K =
Ti − KpTr(Tis + 1)P

Ti(Trs + 1)
(27)

Clearly the stability of R is assured if Tr > 0 (necessary con-
dition), and the stability of K is conditioned to the stability of
P . In this case the X function is defined by

X(s) = 1 − K(s) =
Tr

Trs + 1

[

s + Kp

(

1 + Tis

Ti

)

P (s)

]

(28)
So, the new nl-template that will be handled in the shaping is

=nl(ω) =

{

jω + Kp

(

1 + Tijω

Ti

)

P (jω) : P ∈ ℘

}

(29)

and the function that will be used to shift =nl(ω), so that the
nominal X0(jω) (with X given by equation (28)) lies within
allowed zones in NP, will be

D(jω) =
Tr

Trjω + 1
(30)

where the function D in equation (30) depends only on ad-
justable parameter Tr in the scheme in Figure 6. With respect
to the stability of the plant, in order to apply results in previ-
ous Lemmas on global stability, the number of integrators in P
must be less or equal than one, and the rest of poles in P must
belong to open LHP. If the plant has poles in RHP, the result
based on Circle Criterion Case #1 in [2] may be used to assure
the system local stability.

3.4. Horowitz Scheme
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Figura 7: The Horowitz 3DoF control scheme.
In what follows, the application of the results in previous
Lemmas to assure global stability, to the scheme proposed by
Horowitz in [5] is analyzed. The anti-windup Horowitz scheme
is shown in Figure 7. Using a simple transformation it is possi-
ble to obtain the scheme in Figure 2, where R and K blocks in
this case are given by

R = FG (31)
K = PG + H (32)

A necessary condition for the closed loop global stability of
the system is that the number of integrators in G must be ze-
ro, due to the structure of R in (31). It is supposed that the
number of integrators in P is one, as in [5]. As was indicat-
ed previously, when the number of integrators in P is greater
than zero, a problem appears because it is not possible to apply
directly the stability criterion based on multipliers, due to the
fact that the function K in the equation (32) does not satisfy
the condition in (4). As was done previously, the problem is
solved applying the transformation in Figure 3(a), resulting in
the equivalent system in Figure 3(b), where the linear block is
a dead zone satisfying condition (5) if |ymin| = |ymax| or DZ
even if |ymin| 6= |ymax|. Function X is defined as

X(s) , (1 + K(s)) = (1 + P (s)G(s) + H(s)) (33)

with P ∈ ℘. With the aim of X(s) ∈ RH∞ ∀P ∈ ℘, all of
zeros in X(s) must belong to LHP, which is directly satisfied
from the stability requirement of function (1 + Ln)−1 driv-
ing the commutation from non linear to linear mode operation
(see [5] for more details). As a consequence, using the Zames-
Falb result, if condition (6) (with −Q in place of K) is satisfied
for some LTI Z(s) multiplier with impulse response z(t) with
‖z(t)‖1 < 1, then the global stability of the system can be con-
cluded if |ymin| = |ymax|. If |ymin| 6= |ymax| then in addition



Method X1(H) X2(P, G)
Section 2 1

1+H(s) 1 + P (s)G(s)

CAW (Case 3) 1
1+H1(s)

P (s)G(s)

Hanus Condit. 1 P (s)G(s)
2

Antir. Windup Tr

Trs+1 s + Kp

(

1+Tis
Ti

)

P (s)

Horowitz 1
1+H(s) 1 + P (s)Gl(s)

Tabla 1: Values of functions X1 and X2 for some traditional
schemes.

Method X1(H, G) X2(P, G)

CAW (Case 1) G(s)
1+G(s)H P (s)

CAW (Case 2) G(s)
1+G(s)H(s) P (s)

Tabla 2: Values of functions X1 and X2 for cases 1 and 2 in the
CAW scheme.

z(t) must be greater than zero for all t in R. In this case, H
must be designed so that previous condition is satisfied. From
(33) and (8) the previous condition is transformed in the restric-
tion on X shown in Lemma 2.2. Using the result in Lemma 2.2
with function X given by (33), it is easy to probe that the so-
lution proposed by Horowitz in [5], where plant uncertainty is
not taken into account, results in a globally stable system.

Note 3.1 Obviously, the existence of a stabilizer compensator
{F,G,H} in all of previous schema is conditioned to the un-
certainty present in plant, and to the particular dynamic fixed
for D in each case.

3.5. A general method
The common procedure in all of previous schema consists of
the following steps: (1)Transform the particular control scheme
into a scheme as in Figure 2. (2) Define the function X(s) =
αK(s) + β = X1(H)X2(P,G), i.e define a function X(s) so
that it may be split in two factors, one factor, X1, depending on
the degree of freedom added to the system for the anti-windup
mechanism, and other, X2, which exclusively will depend on
a previous design carried out without any consideration of the
presence of saturation. (3) From X2(P,G) a nl-template is de-
fined , and with X1(H) this nl-template is shifted in the NP
in order to assure that the nominal X2(P

0, G) lies within al-
lowed zones defined by the stability result in Lemmas 2.1 and
2.2. In table 1 particular values for terms X2 and X1 for the
schema introduced in this section are shown. Note that in
the case of Horowitz scheme the term Gl is equal to L0/P 0

(where L0 is the nominal open loop transfer function shaped
in the loop shaping stage in QFT). For CAW scheme, cases 1
and 2, it is not possible to find a term X1 that only depends
on the new added degree of freedom. In these particular cases
X(s) = αK(s)+β = X1(H,G)X2(P,G) is satisfied. In table
2 values of X1 and X2 in these particular cases are shown.

4. Conclusions
In this paper the I/O stability problem for LTI uncertain sys-
tems with an amplitude or rate saturation element is considered.
A 3DoF control scheme is proposed to cope with the stability
problem. The scheme is based on the classic two steps anti-
windup paradigm. In the first step the compensator {F,G} is
designed using QFT to take the uncertainty of the plant into
account. In the second step the compensator H is designed in
order to achieve a closed loop stable system in non-linear oper-
ation mode for all values of uncertain parameters in the plant.
This scheme has been previously developed only for ampli-
tude saturation and the control scheme in Figure 1 in [2]. From
a computational point of view, the nl-templates computation
is not required (templates for the non-linear case) if a single
transformation of corresponding l-templates (templates for the
linear case), used to design {F,G}, is introduced. Finally, the
proposed scheme is formulated as a general framework includ-
ing traditional anti-windup schemes. These traditional schemes
are generally applicable, with a great heuristic component, to
systems without uncertainty. The design method proposed in
this paper provides an accurate graphic design procedure that
guarantees the closed loop global stability in presence of satu-
ration type non-linearities and with uncertainty in plant. Exam-
ples may be found in [2].
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