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Abstract  
 
In this paper we consider an alternative approach to 
implementing Model Predictive Control (MPC). We show 
that solving a class of quadratic programming (QP) 
problems is equivalent to solving a class of well-posed non-
linear algebraic loops. These algebraic loops are closely 
related to that found in static anti-windup synthesis. It 
therefore follows that certain classes of MPC can be 
implemented in a form that is a direct generalisation of the 
standard anti-windup structure. Implementations for classes 
of MPC are then derived for both regulator and tracking 
problems. Several alternative iterative algorithms for solving 
the algebraic loop are then presented. Some simulation 
results are also provided, with an example computational 
comparison to active set and interior point based MPC. 
 

1 Introduction 
 
In control design for linear systems, a saturation constraint 
on the control input is a very common problem that has long 
been studied. There are many approaches that have been 
proposed to incorporate actuation constraints in the control 
system design. Many of these approaches are based on 
either off-line or on-line optimisation. Two popular 
optimisation approaches are anti-windup design (e.g. [6,3]) 
and MPC (e.g. [8,2,5]). 
 
MPC schemes typically use an on-line constrained 
optimisation. More recently, explicit MPC schemes which 
use off-line optimisation have been proposed [8,2,5] in an 
attempt to reduce the on-line computational burden. An 
attractive feature of MPC based controllers is their 
anticipative sense of both current and future constraints. 
 
In an alternative stream of work, namely an anti-windup 
approach, the idea is to use the nominal linear controller and 
then to design, by off-line optimisation, a compensator for 
the deviation of the closed loop system from the linear 
behavior due to saturation on the current control input.  For 
example, a static anti-windup scheme has been proposed in 
[6] where an LMI based synthesis to achieve an L2 
performance is employed. This static scheme can be seen as 
a special case of the dynamic anti-windup scheme [3] and 

the nonlinear algebraic loop, which the dynamic scheme 
may contain, can be avoided by restricting the LMI based 
synthesis to produce a strictly proper compensator. 
However, it has been shown in the example that the static 
scheme may give a better transient performance [6]. The 
static structure has also been included in [11] for this reason.  
 
This work is motivated by connecting two observations 
from the literature: (i) the fact that MPC is a piece-wise 
linear control [8,2,5]; (ii) a static anti-windup approach is 
also a piecewise linear control [7]. Even though an MPC 
has, in general, an unknown algebraic structure, these facts 
raise the potential to generalize a static anti-windup scheme 
to an MPC scheme. One may also find a similar relation 
between a QP and a non-linear algebraic loop in [9] in 
which a QP problem is used to implement a ‘directionality 
compensator’ . 
 
In this paper, we show that a class of algebraic loops can be 
used to solve an on-line quadratic programming. Therefore, 
a class of MPC can be implemented in a block diagram as 
an alternative to MPC solutions [8,2,1,5] both for regulator 
and tracking problems. 
 
The paper is organized as follows: Theorem 1 underlying 
the equivalence between a non-linear algebraic loop and a 
QP is explained in Section 2. In the following section, the 
application of Theorem 1 to MPC for regulator and tracking 
problems is presented. Some discussion on the robust 
realisation of the non-linear algebraic loop is also given 
here. Two simulation examples related to the regulator and 
tracking problems can be found in Section 4. Section 5 then 
concludes the paper followed by a list of references. 
 

2 The Non-linear Algebraic Loop and Its QP 
implementation 

 

Ψ
+ UsU0U

+ −

2Λ−

+

 
Fig.1 A Non-linear algebraic loop, [10] 

 
A block diagram of a multivariable non-linear algebraic 
loop that can be found as a component of an anti-windup 
scheme may be drawn as shown in Fig. 1 where 
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then by loop transformations Fig.1 is equivalent to Fig. 2. 
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Fig.2 The QP implementation 

 
We will now show that under certain conditions the loop in 
Fig. 2 gives a solution to a quadratic programme (QP). This 
is closely related to Section 4.2.5 in [9]. 
 
Theorem 1: 
Consider the nonlinear multivariable algebraic loop in Fig.2. 
For M=MT>0 and U0 given, we then have  

)( sUU Ψ= , and (3) 

)( 0UUMUU s −−= , or 

sUUUUM −=− )( 0 . (4) 
Solving the algebraic loop in Fig.2, i.e. finding U that 
satisfies (3)-(4), is equivalent to solving the following 
Quadratic Programming (QP): 

{ }
satUU

JU

∈
= minarg

 (5) 

where Usat is the constraint set defined as 
 },...,2,1,{ max,min, piUUUU iiisat =≤≤=   (6) 

and 

)()( 002
1 UUMUUJ T −−= . (7) 

Proof:  
The first order Karush-Kuhn-Tucker (KKT) optimality 
conditions for the QP problem (5)-(7) are [2]: 

0)()( 0 =−−− +− λλUUM   (8) 

0)( min,, =−− iii UUλ  for i=1,2, …, p  (9) 

0)( max,, =−+ iii UUλ  for i=1,2, …, p  (10) 

 0≥+λ   (11) 

 0≥−λ   (12) 

iii UUU max,min, ≤≤  for i=1,2, …, p  (13) 

where i,+λ and i,−λ are Lagrange multipliers and 

[ ]Tp,2,1, ++++ = λλλλ � and

[ ]Tp,2,1, −−−− = λλλλ �  . 

 
Condition (13) is clearly guaranteed by the definition of 

�
.  

Now rewrite (3) and (4) as  
))(()( 0UUMUUU s −−Ψ=Ψ= .  (14) 

Then we have, for i=1,2, …, p 
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where i,+λ , i,−λ  for i=1,2, …, p are non negative constants. 

In vector form, we can write 

sUUUUM −=−=− +− )( 0λλ .  (16) 
It is easy to see that (15) and (16) are equivalent to (8)-(12), 
and hence U in (14) is the optimizer for the QP problem and 

i,+λ , i,−λ  defined in (15) are the Lagrange multipliers. The 

result then follows. 
  
 
Remark 1: Feasibility and Well-posedness 
(1) The algebraic loop is well-posed if M=MT>0. 
(2) The QP problem is feasible with a unique solution if 

and only if the nonlinear algebraic loop is well-posed 
(uniqueness of solutions). 
  

 
Remark 2: Lagrange Multipliers 
Implementation in Fig. 2 shows that the Lagrange 
multipliers given by equation (16) are the difference 
between the signals at the output and the input of the 
saturation block. 
  
 
Remark 3: MPC-Antiwindup relation 
MPC, with control horizon one, is therefore equivalent to a 
special case of static-antiwindup, where � 2 is restricted to be 
symmetric, and � 2>-I. Note that by a small extension, Fig.2 
also works with M=D.Q, where Q=QT>0 and D=diag(di)>0, 
since diagonal scaling of the Lagrange multipliers does not 
alter the optimality conditions. 
 
Remark 4: MPC Applications 
A QP problem in an MPC can be implemented as a block 
diagram shown in Fig. 2 and the properties (e.g. stability) of 
the MPC are retained. The dimension of the diagonal 
saturation in the block diagram is equal to the dimension of 
U. �  
 

3 Applications to MPC 
3.1 MPC Regulator Problem 
 
Consider a detectable plant 

kkk BuAxx +=+1  (17) 

kk Cxy =  (18) 
and an objective function 
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where n
k Rx ∈ , l

k Ry ∈ , m
k Ru ∈ , 

yNkyN
T

yNk xQx ++ is a 

stability constraint [2], Ny= prediction horizon, Nu= control 

horizon, yu NN ≤ , 0≥= TQQ , 0>= TRR . For 

simplicity, we take N=Nu=Ny to define 
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and have 
 UxX k Γ+Φ=  
where �  and �  are functions of A and B matrices, and 

PQN = is the solution of  a discrete Riccati equation 

0)( =++−− QPABPBBRPBAPPAA TTTT  (21) 
Using MPC strategy, the problem is to design a controller 
for the plant by finding U that minimises J over the 
prediction horizon N, i.e. to find 

{ }JU minarg=  (22) 
subject to the constraint  

maxmin uuu jk ≤≤ + , j=0,1, …, N-1  (23) 

and use the first control vector in U as the current control 
input for the plant 

[ ] UEUIu T
mk 100 == � .  (24) 

The above procedure is then repeated subsequently over the 
time. 
 
Now, for prediction horizon N we have the following 
equivalent problem: 

Find U  to minimize  

)()( 11
2
1

k
T

kR FxMUMFxMUJ −− ++=  (25) 

subject to 

maxmin uUu 1.1. ≤≤ . (26) 
where 

RQM T +ΓΓ= , ΦΓ= QF T , (27) 

[ ]Tmmm III �=1  (28) 
(array of N identity matrices of m-size), and the matrices Q 

and R are functions of P, Q , and R matrices. 
 
Notice that JR is readily in the form where the associated QP 
problem can be implemented using Theorem 1. By defining 

kFxMU 1
0

−−= , (29) 
the MPC for this regulator problem can be implemented in 
the block diagram shown below. In addition, the saturation 
levels of the mN-dimensional diagonal saturation � (.) have 
to be set up according to the constraint (26). 
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Fig. 3 MPC implementation of (25)-(29) 
 

3.2 MPC Tracking Problem 
 
Consider a detectable plant 

kkk uBxAx
~~

1 +=+  (30) 

kk xCy
~=  (31) 

where n
k Rx ∈ , l

k Ry ∈ , m
k Ru ∈ . The output ky is 

required to track an input reference l
k Rw ∈ . To achieve 

zero tracking error, an integrator in the form of 

kkk uuu ∆+= −1  (32) 
is augmented to the plant so that the the augmented plant 
can be written as 

kk
k

k
k uBxA

u

x
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��
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= +
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1  (33) 

kk xCy =  (34) 
where A, B, and C are appropriate matrices. 
 
Define the objective function as  
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 (35) 
where ek=yk-wk, Ny= prediction horizon, Nu= control 

horizon, yu NN ≤ , 0≥= TQQ and 0>= TRR . 

As before, for simplicity we take yu NNN == to define 
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and have 
 dk UxY Γ+Φ=  
where /  and 0  are functions of A, B, and C matrices. 
 
It is, however, often that the constraint on the amplitude of 
the control input is preferred than the rate of it. To this aim, 
one may use the following expression [4]: 

11 −−= kd uEDUU , (37) 
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to get the following equivalent problem: 
Find U to minimise  

)()( 11
2
1 XFMUMXFMUJ X

T
XT

−− ++=  (39) 

subject to 

maxmin uUu 1.1. ≤≤ . (40) 
where 

[ ]TTT
k

T
k WuxX −= −1 ,  (41) 

RDDQM TT +ΓΓ= ,  

RGDQF TT
X +ΦΓ= . (42) 

The matrices Φ , Γ , Q, R, and G are functions of A,  B, C, 

D, E1, Q , and R matrices. 
 



 

JT is now readily in the form in which the associated QP 
problem can be implemented using Theorem 1. Hence, by 
defining 
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the MPC for this tracking problem can be implemented in 
the block diagram shown below. In addition, the saturation 
levels of the mN-dimensional diagonal saturation � (.) have 
to be set up according to the constraint (40). 
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Fig. 4 MPC implementation of (39)-(43) 
 
3.3 Algorithms For Solving The Algebraic Loop 
Theorem 1 has shown that a QP problem with lower and 
upper bound constraint on the variables is equivalent to 
solving a multivariable algebraic loop involving a diagonal 
saturation with associated lower and upper level of 
saturations. Hence, implementing such algebraic loop in a 
discrete time is equivalent to solution of a QP.  
 
Among many QP algorithms proposed in MPC problems, 
active-set methods are sometimes adopted in practice. Other 
algorithms, such as interior point methods, with stronger 
guaranteed performance results may also be used. Now, 
based on the fact explained in Theorem 1, we may derive 
other alternative algorithms from the feedback structure of 
the loop. The algorithms are simple to implement since they 
basically just iterate a variable of the loop until it converges.  
 
1. Algorithm-1 (original) 
Referring to Fig.2, we may have its associated iterative 
algorithms below. 

))(()))(( 00 UUMUUMIMUU −−Ψ=−+Ψ=  
 (44) 

Its iterative implementation may have the following form 
))(( 01 UUMUU kkk −−Ψ=+ . (45) 

Note that since JM ∇= , in the absence of saturation, this 
algorithm is essentially a steepest descent method with unity 
step length. It is well known that a steepest decent method is 
sensitive to a scaling. Hence, a scaling method, such as a 
constant or diagonal matrix scaling, may be used to improve 
the convergence rate of this algorithm.  To analyze 
convergence, we note that 
  is a nonlinear operator with 
incremental gain �  1. Therefore, provided 0<M<2I, the 
iteration defined by (45) converges exponentially to the 
single solution. This algorithm is also found in [9]. 

 
2. Algorithm-2 (alternative-A) 
By loop transformation, we may get an alternative block 
diagram of the algebraic loop in Fig.2 as shown below. 
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Fig.5 Block diagram of the Alternative-A 

 
As before, to achieve a good convergence rate, a constant 
scaling for M-1 may be employed. The iterative algorithm 
may be derived from this feedback structure as follows. 
The loop equations, which are 

VIMUVs )( 1
0 −+= −  (46) 

)( sa VV Ψ=  
may be implemented iteratively by 

))(( 1
01 kak VIMUV −+Ψ= −

+  (47) 
where 

xxIxa −Ψ=−Ψ=Ψ )(::)( . 
Provided 0<M-1<2I, that is M>0.5I, (47) converges 
exponentially fast. When the iteration converges, the 
solution of the loop is then obtained by 

*1
0

** )( VIMUVU −++= − . 
 
3. Algorithm-3 (alternative-B) 
By loop transformation, we may get another alternative 
block diagram of the algebraic loop (see also [10]) in Fig.2 
as shown below. 
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Fig.6 Block diagram of the Alternative-B 

 
The iterative algorithm may be derived from this feedback 
structure as follows. 
The loop equations, which are 

WFUFW bfs .. 0 +=  (48) 

)( sb WW Ψ=  
may be implemented iteratively by 

)..( 01 kbfbk WFUFW +Ψ=+  (49) 

where sssb WWIW 5.0)(:5.0:)( −Ψ=−Ψ=Ψ , 

MMIF f
1)(2: −+= ; )()(2: 1 MIMIFb −+= − . 

In this case, 
 b is a nonlinear mapping with incremental 
gain �  0.5; and for any M>0, Fb is a matrix with � Fb � i2<2. 
Therefore, exponential convergence for (49) is guaranteed. 
When the iteration converges, the solution of the loop is 
then obtained by 

)..( *
02

1** WFUFWU bf ++= . 

 

4 Simulation Examples 
 
Consider the continuous plant with the transfer function 



 

��
����

−
−

+
=

43

54

1100

10
)(

s
sP , (50) 

which was used by many authors as an example in the 
context of anti-windup controller synthesis (e.g. [6]) and 
also recently in the context of MPC design in [2]. The 
discrete time model is obtained with sampling time T=1 sec. 
Referring to Section 3.3, the MPC tracking problem is set 
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)1,1(diagQ = , )1.0,1.0(diagR =  (52) 

[ ]Tkw 8.06.0= , and N = Ny=Nu= 8  (53) 
We look at the case where the constraint (over the horizon) 
is 11 ≤≤− ku  with the objective function J (51) and the 
MPC is implemented as shown in Fig. 4. and simulated in 
SIMULINK. Note that SIMULINK uses Newton method 
with rank-one-update for solving an algebraic loop. The 
simulation result is presented in Fig.7 with 1−=minu  for 
two different values of umax. 
 
To study the performance of four algorithms implementing a 
nonlinear algebraic loop, we do a discrete time simulation 
that is coded in MATLAB and run in a P3-800MHz PC. The 
simulation is now with varied input references until t=1500 
sec and  the results are shown in Fig.8 and Table 1.  
 
In the table, N is the control horizon, IP is for interior point 
method, rcond is the condition number of matrix M, and 
flops is the number of floating point operations required by 
each algorithm to get a solution within the specified 
tolerance. The worst case of convergence rate is provided in 
the last column, if it is applicable. Algorithm-1, 2 and 3 
have also been scaled accordingly for their best theoretical 
computational performances.  The infinity norm of the error 
between consecutive iterations is required to be less than or 
equal to a specified tolerance (which is 5.10-5) for stopping 
the iteration. 
 
The table shows the performance of Algorithms-1, 2, and 3 
relative to the active-set and interior point methods. It can be 
seen that the IP method is the best among the others in terms 
of peak flops. Although CPU time for MATLAB is not 
necessarily a good measure, the Algorithms-1, 2, or 3 is 
shown to be the fastest algorithm in terms of total simulation 
time.  
 
Unlike the active set and IP methods, the performances of 
these three algorithms are dependent on the tolerance given. 
Hence, it needs a more elaborate performance analysis. In 
general, however, these algorithms show alternatives in 
which each algorithm needs a large number of iterations, but 
each iteration consists of simple operations. It is also noted 
that these iterative algorithms do not give quadratic 
convergence. However, they do allow guaranteed 
convergence rate, though in practice, this may be 
conservative. 
 

5 Concluding Remarks 
 
We have shown that a class of nonlinear algebraic loops that 
are commonly found in anti-windup schemes is equivalent 
to a QP. This observation helps unify the seemingly 
disparate fields of MPC and anti-windup. In particular, for a 
control horizon of one, MPC is a type of an anti-windup 
control, and for larger control horizons, anti-windup can be 
generalised to such case. Our formulation also leads to the 
implementation of the QP in MPC on a simple block 
diagram. Its application to MPC for regulator and tracking 
problems has also been presented. Several simple iterative 
algorithms equivalent to a constrained QP have been derived 
based on their associated feedback structure. 
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Fig. 7 Time responses for step references  (solid: umax=1; dashed: umax=0.7x1) 
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Fig.8 Output time responses for varied input references 

 
 
Flops  N 

(rcond) 
Algorithm 

Peak Average 
Sim.CPU 
Time (±) 

Conv. 
Rate 

IP 977K 301.8K 207 s n.a. 
Active-set 1.32M 979.9K 50 s n.a. 

Alg-1 Stopped due to slow progress 0.9999 
Alg-2 9.18M 292K 47 s �  1 

33 
(2.05x10-5) 

Alg-3 13.5M 1.33M 73 s 0.9915 
IP 4.09M 916.2K 524 s n.a. 

Active-set 4.1M 3.06M 96 s n.a. 
Alg-1 Stopped due to slow progress �  1 
Alg-2 21.4M 705K 75 s �  1 

50 
(1.01x10-5) 

Alg-3 57.6M 4.17M 147 s 0.9957 
IP 11.8M 3.04M 1738 s n.a. 

Active-set 13.9M 10.5M 237 s n.a. 
Alg-1 Stopped due to slow progress �  1 
Alg-2 50.6M 1.76M 136 s �  1 

77 
(5.2x10-6) 

Alg-3 247.8M 14.6M 425 s 0.9978 
Table 1: Performance comparison 
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