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Abstract

In this paper we consider an alternative approach to
implementing Model Predictive Control (MPC). We show
that solving a class of quadratic programming (QP)
problems is equivalent to solving a class of well-posed non-
linear algebraic loops. These algebraic loops are closdy
related to that found in static anti-windup synthesis. It
therefore follows that certain classes of MPC can be
implemented in a form that is a direct generalisation of the
standard anti-windup structure. Implementations for classes
of MPC are then derived for both regulator and tracking
problems. Several alternativeiterative algorithmsfor solving
the algebraic loop are then presented. Some simulation
results are also provided, with an example computational
comparison to active set and interior point based MPC.

1 Introduction

In control design for linear systems, a saturation constraint
on the control input isavery common problem that haslong
been studied. There are many approaches that have been
proposed to incorporate actuation constraints in the control
system design. Many of these approaches are based on
either off-line or on-line optimisation. Two popular
optimisation approaches are anti-windup design (e.g. [6,3])
and MPC (e.g. [8,2,5]).

MPC schemes typically use an on-line consrained
optimisation. More recently, explicit MPC schemes which
use off-line optimisation have been proposed [8,2,5] in an
attempt to reduce the on-line computational burden. An
attractive feature of MPC based controllers is their
anticipative sense of both current and future constraints.

In an aternative stream of work, namely an anti-windup
approach, theideaisto usethe nominal linear controller and
then to design, by off-line optimisation, a compensator for
the deviation of the closed loop system from the linear
behavior due to saturation on the current control input. For
example, a static anti-windup scheme has been proposed in
[6] where an LMI based synthesis to achieve an L,
performance is employed. This static scheme can be seen as
a special case of the dynamic anti-windup scheme [3] and

the nonlinear algebraic loop, which the dynamic scheme
may contain, can be avoided by restricting the LMI based
synthesis to produce a dirictly proper compensator.
However, it has been shown in the example that the static
scheme may give a better transient performance [6]. The
static structure has also been included in [11] for thisreason.

This work is motivated by connecting two observations
from the literature: (i) the fact that MPC is a piece-wise
linear control [8,2,5]; (ii) a static anti-windup approach is
also a piecewise linear control [7]. Even though an MPC
has, in general, an unknown algebraic structure, these facts
raise the potential to generalize a static anti-windup scheme
to an MPC scheme. One may aso find a similar relation
between a QP and a non-linear algebraic loop in [9] in
which a QP problem is used to implement a ‘directionality
compensator’.

In this paper, we show that a class of algebraic |oops can be
used to solve an on-line quadratic programming. Therefore,
a class of MPC can be implemented in a block diagram as
an alternative to MPC solutions [8,2,1,5] both for regulator
and tracking problems.

The paper is organized as follows. Theorem 1 underlying
the equivalence between a non-linear algebraic loop and a
QP is explained in Section 2. In the following section, the
application of Theorem 1 to MPC for regulator and tracking
problems is presented. Some discussion on the robust
realisation of the non-linear algebraic loop is also given
here. Two simulation examples related to the regulator and
tracking problems can be found in Section 4. Section 5 then
concludes the paper followed by alist of references.

2 The Non-linear Algebraic Loop and Its QP
implementation

Fig.1 A Non-linear algebraic loop, [10]

A block diagram of a multivariable non-linear algebraic
loop that can be found as a component of an anti-windup
scheme may be drawn as shown in Fig. 1 where ¥(Ug) isa



p-dimensional diagona saturation, that is
W) =diag(¥; (Ug;))=U ; Ug,UORP, and for i=1,2,
U
U min,i ;U S,i <uU min,i
Ui =¥ (Ug;) =9U iU in SUg SU
U max, i ;U s, >U max, i
Notice that if we define
M= (1 +A,)™ 2
then by loop transformations Fig.1 is equivalent to Fig. 2.
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Fig.2 The QP implementation
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We will now show that under certain conditions the loop in
Fig. 2 gives a solution to a quadratic programme (QP). This
isclosely related to Section 4.2.5in [9].

Theorem 1
Consider the nonlinear multivariable algebraicloopin Fig.2.
For M=M">0 and U, given, we then have
U=%U,),and
U,=U-MU-Uy,),or
MU -U,)=U-U,. 4
Solving the algebraic loop in Fig.2, i.e. finding U that
satisfies (3)-(4), is equivalent to solving the following
Quadratic Programming (QP):
U =argmin{J}
UOUg
where Ug; is the constraint set defined as
Usat :{Umin,i < Ui < Umax,i 'i = 112'---1 p}
and
J=1U-Up MU -Uy).

Proof:
The first order Karush-Kuhn-Tucker (KKT) optimality
conditions for the QP problem (5)-(7) are [2]:

3

©)

(6)

(7)

MU -Uy)-(A--4,)=0 (8)

/]_yi (U min,i _Ui) = O fOI‘ i:1,2, caay p (g)

/]+,i (UI _Umax,i) = O fOI‘ i:1,2, caay p (10)

A, 20 (11)

A_20 (12)

Umini SUj SUpg fori=12, ..., p (13)
where A,;and A_jare Lagrange multipliers and
A=y Ay o A and
A=y A, oA,

Condition (13) is clearly guaranteed by the definition of V.
Now rewrite (3) and (4) as

U=YU,)=YU-MU -Uy,)).
Then we have, fori=12, ..., p

(14)

0 ;Umin,i <Ui <Umax,i
U -Ug; = [M u ‘Uo)]i =97 A Ui =U i
A U; =Upin,

(15)
where A, ;,A_; fori=12, ..., p are non negative constants.
In vector form, we can write

A_-A, =MU -Uy)=U-U,. (16)
It is easy to seethat (15) and (16) are equivalent to (8)-(12),
and hence U in (14) isthe optimizer for the QP problem and
Asj A defined in (15) are the Lagrange multipliers. The
result then follows.o

Remark 1: Feasibility and Well-posedness

(1) Thealgebraic loop iswell-posed if M=M">0.

(2) The QP problem is feasible with a unique solution if
and only if the nonlinear algebraic loop is well-posed
(unigueness of solutions). o

Remark 2: Lagrange Multipliers

Implementation in Fig. 2 shows that the Lagrange
multipliers given by eguation (16) are the difference
between the signals at the output and the input of the
saturation block. o

Remark 3: MPC-Antiwindup relation

MPC, with control horizon one, is therefore equivalent to a
special case of static-antiwindup, where A, isrestricted to be
symmetric, and /,>-1. Note that by a small extension, Fig.2
also works with M=D.Q, where Q=Q">0 and D=diag(d;)>0,
since diagonal scaling of the Lagrange multipliers does not
alter the optimality conditions.

Remark 4: MPC Applications

A QP problem in an MPC can be implemented as a block
diagram shown in Fig. 2 and the properties (e.g. stability) of
the MPC are retained. The dimension of the diagonal
saturation in the block diagram is equal to the dimension of
U.o

3 Applicationsto MPC
3.1 MPC Regulator Problem

Consider a detectable plant

X1 = AX + Bl (17)
Y = CX (18)
and an objective function
_ Nyt Nyl o _
J= X-IE+NyQNka+Ny + z Xi-<r+tQXk+t + zu-krﬂRukH
t=0 t=0
(19)

where x, OR", y, OR', u, OR™, x{+Ny6Nyxk+Ny isa
stability constraint [2], Ny= prediction horizon, N,= control
horizon, N, <N,, Q =Q" =20,R=R" >0. For
simplicity, we take N=N,=N, to define



Xk+1 uk
u
x=| 2| y=| B (20)
Xk+N uk+N—1
and have
X =dx, +Ir'y

where ® and T are functions of A and B matrices, and
Q, =Pisthesolution of adiscrete Riccati equation
ATPA-P-ATPB(R+B'PB)B"PA+Q =0 (21)
Using MPC strategy, the problem isto design a controller

for the plant by finding U that minimises J over the
prediction horizon N, i.e. to find

U=arg min{J} (22)
subject to the constraint
Unin < Ugsj < Upg» j=0,1, .., N-1 (23)

and use thefirst control vector in U as the current control
input for the plant
— — =T
U =[ln, 0 - OU=EU. (24)
The above procedure is then repeated subsequently over the
time.

Now, for prediction horizon N we have the following
equivalent problem:
Find U tominimize

Jr =2 U +M7Fx) MU + M Fx,) (25)
subject to
TUyin SU < 1U, - (26)
where
M=r"Qr+R, F=r'Qe, (27)
1:[Im Im Im]T (28)

(array of N identity matrices of msize), and the matrices Q
and Rare functionsof P, Q , and R matrices.

Notice that Jr isreadily in the form where the associated QP
problem can be implemented using Theorem 1. By defining

Ug=-M7Fx,, (29)
the MPC for this regulator problem can be implemented in
the block diagram shown below. In addition, the saturation

levels of the mN-dimensional diagonal saturation W(.) have
to be set up according to the constraint (26).

-MF

Fig. 3 MPC implementation of (25)-(29)

3.2 MPC Tracking Problem

Consider a detectable plant
X1 = AX + B (30)

Yie = CX, (3D)
where x OR", y, OR', u, OR™. Theoutput Y, is

required to track an input referencew, O R'. To achieve
zero tracking error, an integrator in the form of

Uy = Uy + AU (32)
is augmented to the plant so that the the augmented plant
can be written as

— _ Xk+]_ _ —
Xi+1 —{ ) } = AX, +B.Au, (33)
k
Y = CX (34)
where A, B, and C are appropriate matrices.

Define the objective function as
Ny-1 Ny -1

J= QI+Ny6NQ<+Ny + z q-(r+t6Q(+t + ZAUIﬂﬁAUkﬂ
t=0 t=0

(35)
where e=yi-W,, Ny= prediction horizon, N,= control
horizon,N, <N,, Q =Q" =0andR=R" >0.

As before, for smplicity wetake N = N, = N to define

yk+1 Wk+1 Auk
W Au
v=| Fezlwe| Moz |y =] Tt g
Yk+N We+N Auyn
and have
Y =X, +IU,

where ® and I" are functions of A, B, and C matrices.

It is, however, often that the constraint on the amplitude of
the control input is preferred than therate of it. To thisaim,

one may use the following expression [4]:

Uy =DU -Eu,_;, (37)
(1, 0 « 0 O]
“ly Iy =+ 0 0O
with,D=| : & o i i (38)
0O 0 « I, O
0 0 -« =, I,

to get the fol lowi ng equivalent problém:
Find U to minimise

I =lU+MTRX)TMU +M X)) (39)

subject to

TUyin SU S 1y, - (40)
where

x=[d uw, -wTT, (41)

M=T'"Qr +D'RD,

Fy =T'Q®+D'RG. (42)

Thematrices ®, T, Q, R, and G arefunctions of A, B, C,
D, E;, Q, and R matrices.



Jr is now readily in the form in which the associated QP
problem can be implemented using Theorem 1. Hence, by
defining

Uy=-MF X =-MYF H]{ XM (43)
the MPC for this tracking problem can be implemented in
the block diagram shown below. In addition, the saturation

levels of the mN-dimensional diagonal saturation W(.) have
to be set up according to the constraint (40).

o]
i

Fig. 4 MPC implementation of (39)-(43)

3.3 Algorithms For Solving The Algebraic L oop
Theorem 1 has shown that a QP problem with lower and
upper bound constraint on the variables is equivalent to
solving a multivariable algebraic loop involving a diagonal
saturation with associated lower and upper level of
saturations. Hence, implementing such algebraic loop in a
discrete timeis equivalent to solution of a QP.

Among many QP algorithms proposed in MPC problems,
active-set methods are sometimes adopted in practice. Other
algorithms, such as interior point methods, with stronger
guaranteed performance results may also be used. Now,
based on the fact explained in Theorem 1, we may derive
other alternative algorithms from the feedback structure of
the loop. The algorithms are simple to implement since they
basically just iterate a variable of the loop until it converges.

1. Algorithm-1 (original)
Referring to Fig.2, we may have its associated iterative
algorithms below.
U=Y(MU,+(I -MU))=¥YU-MU -Uy))
(44)

Its iterative implementation may have the following form
Uy =¥YU -MU -Uy)). (45)
Note that since M =0J , in the absence of saturation, this
algorithm is essentially a steepest descent method with unity
step length. 1t iswell known that a steepest decent method is
sensitive to a scaling. Hence, a scaling method, such as a
constant or diagonal matrix scaling, may be used to improve
the convergence rate of this algorithm. To anayze
convergence, we note that ¥ is a nonlinear operator with
incremental gain < 1. Therefore, provided 0<M<2I, the
iteration defined by (45) converges exponentially to the

single solution. Thisalgorithmisalso found in [9].

2. Algorithm-2 (alter native-A)
By loop transformation, we may get an aternative block
diagram of the algebraic loop in Fig.2 as shown below.

U, 4 V, vV

> Y- |
£
M-

Fig.5 Block diagram of the Alternative-A
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As before, to achieve a good convergence rate, a constant
scaling for M may be employed. The iterative algorithm
may be derived from this feedback structure as follows.

The loop equations, which are

Ve=Ug+(M™=1)V (46)
V=W, (V)

may be implemented iteratively by
Vi = WaUg + (M= 1)V) (47)

where

Y, (X)=¥Y-1:=¥(x)—x.
Provided 0<M?<2l, that is M>0.5l, (47) converges
exponentially fast. When the iteration converges, the
solution of the loop is then obtained by

U =V +Uy+(M =1V,

3. Algorithm-3 (alternative-B)

By loop transformation, we may get another aternative
block diagram of the algebraic loop (see also [10]) in Fig.2
as shown below.
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Fig.6 Block diagram of the Alternative-B

The iterative algorithm may be derived from this feedback
structure as follows.
The loop equations, which are

W, =F; Uy +F,W (48)
W =W, (W)

may be implemented iteratively by
Wisr = Wh(F Ug + R W) (49)

where W, (W,) =W -0.51 :=WW,)-0.5W,,
Fe=2(1+M)™M ;Fy =201 +M) (1 - M).

In this case, ¥, is a nonlinear mapping with incremental
gain < 0.5; and for any M>0, F, is a matrix with || Fp||i2<2.
Therefore, exponential convergence for (49) is guaranteed.
When the iteration converges, the solution of the loop is
then obtained by

U' =W +3(FfUg+F,W).

4 Simulation Examples

Consider the continuous plant with the transfer function



P() = 10 { 4 5} (50)

100s+1|-3 4
which was used by many authors as an example in the
context of anti-windup controller synthesis (e.g. [6]) and
also recently in the context of MPC design in [2]. The
discrete time modd is obtained with sampling time T=1 sec.
Referring to Section 3.3, the MPC tracking problem is set
with

f— N_l —_— —_—
J = e nQuben + Z(QIHQQM + AU, RAU )
t=0

(51)
Q =diag(1l), R = diag(0.1,0.1) (52)
w, =[06 08 ,andN=Nz=N,=8 (53)

We look at the case where the constraint (over the horizon)
is -1<u, <1 with the objective function J (51) and the

MPC is implemented as shown in Fig. 4. and simulated in
SIMULINK. Note that SIMULINK uses Newton method
with rank-one-update for solving an agebraic loop. The
simulation result is presented in Fig.7 with u,, =-1 for

two different values of Unay.

To study the performance of four algorithmsimplementing a
nonlinear algebraic loop, we do a discrete time simulation
that iscoded in MATLAB and run in a P3-800MHz PC. The
simulation is now with varied input references until t=1500
sec and theresults are shown in Fig.8 and Table 1.

In the table, N is the control horizon, IPisfor interior point
method, rcond is the condition number of matrix M, and
flops is the number of floating point operations required by
each algorithm to get a solution within the specified
tolerance. The worst case of convergencerate is provided in
the last column, if it is applicable. Algorithm-1, 2 and 3
have also been scaled accordingly for their best theoretical
computational performances. Theinfinity norm of the error
between consecutive iterations is required to be less than or
equal to a specified tolerance (which is 5.10®) for stopping
the iteration.

The table shows the performance of Algorithms-1, 2, and 3
relative to the active-set and interior point methods. It can be
seen that the |P method is the best among the othersin terms
of peak flops. Although CPU time for MATLAB is not
necessarily a good measure, the Algorithms-1, 2, or 3 is
shown to be the fastest algorithm in terms of total simulation
time.

Unlike the active set and IP methods, the performances of
these three algorithms are dependent on the tolerance given.
Hence, it needs a more elaborate performance analysis. In
general, however, these algorithms show alternatives in
which each algorithm needs alarge number of iterations, but
each iteration consists of smple operations. It is aso noted
that these iterative algorithms do not give quadratic
convergence. However, they do alow guaranteed
convergence rate, though in practice, this may be
conservative.

5 Concluding Remarks

We have shown that a class of nonlinear algebraic loopsthat
are commonly found in anti-windup schemes is equivalent
to a QP. This observation helps unify the seemingly
disparate fields of MPC and anti-windup. In particular, for a
control horizon of one, MPC is a type of an anti-windup
control, and for larger control horizons, anti-windup can be
generalised to such case. Our formulation also leads to the
implementation of the QP in MPC on a simple block
diagram. Its application to MPC for regulator and tracking
problems has also been presented. Several simple iterative
algorithms equivalent to a constrained QP have been derived
based on their associated feedback structure.
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Fig. 7 Time responses for step references (solid: Unax=1; dashed: Una=0.7x1)
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Fig.8 Output time responses for varied input references

1250 1500

N Algorithm Flops Sim.CPU | Conv.
(rcond) 9 Peak | Average | Time () Rate
IP 977K | 301.8K 207s| na
33 Active-set 1.32M | 979.9K 50 s n.a
(2.05x10°%) Alg-1 Stopped dueto dow progress | 0.9999
' Alg-2 9.18M 292K 47 s =1
Alg-3 13.5M 1.33M 73s| 0.9915
IP 4.09M | 916.2K 524s| na
50 Active-set 4.1M 3.06M 96 s n.a
(1.01x10%) Alg-1 Stopped due to slow progress ~1
' Alg-2 21.4M 705K 75¢ =1
Alg-3 57.6M | 4.17M 147 s| 0.9957
IP 11.8M | 3.04M 1738s| na
77 Active-set 13.9M 10.5M 237 s n.a
(5.2x10°) Alg-1 Stopped due to slow progress ~1
' Alg-2 50.6M 1.76M 136 < =1
Alg-3 247.8M 14.6M 425s| 0.9978

Table 1: Performance comparison
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