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Abstract— This work presents a waypoint trajectory planning
technique for an autonomous vehicle in the presence of obstacles
using a tunnel-MILP formulation for the avoidance constraints.
Predictive Control is used to address the issues of dynamic
constraint satisfaction and obstacle avoidance. However, the
complexity of the optimization problem to be solved may
escalate as the number of obstacles increases. To circumvent
this issue, a tunnel-MILP approach is employed. Even so, the
optimization problem may still be too complex, i. e., involve
a large number of decision variables, to be computationally
tractable within the relatively small sample time required by
vehicle guidance applications. The number of decision variables
is reduced via the pre-computation of waypoints during an off-
line trajectory planning phase. In this manner, during the on-
line control phase, the optimization problem to be solved needs
only to compute a control solution to reach the next waypoint
in the sequence, instead of the whole control solution to reach
the target set from the current position. Simulation results
are presented to show that the employment of the waypoint
trajectory planning technique brings about benefits regarding
the computational burden associated to the solution of the on-
line optimal control problem.

Index Terms— Predictive control, trajectory planning, way-
point, tunnel-MILP.

I. INTRODUCTION

Typical vehicle guidance missions usually require that the

state-vector of the vehicle reaches a given terminal set in

finite time while avoiding collisions with obstacles. More-

over, fuel expense minimization and dynamical constraints

enforcement are other issues that should be faced by a

successful trajectory planning/control framework candidate,

particularly for Unmanned Aerial Vehicles (UAVs) guidance

missions [1].

The classical approach to guidance of vehicles has been

to divide the task in three layers [1]: path planning, which

encompasses the search for a set of positions that the vehicle

must occupy in order to go from the initial position to the

goal (possibly including avoidance of collision with obsta-

cles), the search for a feasible trajectory that respects this

path and the dynamic constraints of the vehicle and, finally,

a feedback control strategy to make the vehicle follow the

planned trajectory and account for modeling errors, external

disturbances and possible faults.

However, different approaches have been developed which

merge the first two phases, incorporating the dynamic con-
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José dos Campos, SP, Brasil Emails: rubensjm@ita.br, kawakami@ita.br,
kienitz@ita.br

straint satisfaction and obstacle avoidance eliminating the

path planning phase and performing trajectory planning

accounting for these issues. In [2] a navigation function

is developed to cope with the nonlinear dynamics of the

vehicles and the obstacle avoidance constraints, allowing the

use of a gradient descent method for optimization. Other

methods have used Rapidly-exploring Random Trees (RRTs)

to search the state-space respecting the dynamic and obstacle

avoidance constraints [3], [4], [5]. In [6], a randomized,

incremental motion-planning algorithm was proposed to deal

with dynamic constraints and avoidance of collision with

obstacles, both fixed and moving. An interpolation algorithm

is used to generate a continuous family of vehicle maneu-

vers from classes of user-provided motion examples while

enforcing nonlinear system equations of motion as well as

nonlinear equality and inequality constraints in [7].

Model-based Predictive Control (MPC) approaches inher-

ently address some of these issues due to their nature of

obtaining a control signal by solving a constrained optimal

control problem at every sample instant [8], [9]. For instance,

a cost function which penalizes the variables associated to

fuel expense may be used to produce a control solution

minimizing the fuel consumption to carry out a particular

maneuver. As for the dynamical constraints, they can be

imposed as constraints over the state and/or control variables.

Therefore, MPC arises as one potential candidate for the

control and trajectory planning of UAVs.

A number of approaches employing MPC for trajectory

planning in the presence of constraints have been developed

for autonomous vehicles. In [10] nonlinear MPC was used for

trajectory generation for an Unmanned Aerial Vehicle (UAV).

Employing truncated Taylor series, a closed-form solution

for the optimal control problem with nonlinear MPC was

allowed in [11] for UAVs. In [12], the trajectory planning

was posed as a constrained optimization problem in the

output space using the differential flatness property of the

motion equations of the vehicle. More recently, a counter-

hijack system was developed in [13] which avoids collisions

with buildings and other relevant structures (such as power

plants) by modeling these as no-fly zones in a trajectory

planning problem and a dualization method was used to

permit the employment of a gradient descent technique to

solve the nonlinear optimization problem.

A variable-horizon MPC formulation with terminal set

and obstacle avoidance constraints was proposed in [14].

The resulting optimization problem involves a linear cost

function, subject to linear inequalities. Nevertheless, the

employment of a variable horizon includes discrete variables
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in the optimization problem. Thus, the resulting problem is

a Mixed Integer Linear Programming (MILP) one, involving

both continuous (control values) variables and discrete (the

horizon) ones. The avoidance constraints, for their part,

make the optimization problem non-convex. This issue is

circumvented through the employment of some additional

binary variables and can also be encoded as a MILP problem,

in a method called “big-M”.

The ability to cope with all these issues makes the MPC

formulation for trajectory planning and control in [14] an

interesting candidate for a guidance framework. On the other

hand, the computational burden associated with the solution

of a MILP problem involving a large number of decision

variables may make it intractable within the relatively small

sample time required by UAV applications.

For instance, the number of binary variables scales very

quickly with the number of obstacles. Typically, one binary

variable is required to account for each side of one obstacle

at every step along the prediction horizon. Therefore, with a

horizon N , the addition of an obstacle with Nf sides requires

N × Nf additional binary variables to avoid this obstacle.

In [16], the number of binary variables necessary to avoid

obstacles is reduced by using a pre-planned path to identify a

sequence of convex polytopes forming a tunnel that connects

the initial position of the vehicle to the terminal set. After-

wards, the MPC formulation of [14] is employed, but the

avoidance constraints are replaced by others that constrain

the position of the vehicle to remain within one of the convex

polytopes forming the tunnel. The technique proposed in

[16] is termed tunnel-MILP. Recent papers describe ways

of implementing the obstacle avoidance constraints with less

binary variables, reducing the number of binary variables

from Nf to log2 Nf to implement the avoidance constraints

for a single obstacle [17] [18]. However, this can also be

explored with the tunnel-MILP approach, reducing the num-

ber NT of variables to represent the avoidance constraints to

log2 NT . Therefore, the reduction of binary variables with

employment of the tunnel-MILP is still meaningful.

Despite this effort to reduce the number of binary variables

associated to the avoidance constraints, the main source of

a large number of decision variables is still not addressed:

if the horizon to reach the terminal set is large, a great

number of decision variables results and the optimization

problem to be solved in order to produce the control signals

may be computationally intractable within the sample time.

This is due to the fact that at every sample instant the

whole trajectory from the current state to the terminal set

is recomputed. This issue is addressed in [15] by using a

smaller horizon for the planning phase and a terminal cost

obtained by estimating the time to reach the terminal point

via a graph search performed on a Visibility Graph. Another

approach to circumvent this difficulty was proposed in [19]

through the division of the mission in tasks that can be

performed within smaller horizons. The division makes use

of a pre-planned path composed of a sequence of straight-line

segments connecting the initial position of the vehicle to the

terminal set while avoiding obstacles. Such a path is used to

constrain the position of a pre-defined number of waypoints,

which are determined during a trajectory planning phase.

They are calculated so that the vehicle can reach the first

waypoint from the initial position within a pre-determined

horizon, then the second waypoint from the first and so on,

until reaching the last waypoint, from which it is possible

to reach the target within the same small horizon. These

waypoints are subsequently passed to a decision component

which selects which of them is the active target and passes

it to the control layer. Therefore, since it is possible to reach

this target within a small horizon, this horizon is the one

employed for the optimization problem solved to obtain the

control signals.

In this paper a combination of the tunnel-MILP [16] and

waypoint trajectory planning [19] techniques is proposed.

The tunnel-MILP algorithm requires a pre-planned path, as

does the waypoint trajectory planning. Moreover, the tunnel

formed of convex polytopes can be used to replace the ob-

stacle avoidance constraints and is also ideal to be used with

the waypoint trajectory planning, since the trajectory will

remain close to the pre-planned path because the waypoints

are constrained to it. Thus, in a certain way, it is expected

that the planned trajectory will obey the tunnel constraints

with no or slight modifications to the control solution. The

final result should be that the on-line control problem will

have fewer decision variables, which, in turn, will allow the

optimization to be accomplished at a faster rate.

The remainder of this paper is organized as follows. In

Section II, the trajectory planning architecture employed in

the present work is presented. The main contribution of this

work is introduced in Section III, in which a MILP problem

integrating the waypoint trajectory planning technique pro-

posed in [19] with the tunnel-MILP approach proposed in

[16] is formulated. The simulation scenarios are described

in Section IV. Section V presents the simulation results.

Conclusions are drawn and suggestions for future work are

given in section VI.

A. Notation

• x ∈ Rn: plant state;

• x0 ∈ Rn: initial plant state;

• u ∈ Rp: control signal;

• r ∈ R2: vehicle position;

• bWP
i,l ∈ {0,1}: binary variables associated to the posi-

tions of the waypoints;

• btm ∈ {0,1}: binary variables associated to the tunnel-

MILP constraints;

• k: current time;

• ♦̂(k + i|k): predicted value of the variable ♦ at time

k + i based on the information available up to time k;

• N(k) ∈ N: MPC control and prediction horizon;

• Cr ∈ R2×n: matrix that extracts position information

from the state vector;

• U ⊂ Rp: set of admissible control values;

• X ⊂ Rn: set of admissible state values;

• Q ⊂ Rn: set of terminal state values at the end of the

horizon;
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• Zm ⊂ R2: polygon defining the m-th obstacle;

• Tj ⊂ R2: polygon defining the j-th convex polytope of

the tunnel;

• Vi ∈ R2: i-th vertex in the planned path;

• N̄ ∈ N: maximal horizon in the one-step formulation;

• N̄P ∈ N: maximal horizon between waypoints;

• NWP ∈ N: number of waypoints;

• Nobs ∈ N: number of obstacles;

• Nf ∈ N: number of sides in each obstacle;

• NV ∈ N: number of vertices in the planned path;

• NT ∈ N: number of convex polytopes in the tunnel;

• αi ∈ R: variable that determines the position of the i-th

waypoint along the planned path;

• MWP ∈ R+: constant large enough to make waypoint

location constraints inactive;

• M t
m ∈ R+: constant large enough to make tunnel-MILP

constraints inactive;

• rx ∈ R: position along a coordinate axis in a horizontal

plane regarding an arbitrary origin;

• ry ∈ R: position along a coordinate axis (perpendicular

to the first) in a horizontal plane regarding an arbitrary

origin;

• vx ∈ R: velocity associated to rx;

• vy ∈ R: velocity associated to ry;

• ax ∈ R: acceleration associated to vx;

• ay ∈ R: acceleration associated to vy;

• γ ∈ R: weight of the term associated to the fuel

consumption in the control cost function;

• γp ∈ R: weight of the term associated to the fuel

consumption in the waypoint trajectory planning cost

function;

II. TRAJECTORY PLANNING ARCHITECTURE

The path planning, trajectory planning and control frame-

work adopted herein divides the planning and control in

hierarchical levels. This chain may be summarized in three

different layers, as in [19]:

1) Path planner.

2) Trajectory planner.

3) Predictive Control layer.

For the purpose of obtaining a collision-free path, a

number of points are taken over the faces of the obstacles

represented as convex polytopes and the boundaries of the

known environment, over which perfect knowledge is as-

sumed and the movement of the vehicle is constrained to

remain. Figure 1 shows these points as black stars for one

arbitrary scenario. They are used to obtain a Voronoi graph

[20]. Subsequently, the nodes of the graph that are inside

the prohibited region are removed along with the edges that

connected these nodes to the other ones in the graph. What

then remains is a graph whose edges (depicted in Fig. 1 as

black dotted lines) form paths that present a good property

of having equal distance between the obstacles which are the

closest to an edge and the edges themselves. This property

comes from the nature of the Voronoi graph construction,

which maximizes the minimum distance to all points. Two

nodes are added to this graph: the initial position and another

node inside the terminal set (any can be used, but in this

work one at the center of the terminal set is arbitrarily

chosen). These two additional nodes are connected to the

closest nodes of the graph to each of them, which produce

edges that do not cross the obstacles. This is a critical phase,

because if any of these two additional nodes (initial or goal

position) cannot be connect to the graph, any search on the

graph for a collision-free path will fail, unless the initial

position is itself the goal. Thus, the problem is considered

to be inadequately described and either the obstacles, the

known region, the initial or the goal position will have to

be changed in order to allow for a solution. Figure 1 shows

the resulting graph after the addition of the initial position

(depicted as a black square) and the goal point (represented

by a black circle) to the graph.

Afterwards, a graph search is performed to find the short-

est path between the initial node and the final one, via an

A∗ search algorithm [20], [21]. The ensuing path obtained

from the graph is depicted in Fig. 1 by the black continuous

lines that cover the dotted lines of the portion of the graph

constituting the path. The cost herein adopted is composed

of the real distance cost to get to the particular node under

evaluation plus the straight-line distance from this node to

the final one. It is important to remark that it is not required

that a collision-free straight-line exists between the evaluated

node and the goal one. Therefore, this cost is a lower bound

to the total cost to get from the evaluated node to the goal

[20]. The adopted cost function of a node X is

f(X) = g(X) + h(X) (1)

where f is the total cost, g is the cost to move from the

current node to node X and h is the straight-line distance

between node X and the goal node (note that the presence

of obstacles is not considered in calculating h). The A∗

algorithm starts at the initial node, adds all nodes connected

to this one to the frontier and moves to the node with the

least cost in the frontier, repeating this procedure. Any node

that has already been explored is removed from the frontier.

The algorithm stops either when a path is found to the goal,

returning this solution or when the whole graph has been

explored and no path has been found, returning failure in

this case. If this happens, since it was possible to connect

the initial and goal positions to the graph before reaching

this phase, it indicates that the graph presents subgraphs

which are not connected. In this case, again the problem

is inadequately posed and either the obstacles, the known

region, the initial or the goal position will have to be changed

in order to allow for a solution.

This initial path is then filtered in order to remove some

edges while maintaining it free of collisions with the obsta-

cles, if possible, as a larger number of edges entails a larger

number of decision variables, both continuous and binary, in

the optimization problem solved to determine the positions of

the waypoints. For this purpose, an algorithm tries to connect

node i to node i + 2. If the resulting edge is collision-free,

then node i + 1 is removed and the edges between nodes i
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Fig. 1. Example of Voronoi graph construction (dotted lines). The stars
∗ indicate the points taken at the faces of the obstacles and boundaries of
the environment for the construction of the graph. The path resulting from
the A∗ search performed on the Voronoi graph extended with the initial
(square) and goal (circle) positions is represented by the black continuous
line.

and i + 1 and between nodes i + 1 and i + 2 are replaced

by one between the nodes i and i+ 2. If it collides with an

obstacle, then i is incremented and the algorithm is repeated

for node i+ 1, until the final node is reached. This is done

according to Algorithm 1 presented below.

Algorithm 1: Reduce number of edges in Path

1: i← 1
2: while Vi+2 6= Goal Node do

3: if K(ViVi+2) == ∅ then

4: Path← Remove(Path,Vi+1)
5: else

6: i← i+ 1
7: end if

8: end while

�

In Algorithm 1, the Path = {Vi} variable is the ordered

sequence of vertices in the path from initial node to goal

node, and thus, Vi is the i-th vertex in this sequence (V1 =
Initial Node); K is the set formed by the intersection of

the straight-line segment Vi Vi+2 with the set of obstacles
⋃Nobs

m=1Zm, Zm = {r|P obs
m r ≤ qobsm , m = 1, . . . , Nobs};

function Remove(♣,♦) removes the node ♦ from the path

♣ and returns the reduced resulting path. By applying this

filtering algorithm to the example path of Fig. 1, the reduced

path shown in black continuous lines in Fig. 2 is obtained.

After that, a Delaunay triangulation of the space is com-

puted [22]. It divides the bidimensional space into triangles

that cover the whole space and whose intersection is empty,

save possibly for their sides. For the triangulation, a number

of points needs to be taken in the space. In the present work,

these points are the vertices of the obstacles and of the known

region. The resulting Delaunay triangulation is depicted in

Fig. 2 for the example of Fig. 1. The sides of the resulting

triangles are represented by the black dotted lines in Fig.

2. The triangles that are crossed by the planned path are

computed and merged to form convex polytopes if possible,

attempting to reduce the number of polytopes in the tunnel.

These are used to impose the obstacle avoidance constraints

as in the tunnel-MILP formulation [16]. Figure 2 shows the

resulting tunnel after merging the triangles composed of the

polytopes in shades of gray.
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Fig. 2. Reduced path resulting from the application of Algorithm 1 to the
example path of Fig. 1 (black continuous lines). The Delaunay triangulation
of the scenario is represented in dotted lines and the merged polytopes
crossed by the reduced path are displayed in shades of gray.

Fig. 3 presents the trajectory planning/control framework

adopted in this work, which is the same as in [19]. The

integration of the tunnel-MILP approach to the proposed

waypoint trajectory planning technique is done in the “Tra-

jectory planner” block. The “Active target selection logic” is

responsible for commuting the current target in the following

manner: if the position of the vehicle is equal (within an

arbitrary numerical tolerance) to the current active target

(starting from the first waypoint), then the active target is

changed to the next waypoint in the sequence; otherwise,

the active target remains the same. If the last waypoint is the

current active target and it is reached, then the next active

target will be the terminal set.

III. TRAJECTORY PLANNING TECHNIQUE

The trajectory planning technique employed in this paper

builds upon the one proposed in [19]. It determines a se-

quence of waypoints between the initial position and the goal

set. By following this sequence, the vehicle approaches the
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Fig. 3. Trajectory planning and control architecture used in this work.

goal set. The smallest horizon necessary to reach waypoint i

from waypoint i− 1, as well as the ones necessary to reach

the first one from the initial position and the goal set from

the last one, is smaller than the horizon necessary to reach

the goal set directly from the initial position.

The positions of the waypoints are constrained to remain

on a pre-planned path. This leads to a reduction on the

complexity of the trajectory planning task, as the search

space for the positions of the waypoints is simplified.

The main difference between the trajectory planner pro-

posed in [19] and the one employed herein is the incorpora-

tion of the tunnel-MILP formulation for collision avoidance

proposed in [16]. This formulation of the collision avoidance

problem reduces the number of binary variables necessary to

avoid obstacles by using a decomposition of the space in a

sequence of convex polytopes crossed by a pre-planned path

that form a tunnel from the initial position to the goal. Since

this path is already used in the trajectory planner proposed

in [19], the only additional effort necessary to calculate

the tunnel is to divide the space in a sequence of convex

polytopes and compute the ones that are crossed by the

pre-planned path. This is solved by employing a Delaunay

triangulation. Afterwards, the triangles that are crossed by

the path are identified and, in order to reduce the number

of necessary binary variables, these are united to form the

smallest number of convex polytopes possible.

Let the NT convex polytopes forming the tunnel be given

as linear inequalities Tj = {PT
j r ≤ qTj }, j = 1, . . . , NT .

Then, in order to avoid collisions with the obstacles, the

position of the vehicle must remain inside one of the poly-

topes Tj at every instant. The waypoint trajectory planning

problem with collision avoidance can be posed as a MILP

problem as follows:

Problem 3.1: Let NWP , N̄P , NT , and {Vi}, i =
1, . . . ,NV + 1 be the preset number of waypoints, the

maximal horizon to reach an waypoint from the previous

one, the number of convex polytopes in the tunnel and the

ordered sequence of vertices whose connection via straight-

line segments produces the collision-free path (V1 is the

initial position of the vehicle), respectively. The waypoint

determination problem is stated as

min
û, αi, btm, bWP

i,l

NWP
∑

i=1

αi + µ

NWP
∑

i=1

NV
∑

l=1

lbWP
i,l + γp

(NWP+1)N̄P
∑

j=1

ξj

(2)

s.t.

r̂(k + iN̄P |k) ≤ (αi −NV + l)Vl+

+ [1− (αi −NV + l)]Vl+1 +MWP (1− bWP
i,l ), (3a)

1 ≤ i ≤ NWP , 1 ≤ l ≤ NV

− r̂(k + iN̄P |k) ≤ −{(αi −NV + l)Vl+

+ [1− (αi −NV + l)]Vl+1}+MWP (1− bWP
i,l ), (3b)

1 ≤ i ≤ NWP , 1 ≤ l ≤ NV

NV
∑

l=1

(NV − l)bWP
i,l ≤ αi, 1 ≤ i ≤ NWP (3c)

NV
∑

l=1

bWP
i,l = 1, 1 ≤ i ≤ NWP (3d)

bWP
i,l ∈ {0,1}, 1 ≤ i ≤ NWP , 1 ≤ l ≤ NV

0 ≤ αNWP
≤ αNWP−1 ≤ · · · ≤ α1 ≤ NV (3e)

x̂(k + (NWP + 1)N̄P |k) ∈ Q (3f)

û(k + j|k) ∈ U, 0 ≤ j ≤ (NWP + 1)N̄P − 1 (3g)

x̂(k + j|k) ∈ X, 1 ≤ j ≤ (NWP + 1)N̄P − 1 (3h)

P t
mr̂(k + j|k) ≤ qtm +M t

m(1− btm(k + j|k)) (3i)

NT
∑

m=1

btm(k + j|k) ≥ 1, btm(k + j|k) ∈ {0, 1}, (3j)

1 ≤ j ≤ (NWP + 1)N̄P , 1 ≤ m ≤ NT

− ξj ≤ û(k + j|k) ≤ ξj , (3k)

0 ≤ j ≤ (NWP + 1)N̄P − 1

where µ, γp > 0 are scalars, r̂(k + iN̄P |k) = Crx̂(k +
iN̄P |k) is the predicted position at sampling time (k+iN̄P ),
and M t

m is a vector with the same size of qtm, obtained

by stacking a scalar M t > 0 large enough to make the

inequalities P t
mr̂(k + j|k) ≤ qtm inactive. Thus, instead of

using (NWP +1)N̄PNfNobs binary variables to impose the

collision avoidance inequalities as in [19], now only as many

as (NWP + 1)N̄PNT are necessary.

The minimization of the first term of the cost function in

Eq. (2) prioritizes solutions that have the waypoints farther

from the initial position and closer to the terminal set, in

order to avoid low initial speeds.

In order to position a waypoint between the vertices Vl

and Vl+1, this point must lie within the segment VlVl+1. This

means that the point may be written as Vl+1+β(Vl−Vl+1),
with β ∈ [0,1) . In Problem 3.1, this is done by making β =
αi −NV + l. With the maximization of (NV − l)bWP

i,l , 1 ≤
l ≤ NV (equivalent to the minimization of the second term
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in the cost function) subject to the constraint in Eq. (3c),

the value of (NV − l)bWP
i,l is the greatest integer which is

smaller or equal to αi for any positive value of the scalar µ.

The constraints in Eqs. (3a), (3b) and (3d) impose that each

waypoint is located at one and only one segment of the path.

For this purpose, the scalar MWP is chosen large enough to

render the constraints in Eqs. (3a) and (3b) inactive when

bWP
i,l = 0.

The positions of the waypoints between the initial position

and the last vertex, are uniquely determined by the values

of αi, 1 ≤ i ≤ NWP . Each waypoint (from 1 to NWP ) lies

farther from the initial position than the one before, because

of the constraint in Eq. (3e).

The last term of the cost function in Eq. (2) penalizes

the sum of the absolute values of the control variables. This

aims at minimizing the amount of actuator effort during the

maneuver.

As the number of waypoints NWP and the horizon be-

tween them N̄P are fixed, if Problem 3.1 is infeasible, an

increase either in NWP or N̄P is necessary, to allow for

more optimization variables in order to reach the terminal

set.

It is important to remark that the trajectory planner cost

function used to obtain the positions of the waypoints and the

control loop one are not the same. Therefore, there may be

differences between the planned trajectory and the one that is

actually executed. The control loop cost function employed

in the present work is the same proposed in [14] and adopted

in [16] and [19]. When compared to the trajectory planner

cost function of Eq. (2), it can be seen that the maximal

horizon in these are different (N̄ for the control loop cost

function and (NWP + 1)N̄P for the trajectory planner cost

function) and the horizon itself is not minimized in the latter.

Moreover, the trajectory planner cost function involves terms

related to the position of the waypoints, which are not present

in the control loop cost function.

In this paper, robustness to disturbances is not considered.

Nevertheless, the trajectory planning technique could be

extended to cope with unknown but limited disturbances by

replacing the concept of waypoints by waysets, which the

state of the vehicle must reach at a given time. The waysets

would be determined so that they can be reached within

the desired horizon despite the disturbances. Robustness to

disturbances during the control phase would then be achieved

using the control formulation in [14] with the appropriate

wayset as the terminal set and an active target set switching

logic similar to the one used in the present paper.

IV. SIMULATION SCENARIOS

A model of a particle moving in two dimensions was

employed for simulation, as in previous works concerning

the use of MPC and MILP for trajectory planning [14], [16],

[17]. The continuous-time model equations are:

ṙx = vx, v̇x = ax, ṙy = vy, v̇y = ay (4)

where the position of the particle in a plane with respect to

an arbitrary reference frame is represented by rx and ry . For

control purposes, it is interesting to re-cast these equations in

state-space form (ẋ = Acx+Bcu). This is done by defining

the state and control vectors as x = [rx vx ry vy]
T

,

u = [ax ay]
T

. The MPC approach herein used is one of

discrete time. Therefore, a discrete-time model of the form

x(k + 1) = Ax(k) +Bu(k) was obtained with

A =









1 T 0 0
0 1 0 0
0 0 1 T

0 0 0 1









, B =









0.5T 2 0
T 0
0 0.5T 2

0 T









(5)

where T is the sampling period. For the simulations in the

present paper T was normalized to one time unit.

The constraints imposed on the velocities and acceler-

ations are −1 ≤ x2, x4 ≤ 1 and −1 ≤ u1, u2 ≤ 1,

respectively. As means to limit the position of the vehicle

to a terrain over which information was assumed to be

available, constraints were also imposed on the position:

0 ≤ x1, x3 ≤ 10.

The goal was to reach a terminal set in the form of

a rectangle described by the following inequalities on the

positions 2.4 ≤ x1, x3 ≤ 2.5 from an initial state that was

arbitrarily set to xT
0 = [0 0 0.1 0]T .

The three obstacles were also represented as rectangles

with 0.6 ≤ x1
1, x

2
1 ≤ 1, 0.3 ≤ x1

3 ≤ 0.8, 1.2 ≤ x1
3 ≤ 3.0,

1.5 ≤ x3
1 ≤ 2.0 and, 0.8 ≤ x3

3 ≤ 1.5, where the superscript

refers to each of the obstacles.

It is worth remarking that the obstacle avoidance con-

straints are only enforced at the sampling times involved

in the discrete time predictions of the position. As a con-

sequence this does not avoid stretches of the continuous-

time trajectory crossing the obstacle. One alternative involves

incorporating restrictions on the transition of the vehicle to

each region of the space defined by obstacle inequalities

to handle this issue, as proposed in [23]. This approach

requires an additional number of binary variables, increasing

the complexity of the MILP problem. In the present work,

the length and width of the obstacles were expanded by an

amount determined through the maximal admissible absolute

value of the velocity in each axis. Thus, the avoidance

constraints that were in fact imposed were constructed based

on the following expanded obstacles: 0.5 ≤ x1
1, x

2
1 ≤ 1.1,

0.2 ≤ x1
3 ≤ 0.9, 1.1 ≤ x1

3 ≤ 3.1, 1.4 ≤ x3
1 ≤ 2.1 and,

0.7 ≤ x3
3 ≤ 1.6,

The weight γ of the fuel in the control cost function was

set to 0.1. The maximal horizon was set to N̄OS = 45 for

the one-step solution. Meanwhile, for the planner solution

N̄P = 10 was adopted and the number of waypoints was set

to N̄WP = 4. The weight of the fuel cost in the planning

phase was γp = 0.1 and the weight of the binary variables

was µ = 1. The average computation time of 10 runs of

each simulation was used to determine the computation times

presented in Section V, in order to eliminate fluctuations

due to external factors. All simulations were carried out in

a personal computer equipped with a Pentium R© Dual-Core

E5400 processor with 2.7GHz clock. For solution of the
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MILP, the CPLEX toolbox from IBM ILOG was used in

Matlab environment, under an academic license.

V. RESULTS AND DISCUSSION

In this section, the trajectories of the vehicle and the gen-

erated control signals with the waypoint trajectory planner

and replanning the whole trajectory at every sample time

in the control phase are compared. The mean and largest

computational times are also compared for both cases.

Figure 4 shows the trajectory with the waypoint trajectory

planner. It can be seen that the vehicle reaches the target set

from the initial position while avoiding collisions with the

obstacles. All the four waypoints are crossed and the total

time to reach the terminal set was 45 sample times.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

rx

ry

Fig. 4. Trajectory with waypoint trajectory planner.

For comparison, the trajectory with replanning at every

sample time can be seen in Fig. 5. The vehicle also reaches

the target set from the initial position while avoiding colli-

sions with the obstacles. It can be noted that the resulting

trajectory is more aggressive than the former one in terms

of proximity to the obstacles. This is due to the constraint

of the waypoints to the initial planned path in the first case,

which causes the trajectory to remain closer to the initial

planned path. This path, in turn, comes from a filtering of

a path obtained via a Voronoi graph. Therefore, it steers the

trajectory to remain closer to a path which maximizes the

minimum distance between the obstacles and itself. The total

amount of time to reach the terminal set was 36 sample times.

Regarding the control action, Figs. 6 and 7 show the com-

manded accelerations with the employment of the waypoint

trajectory planning technique and without it, respectively.

It can be seen that the control signals vary more often

with the waypoint trajectory planning. In this case, the fuel

cost was 31.57 and 31.07 with the replanning. It must be

recalled from section IV that the weight of the fuel expense

in the cost function γ is 0.1. Therefore, the overall cost

involving the total time to reach the terminal set and the fuel

expense was 39.11 in with the replanning and 48.16 with the

waypoint trajectory planning. This shows that constraining

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

rx

ry

Fig. 5. Trajectory replanning at every sample time.

the waypoints to remain in the pre-planned path compromises

the capacity of finding the optimal trajectory. However, this

drawback is compensated by a substantial reduction in the

required computation time.

The times taken to plan and execute the trajectory are

presented in Table I. The times taken to execute the trajectory

(Texec and Tmax
exec ) are respectively, the mean and largest

computation times per sample time. The times to plan the

trajectory, for their part, are only measured once per test,

since planning occurs before the maneuver starts. The time

Ttotal is the average of the summation of the planning time

and the total execution time for all the 45 sample instants

in the case of the waypoint trajectory planner. As for the

replanning case, it is the average of the total execution time

during the 36 sample instants taken to execute the maneuver.

A significant reduction both in mean as well as largest

computation times during the execution may be observed

when the proposed waypoint trajectory planning is used.

The planning phase lasted 35.60s in average and the largest

planning time was 72.49s, which are small in comparison

to a largest execution time of 58.22s at one sample time

without waypoint trajectory planning.

0 0.9 1.8 2.7 3.6 4.5

−1

−0.5

0

0.5

1

t[s]

u(t)

ax
ay

Fig. 6. Control signals with waypoint trajectory planner.
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0 0.9 1.8 2.7 3.6

−1

−0.5

0

0.5

1

t[s]

u(t)

ax
ay

Fig. 7. Control signals obtained replanning the trajectory.

TABLE I

MEAN AND LARGEST TIMES WITH THE TWO SIMULATED EXAMPLES

Time (s)
Simulation

Waypoint Replanning

Tplan 35.60 0
Texec 0.04 11.81
Tmax
plan

72.49 0

Tmax
exec 0.13 58.22

T ∗

total
37.41 425.06

∗ Ttotal is the sum of the amount of time to carry out the maneuver plus

the planning time.

VI. CONCLUSIONS

The integration of the waypoint trajectory planning with

the tunnel-MILP delivered a feasible trajectory and reduced

considerably the computational burden. The grade of opti-

mality required and the computation time present a trade-off,

as seen in the results that showed a greater cost in terms of

the fuel expense and arrival time. Thus, if a more economic

trajectory is necessary and there are more computational

resources available, one can reduce the number of waypoints

and increase the horizon between them.

It is important for real-world applications that the planned

trajectory presents robustness to an unknown but limited

disturbance. Thus, this remains a possible future work.

The planner can be extended for use with a periodic

trajectory by setting a sequence of terminal sets along it. A

state of the vehicle inside the previous terminal set is used

as the initial state in Problem 3.1 and the next terminal set in

the sequence is used as the terminal set of Problem 3.1. This

procedure is repeated for all terminal sets in the sequence.

Future works could include the use of points in the

intersection of adjoint polytopes of the tunnel as waypoints

and have the cost calculated in each intersection to allow for

the use of Dynamic Programming [1], [24], [25], [26].
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