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Abstract

Predictive switching logic schemes are considered whereby a
feedback-gain is switched-on at any time from a bank of can-
didate feedback-gains so as to control a discrete-time input-
saturated LTI system possibly subject to persistent bounded
disturbances of unknown arbitrary magnitude. It is construc-
tively shown that such schemes do exist which ensure, along
with good tracking performance, global asymptotic and semi-
global exponential stability in the noiseless case, as well as fi-
nite [,-induced gain to the disturbance-to-state map, whenever
the structure of the disturbed plant can make such properties
conceptually achievable.

1 Introduction

In recent years, control of input-saturated dynamical systems —
a subject of ever-lasting fundamental interest in control engi-
neering — has attracted significant research efforts.

A significant source of contributions to the subject has been
originated within model-based predictive control (MBPC) [12,
11, 10]. MBPC, though inherently tailored to handle input
and/or state-related constraints, has been so far hampered in
having a significant impact on applications other than slow-
process control, mainly because of its high computational load.
Moreover, even if MBPC of input-saturated plants was de-
veloped so as to provide in the nominal case global high-
performing regulation [2, 1], and, in robustified forms, can
handle both model uncertainties [5, 8, 3] and vanishing distur-
bances [4], its extension to the case of persistent disturbances
[15] appears to be so computationally demanding that it can be
yet considered in practice an unsolved problem.

This paper aims at providing a computationally affordable
solution to the regulation problem of discrete-time input-
saturated linear time-invariant (LTI) systems subject to persis-
tent bounded disturbances of unknown arbitrary magnitude.

2 Problem Formulation and Paper Overview

The paper deals with the regulation problem of a discrete-time
input-saturated LTI plant

{ zt =%z 4+ Go(u) + & 0

r=z+Z

where: x € R is the plant state; zt := z(t + 1) if z = z(¢);
teZy:={0,1,...} u=[u,- - uy] € R™; the prime
denotes transpose;

a(u):{ v

n(u) ?

u; € [—u;,uw] , Viem

elsewhere 2)
m = {1,2,...,m}; u;,w > 0; and n(u) : R™ — R™,
an arbitrary bounded nonlinear function of the control vector
u. In (1), both £ and Z are bounded and possibly persistent
disturbances of unknown arbitrary magnitude. The problem is
to find, based on Z, a partial state-information vector, feedback
controls

u=f(%) ©)

so as to ensure, under suitable conditions, exponential stabil-
ity in the noiseless case as well as finite ,.-induced gain of
the disturbance-to-state map from £ and Z to x embedded in
(1)-(3). The adopted approach consists of selecting a discrete
family F = {Fj},;-, of linear state-feedback gains F}, and a
switching logic

h(t) = £(2(t), h(t — 1)) ©)
in such a way that the regulated plant
at =®x + Go(Fppd) + £ Q)

have the stated stability properties. For recent results on
switching among stabilizing controllers see [6].

The paper is organized as follows. Sect. 3 describes the spe-
cific type of feedback-gain matrices that are adopted to real-
ize possible control actions. Sect. 4 shows that, thanks to the
type of candidate feedback-gain matrices, stability under arbi-
trary switching control can be ensured to an LTI system with
no input saturations by only imposing a simple but essential
admissibility condition on the switching sequences. Sect. 5
exploits the stability results in Sect. 4 so as to extend them,
via the adoption of appropriate switching logic supervisors, to



LTI systems subject to input saturations and persistent bounded
disturbances of unknown arbitrary magnitude. Sect. 6 reports
simulation examples, while Sect. 7 ends the paper with conclu-
sive remarks. Because of space limitations, proofs are omitted.

3 Candidate
Gains

Receding Horizon Feedback-

Consider temporarily the noiseless linear variant of (1)
zt = ®zx + Gu (6)

Assume

Y =(?,G) reachable @)

Note that (7) entails no loss of generality in that, if ¥ is sta-
bilizable but not reachable, all subsequent developments apply
to the reachable subsystem of the plant obtained via a Gilbert-
Kalman reachability decomposition. Because of properties that
are motivated next in some detail, the candidate feedback-gains
are chosen as follows

F = =0 'G'(®" )G, ot (8)

where: h is a positive integer, h > v, v the reachability index of
v, = lIJ; > 0; and G, is the h-order reachability Gramian

h
Gn =) @G 'GI(@ ") ©9)

k=1

An explanation on where (8) stems from is in order. To this
end, we consider the following control problem Py,.

Zero terminal-state minimum energy control problem 7;,.
Let x be the state of (6) at time 0, and U, (x) the set of all input
sequences u(-) = {u(k)};_s which drive the system state z to
the zero-state Ox in h steps

Up(z) == {u(-) € ®R™)" : p(h,z,u(-)) = oX} (10)
where @(h, z,u(-)) = ®hz + S r_s ®~1-FGu(k). Note that
Up(z) # 0,Vr € R™, if h > v. Py consists of finding the
element up, (-|z) in Uy (z) of minimum energy

h—1
luC)I® = lu®)ly, (11)
k=0

where |u| denotes Euclidean norm, |u|?1,u =u'P,uand ¥, =
¥! > 0. For h > v, such an element up(-|z), if written in
vector form, is as follows

up(z) = [up(0z),. ., uj(h - 1lz))
= [Fu0)--- Fph =]z
= Fux (12)
Fn = —U7'R,G, o (13)

where @u := Diag {¥,, . ..
Ry = [2"71G|... 192G |G]

, ¥, } -(h-times) and
(14)

The integer h is referred to as the control horizon associated to
Ph. |
Note that F}, in (8) is given in terms of F}, as follows

Fo=[Im Opxm(n-1)] Fr

Hence, F}, is recognized to be the feedback-gain matrix of the
receding horizon regulator [9] associated to problem Py,.
From (12) and (13) it follows that

5)

lunClo)Il = el = o] pgny (16)
where
P(h) = ("G, ®"
P'(h) >0 (17)

It can be seen [12] that, if P(v) is as in (17) for h = v, then for
h > v, P(h + 1) satisfies the Riccati difference equation

P(h+1) = &P(h)d-
&' P(h)G (¥, + G'P(h)G) "' G'P(h)®
(18)
and
Fhy1 = —[, + G'P(h)G]"'G'P(h)® (19)
In addition,
P(h+1) < P(h) (20)

From (17) and (20), it follows that the following limit exists

lim P(h) =: P(c0) >0

h—oo

ey

Further, if (6) is ANCBI (asymptotically null-controllable with
bounded input), viz. [16], (6) is stabilizable and has no expo-
nentially unstable eigenvalue,

Note that if

Q((S) = {u eER™ :u; € [_ui +5, U; — (5],V’L (S m} (23)

0 < ¢ < min{u;,u;, i € m}, from (22) it follows that it is
always possible for an ANCBI system to find a large enough
horizon h so as to satisfy

up(|z) € Q*(6) (24)

forevery x € R* and @ > 0.
In the sequel, our attention will be focused on the family of
state-feedback gain-matrices

F={F}y, , h>v (25)

along with the system (6) under a time-varying state-feedback
control u(t) = Fp4)x(t), Fry) € F,

z(t+1) = @h(t)a:(t)

(26)
Py = @+ GFu



4 Exponential stability under arbitrary admis-
sible switching

A control horizon sequence {h(t)}iez., h(t) € Z4, h(t) > v,
is called admissible if

h(t+1) > h(t) -1 27

Let S denote the set of all such admissible sequences
S = {{h(t)}t€Z+ N h(t) € Z+, (28)

h(t) >v, h(t+1)> h(t)—1}

and (X,8) the system (26) under an arbitrary admissible
switching sequence in S.

Lemma 1 Along all possible trajectories of (X, S), the follow-
ing property holds

lle(t + Dl ey < Nzl — lu@)lz,

where ||z||, is as in (16), u(t) = Fpuyz(t) and x(t + 1) =
Cbh(t):lr(t). [ |

(29)

Lemma 2 Along all possible trajectories of (X, S), one has
lz(t + @) nerncey) < 12@Eae
for all z(t) such that [|z(t)|] ) > 0. n

(30)

The theorem that follows is the main result of this section and
fundamental for our subsequent developments.

Theorem 1 Consider the control system (£,8) composed of
the LTI reachable plant (6) under a time-varying state-feedback
control u(t) = Fpyx(t) realized by arbitrary admissible
switching sequences in S as in (28). Then, provided that h > n
and S be a finite family, viz.

S:={h,h+1,....,h—1,h} (31)
with h < h < 00, (£, 8) is exponentially stable
l2(t)] = MX|z(0)] (32)

with 0 < M < oo, and decaying rate X depending on h and h.

Remark 1 - It is to be pointed out that (31) encompasses
the case of a fixed regulation horizon h, h = h =h > n,
for which, to the best of the author’s knowledge, exponential
stability of (26) for an arbitrary h has remained so far an open
problem [12, 13]. [

Remark 2 - The admissibility condition (27) turns out to be
not only sufficient for the stability property stated in Theorem
1, but, in a wide sense, also necessary. In fact, there are cases
wherein, if (27) is violated, stability is lost even if F remains
finite. [ ]

5 Hysteresis switching regulation

Noiseless case - Consider the noiseless variant of (1)

2t = ®z + Go(u) (33)

along with (2) and (7). Given the system state z, up,(-|2) will
denote, as in Sect. 3, the minimum energy input sequence in
Uy (). Let 2(t) denote the system state at time ¢. Consider the
following horizon switching logic (h > n)

h(t—1)—1>h and
up—1)—1(-|z(t)) € Q1)1
otherwise.

h(t—1)—1, if
h(t),

. (34)

h(t) :==min {h € Z; : h > h(t — 1), us(|z(t)) € Q"}

with t = 1,2,..., h(0) = h(0) with h(=1) = h, and Q :=
Q(d = 0). Then, the following theorem follows.

h(t) =

Theorem 2 Consider the noiseless input-saturated system
(33), (2) and (7) with u(t) = Fy4)x(t) subject to the feedback
switching logic (34). Assume that the initial system state x(0)
at time 0 be such that h(0) exist finite. Then, logic (34) yields
the admissible switching sequence h(t + 1) = h(t) — 1, t =
0,...,h(0)—=h, h(t) = h, t > h(0)—h, the resulting switched
system x(t + 1) = @4 x(t) satisfies the input saturation con-
straints, and is exponentially stable. In particular, if ¥ is AN-
CBI, the resulting switched system is globally asymptotically

stable and semi-globally exponentially stable. ]
Noisy case - Consider the following input-saturated noisy
plant
A A z B B
+ _ B
A=l o]+ 8 ]ow+] 5o o9

where z = [z; 2], dimz; = dimA, w = w(t) is a bounded
disturbance, A a stability matrix, and .4 has all its eigenvalues
of unit modulus. Assume that the linear (unsaturated) variant
of (35) be reachable by the input o(u) = u. As can be shown,
there exists a change of basis for the state z such that for z =
P12 =8¢, ns := dims = dimA,

{ st =8s+ Gso(u) + & 36)

¢ " =Qq+Gyo(u)

where: ¢ denotes the effect on the z-state of the disturbance w;
Sp(S) = Sp(A) and Sp(Q) = Sp(A), if Sp(A) denotes the
set of the eigenvalues of A.

It is known [7, 14] that (36), or equivalently (35), has the most
general structure of an input-saturated LTT system for which it
makes sense to consider stability and boundedness under arbi-
trary [ -disturbances.

The argument that follows is used so as to make it plausible the
conjecture that h(t), chosen by (a suitably modified version of)
(34), cannot get unbounded. If this is the case, according to
Theorem 1, the contribution of any past noisy sample vanishes



exponentially fast, and hence z(¢) stays bounded.

Consider first that, by the switching logic (34), h(0) < oo for
any 2(0) € R™, and {h(t)},°, is in S. Next, assume, by
contradiction, that h(-) grows unbounded. This implies that
|z(-)| does the same. As |s(-)| is bounded because S is sta-
ble and o(u) and £ are both bounded, there are times ¢ large
enough at which |z(t)|* = |s(t)|* + |¢(t)]* ~ |q(¢)|*. Un-
der these circumstances, h(t) is essentially chosen according to
the restricted noiseless system with state ¢(t). Hence, accord-
ing to Theorem 2, at subsequent times, h(t + k) = h(t) — k
till |g(t + k)| is reduced so much that the effect of |s(t + k)|
becomes significant again for the selection of subsequent hori-
zons. Thereafter, h(-) may start to increase till the condition
l2(t)]* =~ |q(t)]? is possibly restored. Consequently, the reg-
ulation horizon begins again to decrease by one at each sub-
sequent time. In words, a “horizon resetting” mechanism is
inherently enforced. The conjecture is that such a mechanism
prevents h(-), and hence the plant state, from becoming un-
bounded.

However, in order to prove that the horizon resetting property
holds, it is required to replace the switching logic (34) with its
variant (37) equipped with a “hysteresis” facility.

Theorem 3 Consider the input-saturated noisy plant (35) with
the stated properties and subject to the following hysteresis
switching logic (h > n)

h(t—1)—1>h and
up—1)-1(-2(t)) € Qrt=1)—1
otherwise.

h(t—1)—-1, if
h(t),
) 37)

h(t) = min {h € Z : h > h(t — 1), un(-|2()) € 25(5)}

h(t) =

where t = 1,- - -, and h(0) = h(0) with h(—1) = h. Then,
the resulting closed-loop hysteresis switched system (35) with
control u(t) = Fp2(t) is bounded-noise bounded-state | -
stable irrespective of the initial state x(0) € R™. ]

Partial state information - If in the hysteresis switching
logic (37) the true plant state z(t) is replaced by the vector

2(t) +[¢'®) 07

where ((t) € R is a bounded sensor-noise acting on the sta-
ble component of the z-state, it is immediate to see that the
conclusions of Theorem 3 hold true. This implies that the state-
ment of Theorem 3 can be extended to a plant of the form (35)
under the hysteresis switching logic (37) based on a partial state

information, .
2(t) = [#'s(t) 4 ()
where Z;(t) is a filtered-estimate of 2,(t) based on observations
y(t) =[v'(t) 2B

with v(t) = Hz,(t) + n(t) € RP with n(-) a bounded sensor-
noise.

(38)

(39)

(40)

6 Examples

Example 1 Consider the ANCBI system

0.9975 0.0999 0.0025 0.0001 0.0050
+_ —0.0499 0.9975 0.0499 0.0025 - 0.0999
0.0025 0.0001 0.9975 0.0999 0.0000
0.0499 0.0025 0.0499 0.9975 0.0001

y=[0 0 1 0]z
(41

This is the discrete-time version (0-order hold input and
sampling-time equal to 0.1 s) of a mechanical frictionless sys-
tem composed of two carts of equal 1 Kg mass coupled by a
link of stiffness equal to 0.5 N/m. The problem is to control
the position y of one cart by using a force u, expressed in N
units, applied to the other cart along the horizontal direction of
motion.

System (41) can be used to show that, in general, the admis-
sibility condition (27) cannot be waived. In fact, if one con-
trols (41) by the use of a switched sequence {Fj s }icz, of
feedback-gains Fl,(y), with h(-) an uncorrelated random se-
quence uniformly distributed over the integers between h = 4
and h = 50, the controlled system quickly becomes unstable,
and its state diverges. It is to be underlined that, without en-
forcing the admissibility condition (27), stability losses can be
experienced also when control horizon sequences of determin-
istic type with large enough negative changes are used.

It can be shown that, using a time-invariant horizon h not large
enough, the control action u(t) = Fjx(t) makes the closed-
loop system unstable in the presence of input saturation. E.g.,
the control Fj,z(t) with h = 25 when the output reference is
the unit step and the input o(u) to the plant saturates outside
[—5, 5] makes the output y unbounded.

Finally, the performance achieved for plant (41) by the supervi-
sory horizon switching logic (34) is exhibited in Fig. 1, where
h = n = 4, the output reference is a square wave between 0
and 1, and the plant input saturates outside [—5, 5]. One can
see that stability and set-point tracking are achieved, and the
resulting time-variations of the switched control-horizon agree
with the statement of Theorem 2.

Example 2 Consider the system

09 1 1 0 1
zr=1 0 1 1|24|0|ow+]|0|v 42
0 01 1 0

where z = [21 22 23)' € R3; 27 is a stable state; 22,23 are the
ANCSBI part of the state; and v € R is a bounded disturbance.
One reason for considering this system is to verify the horizon
resetting property qualitatively discussed just before Theorem
3 and established in its proof. To do this, we refer to the system
(42) which is algebrically equivalent to a system of the form
(36). In particular, the Jordan normal form of (42) is as follows

09 0 0 0.9 0.01
=1 0 1 1|z+| 1 |o(w+]| O
0 01 1 0

v (43)
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Figure 1: (a) Input (upper), and output (lower) obtained by the switching
logic (34); (b) Control horizon selected by logic (34).

Here, the aim is to regulate z, or equivalently z, to [0 0 0]'.
The simulations in Fig. 2 refer to a disturbance v uniformly
distributed on [—100, 100]. In order to enforce the horizon re-
setting mechanism, an initial state 2(0) is used such that

[5()° = |1 (0)* < J22(0)* + a3 (0)* = g(O)]"  (44)
From Fig. 2 one sees that, in agreement with the horizon re-
setting property, the control horizon h decreases, irrespec-
tive of the disturbance, by one at each time-step, as long as
|s(t)]? < |g(t)|*. Hence, the control horizon stays bounded
and, consequently, the same for the state.

7 Conclusions

The paper provides, relatively to alternative approaches, a com-
putationally affordable solution to the regulation problem of
discrete-time input-saturated LTI systems subject to persistent
bounded disturbances of unknown arbitrary magnitude. The
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Figure 2: (a) |w2\2 + |w3|2 while |:v1|2 ~ 0; (b) Control horizon; (c) State
2.



proposed solution enjoys the following features: It consists of a
supervisory switching control logic whereby a feedback-gain,
selected at any time from a family of pre-designed candidate
feedback-gains, is switched-on in feedback to the plant accord-
ing to the information, either complete or partial, on the cur-
rent plant state; No disturbance upper-bound need to be known;
The controller selection is made in accordance with a predic-
tive control philosophy, and each candidate feedback-gain is
tuned on to a different horizon in a receding-horizon control
sense; The supervisory switching logic is flexible enough so as
to enable the designer to simplify the scheme by trading off per-
formance vs. memory and/or computational complexity while
retaining the required stability properties. It is proved that the
adopted switching logic ensures global asymptotic and semi-
global exponential stability in the ideal noiseless case, and fi-
nite [, -induced gain to the disturbance-to-state map, when-
ever the structure of the disturbed plant can make such proper-
ties conceptually achievable.
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