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Abstract— Model predictive control (MPC) is an acclaimed
method for the control of constrained systems. Since a con-
strained optimization problem has to be solved in every time
step, the online computational effort of MPC is high. Explicit
MPC provides an analytical solution to the same optimization
problem, but explicit MPC is only useful for small systems,
since the storage requirements for the explicit control law grow
exponentially in the number of constraints of the optimization
problem.

We show that online MPC can be accelerated with in-
formation on the structure of the control law, where this
structural information is calculated offline with techniques from
explicit MPC. Our two main contributions are as follows: We
demonstrate that online MPC can be sped up significantly if
only q state space regions, the regions of activity, are stored,
where q is the number of constraints. Note that this linear
growth in q is obviously very different from the exponential
growth in q of the number of polytopes that need to be stored
in explicit MPC. Secondly, we claim that the proposed method
is a variant of a family of methods, which comprises online
MPC and explicit MPC as two limiting cases.

I. INTRODUCTION

Explicit model predictive control is usually thought of as

a method to compute analytical solutions to MPC problems.

On a more abstract level, however, explicit MPC provides

insight into the structure of the solution of MPC problems.

In particular, the solution to the constrained LQR problem is

known to be a piecewise affine function on a partition of the

state space into convex polytopes [1], [2]. Some authors have

used this insight into the structure of the solution to improve

online MPC methods. Ferreau and Diehl [3] proposed a

homotopy method to detect active set changes to speed up

online MPC. Pannocchia and Rawlings [4], [5] proposed to

enumerate, or partially enumerate, active sets in online MPC.

This approach builds up a frequency distribution of active

sets and uses this information to anticipate the new active

set when an active set change occurs.

We propose to compute information on inactive and active

sets before runtime, to store this information in the form

of regions of activity (see (11)), and to use the regions

of activity in an online MPC method to speed up the

online optimization step. Essentially, the online optimization

problem is simplified by removing constraints that are known

to be inactive for the current state, and by turning inequality

constraints that are known to be active for the current

state into equality constraints. It is the central aspect of
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the proposed method that only q state space regions, the

regions of activity, need to be found and stored, where q

is the number of constraints of the quadratic program (QP)

solved in each online MPC step. In contrast, the number of

polytopes needed to store the explicit MPC solution grows

exponentially in q.

Several variants of the proposed method can be con-

structed, which differ with respect to their offline compu-

tational efforts, their online storage requirements, and the

degree of reduction of the online QP size that results. We

introduce and investigate two variants that work with q

regions as outlined above. Other variants can be considered

in which the online storage can be tuned to either a smaller,

or larger, number of regions than q. In fact, the explicit MPC

solutions can be conceived as a limiting case of the proposed

method.

Section II states the problem class. The central idea is

introduced in Sect. III, followed by some details on its

implementation in Sect. IV. An example is presented in

Sect. V. Conclusions and an outlook are stated in Sect. VI.

II. MPC PROBLEM STATEMENT

Consider a linear discrete-time system

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t)
(1)

subject to input and output constraints

umin ≤ u(t) ≤ umax, ymin ≤ y(t) ≤ ymax for all t (2)

with system matrices A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n,

states x(t) ∈ R
n, inputs u(t) ∈ R

m, outputs y(t) ∈ R
p, and

bounds umin, umax, ymin, ymax of appropriate dimensions. We

assume the pair (A,B) to be stabilizable. In order to regulate

system (1), (2) to the origin by MPC, the following optimal

control problem needs to be solved. We state this problem

for completeness and to introduce some notation:

min
U,X

x′
t+Ny|t

P xt+Ny|t+

Ny−1
∑

k=0

(

x′
t+k|t Qxt+k|t + u′

t+k Rut+k

)

s. t. xt+k+1|t = Axt+k|t +But+k, k = 0, . . . , Ny − 1,
yt+k|t = Cxt+k|t, k = 1, . . . , Ny,

xt|t = x(t),
ut+k = Kxt+k|t, Nu ≤ k < Ny,

ymin ≤ yt+k ≤ ymax, k = 1, . . . , Nc,

umin ≤ ut+k ≤ umax, k = 0, . . . , Nc,

(3)
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where U ′ = (u′
t, ..., u

′
t+Nu−1), X

′ = (x′
t+1|t, . . . , x

′
t+Ny|t

)

are introduced for convenience, x(t+k|t) is the state at time

t + k predicted at time t, Q ∈ R
n×n, Q � 0, R ∈ R

m×m,

R ≻ 0, P ∈ R
n×n, P � 0 are the usual weighting

matrices. The pair (Q1/2, A) is assumed to be detectable,

K ∈ R
m×n is a feedback gain applied to (1) for all Nu ≤

t < Ny , and Ny, Nc and Nu are the output, constraint and

input horizon, respectively. Closed-loop stability has been

discussed elsewhere (see [1] and references therein). We

choose P and K to be the solution of the unconstrained

infinite horizon LQR problem

P = Q+A′PA−A′PB(R+B′PB)−1B′PA,

K = (R+B′PB)−1B′PA.
(4)

Problem (3) can be solved analytically by transforming it

into a parametric quadratic program [1], [2] of the form

min
z

{

1

2
z′Hz|Gz ≤ w + Sx

}

(5)

with

z = U +H−1F̃ ′x, (6)

nz = mNu, H ∈ R
nz×nz , w ∈ R

q , G ∈ R
q×nz , S ∈

R
q×n, where q denotes the number of constraints. It can

be shown that H is positive definite under the assumptions

stated for (3). Consequently, H is invertible, and therefore

the transformation (6) exists. Bemporad et al. [1] showed that

(5) is solved by a continuous piecewise affine function. More

precisely, there exist a finite number nP of convex polytopes

Pi with pairwise disjoint interiors, gains K̂i ∈ R
nz×n, and

biases b̂i ∈ R
nz , i = 1, . . . , nP such that ∪nP

i Pi = X and

z(x) =











K̂1 x+ b̂1 if x ∈ P1,
...

...

K̂nP
x+ b̂nP

if x ∈ PnP
.

(7)

This z(x) is the solution to the parametric program (5) in

the sense that

z(x) = argmin
z

{

1

2
z′Hz|Gz ≤ w + Sx

}

. (8)

It is unique for every x ∈ X , since the optimization problem

is strictly convex. Once z(x) has been found, the control law

u : X → R
m that solves (3) can be calculated with (6). 1

A. Notation

For an arbitrary matrix M ∈ R
a×b, MS,T with S ⊆

{1, ..., a} and T ⊆ {1, ..., b} denotes a submatrix with the

rows indicated by S and the columns indicated by T . For

any set S denote the convex hull of S by conv(S). Let the

q constraints form the index set

Q = {1, ..., q} .

1Note that it is an abuse of notation to denote both the optimization
variable z in (5) and the solution to the optimization problem z(x) by
the same symbol (also cf. (6)). This notation is used, however, to avoid
cumbersome technicalities.
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Fig. 1. Illustration of the main idea. Sets {1, 3, 5}, {1, 3} etc. indicate the
active set A of the respective region. The region of activity G1 := {x ∈
X| constraint 1 active} (cf. the definition in (11)), is highlighted in (a). G1

is the union of some of the convex polytopes Pj by definition, but G1 itself
is not convex. The convex hull of G1 is highlighted in (b). Since every Gi

is the union of convex polytopes, the convex hull conv(Gi) is a polytope
(as opposed to a more general convex set than a convex polytope). Part (c)
illustrates the implication (14). Since constraint 1 is not active outside of
conv(G1), we can infer that for every x ∈ X\conv(Gi), or equivalently
for all x 6∈ conv(G1), constraint 1 is inactive. (Sample system taken from
Spjotvold et al. [9].)

A constraint i is called active at x if Giz(x)−wi−Six = 0
and inactive if Giz(x)− wi − Six < 0, where x ∈ X is an

arbitrary current state and z(x) is as in (8). By

A(x) =
{

i ∈ Q
∣

∣Giz(x)− wi − Six = 0
}

,

I(x) =
{

i ∈ Q
∣

∣Giz(x)− wi − Six < 0
}

,
(9)

denote the sets of active and inactive constraints, respectively,

for the current state x. The symbol Ã(x) (resp. Ĩ(x)) refers

to subsets of the active (inactive) constraints, Ã(x) ⊆ A(x)
(Ĩ(x) ⊆ I(x)).

We recall that, for every Pj of the control law (7), the

set of active and inactive constraints remains constant in

the interior of Pj [6]–[8]. More specifically, let Pj be an

arbitrary polytope of a control law (7), then A(x) = A(x̄)
(resp. I(x) = I(x̄)) for all x ∈ Pj and x̄ ∈ Pj . This implies

it is meaningful to introduce the set of active (inactive)

constraints Aj (Ij) of a polytope Pj

Aj = {i ∈ Q|i ∈ A(x) for all x ∈ Pj} ,

Ij = {i ∈ Q|i ∈ I(x) for all x ∈ Pj} .
(10)

III. CENTRAL IDEA

The central idea can be introduced as follows. For every

constraint i ∈ Q = {1, . . . , q} define the region of activity

Gi := {x ∈ X| constraint i active}. (11)

Then, for any x ∈ X , constraint i is active if and only if

x ∈ Gi by definition of Gi. In other words

x ∈ Gi ⇔ i ∈ A(x) (12)
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for all i = 1, . . . , q. Note that there exist only q regions

of activity, where q is the number of constraints in (5). In

contrast, the partition needed to define the explicit solution

(7) consists of nP polytopes, and typically q ≪ nP . In fact

the number of polytopes nP may grow exponentially in q.

While there generally exist by far fewer regions Gi than

polytopes Pj , the Gi are in general not convex (see Fig. 1a

for an example). Consequently, it is computationally hard to

check whether x ∈ Gi for some or all i, and it may require

too much computation time to test whether x ∈ Gi or x 6∈
Gi for all i = 1, . . . , q in an online control algorithm. The

computational effort can be reduced, however, by carrying

out a weaker test with the convex hulls conv(Gi) as follows

(see Figs. 1b, c for an illustration). Since conv(Gi) ⊇ Gi, we

have to replace the equivalence in (12) by the implication

i ∈ A(x)⇒ x ∈ conv(Gi). It is straightforward to show by

contradiction that

x 6∈ conv(Gi)⇒ i ∈ I(x) (14)

holds. We claim without proof that conv(Gi) is a polytope

(rather than a more general convex set) for every i ∈ Q, since

Gi is the union of polytopes. Therefore, the computational

effort to test whether x ∈ conv(Gi) is of the same type as

testing x ∈ Pj .

Relation (14) can be used to construct a subset Ĩ(x) of

the true inactive set I(x) for the current state x. We stress

again that only q tests x ∈ conv(Gi), i = 1, . . . , q must be

carried out to find Ĩ(x) ⊆ I(x). For the current state x the

constraints i ∈ Ĩ(x) can be removed from the optimization

problem (5) when solving it online, since these constraints

cannot become active. If some of the regions Gi are convex,

the stronger condition (12) can be used to infer i ∈ A(x). Let

the set of these conditions be denoted by Ã(x). For the given

state x the constraints i ∈ Ã(x) can be treated as equality

rather than inequality constraints, thus further simplifying the

online optimization problem.

Figure 2 juxtaposes the QP (5) and the reduced QPs that

result from exploiting information on active and inactive

constraints. Problems (13a), (13b) and (13c) in Fig. 2 are

equivalent in the sense that the optimal z is unique due to

the strict convexity of (5), and that z is a solution to all of

the problems if it is the solution to one of them.

IV. IMPLEMENTATION

A simple algorithm to construct the regions of activity

is introduced in Sect. IV-A. We stress this algorithm is not

efficient but only introduced to allow a proof of concept for

the use of the regions of activity. We refer to Sect. VI for

further remarks. Section IV-B describes how to carry out the

simplification of the QP described in Sect. III and Fig. 2 in

each step of the online MPC.

A. Offline construction of the regions of activity

The index set Aj introduced in (9) denotes, for every

j ∈ {1, . . . , nP}, the set of constraints that are active on

polytope Pj . Based on the Aj we can find the subset of all

polytopes on which a specific constraint i ∈ {1, . . . , q} is

active. Specifically, constraint i is active for all x ∈ Pj with

j ∈ Ji, where

Ji := {j ∈ {1, ..., nP} |i ∈ Aj }

for i = 1, . . . , q. The region of activity of constraint i

defined in (11) can now be constructed from the union of

all polytopes on which constraint i is active, i.e.

Gi =
⋃

k∈Ji

Pk

for i = 1, . . . , q.

Algorithm 1 summarizes how the sets Ji, i = 1, . . . , q and

the regions of activity Gi, i = 1, . . . , q can be constructed

from the explicit solution (7). In addition to the sets Ji
and the regions of activity Gi, Alg. 1 provides Ī , the set

of constraints that are never active on X . These constraints

i ∈ Ī can be removed from the parametric program (5), since

they are not active for any x ∈ X .

We pointed out in Sect. III that the regions of activity Gi
are in general not convex. Some Gi may be convex, however.

If Gi is known to be convex for some i, we would like to

use the stronger relation (12) instead of (14) for this region

Gi. Without restriction we assume there exists a q̄ ≤ q such

that Gi are nonconvex or not known to be convex for all

i = 1, . . . , q̄ and known to be convex for all i = q̄+1, . . . , q,

where q̄ = q is understood to mean that none of the Gi are

known to be convex. Note that the proposed approach also

works, if some or all convex Gi are treated like nonconvex

regions. In this sense it is not crucial to determine if the Gi
are convex or not.

Algorithm 1 is a brute-force approach that constructs the

q ≪ nP regions of activity from the nP polytopes of the

explicit MPC law. It is obviously of interest to construct the

regions of activity without having to compute the explicit

MPC law first. Here, however, we are interested in construct-

ing the regions of activity in a reliable, simple fashion in

order to investigate their use for accelerating online MPC.

Some remarks on better approaches are given in Sect. VI.

B. Online reduction of the MPC quadratic program

This section describes how to simplify the quadratic pro-

gram (5) to be solved in time step t of the MPC algorithm.

We stress that these simplifications are carried out online, i.e.

once for every time t. The simplifications are based on Gi,
i = 1, . . . , q, Ī, and q̄, which are constructed as described

in Sect. IV-A offline, i.e. once before the online MPC is

started. Assume all constraints i ∈ Ī , where Ī is defined as

in Sect. IV-A, have been removed from (5). The index sets

Ĩ(x) and Ã(x) can be constructed as summarized in Alg. 2.

The implication (14) is used to construct the subset Ĩ(x)
of the inactive constraints for all i = 1, . . . , q̄. The stronger

relation (12) is used to construct the subset Ã(x) of the

active constraints for all regions of activity Gi that are

known to be convex, i.e. for all i = q̄ + 1, . . . , q. After

determining Ĩ(x) and Ã(x), the MPC optimization problem

(5), or equivalently (13a), can be replaced by the reduced

quadratic program (13c). Note that the reduced QP (13c) can

be solved analytically if Q = Ĩ(x)∪Ã(x), i.e. all constraints
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min
z

1

2
z′Hz min

z

1

2
z′Hz min

z

1

2
z′Hz

s.t. Gz ≤ w + Sx s.t. GQ̃z ≤ wQ̃ + SQ̃x s.t. GQ̃z ≤ wQ̃ + SQ̃x

GÃz ≤ wÃ + SÃx GÃz=wÃ + SÃx

GĨz ≤ wĨ + SĨx GĨz ≤ wĨ + SĨx/////////////////////

(a) (b) (c)

(13)

Fig. 2. The optimization problems (a), (b), (c) are equivalent. Problems (a) and (b) are equivalent, since they only differ with respect to notation.

Problem (c) exploits that equality holds in Giz ≤ wi + Six for every state x with i ∈ Ã(x). Similarly, i ∈ Ĩ(x) implies equality cannot hold. Since

Giz ≤ wi + Six cannot be active, constraints i ∈ Ĩ can be omitted in (c) for the given x while constraints i ∈ Ã can be treated as equality conditions.
Ĩ and Ã are short for Ĩ(x) and Ã(x), respectively. Q̃ denotes Q̃ = Q\(Ã ∪ Ĩ).

are known to be either active or inactive at the current state

x.

C. Some remarks on the reduced QP (13c)

If the index set Ã(x) is nonempty for the current state x,

some of the inequality constraints in the original quadratic

program (13a) become equality constraints in the reduced

problem (13c). This simplifies the quadratic program, be-

cause, loosely speaking, it has to be solved on a subspace

only. On the other hand, an additional QR decomposition is

required, which has to be accounted for in the comparisons

in Sect. V. We briefly summarize the necessary computa-

tions for completeness (see [7] for similar calculations in

a different context, also see [10]). We assume that GÃ has

full rank. If this is not the case, an arbitrary subset of the

rows of GÃ can be chosen such that this assumption holds.

Let GÃ
N be a matrix of column vectors that span the null

space and let GÃ
R be a matrix of column vectors that span

the range space of GÃ, where Ã = Ã(x) for short in the

remainder of the section. We claim without proof that the

choice of GÃ
R implies the matrix [GÃ

N GÃ
R] has full rank,

GÃGÃ
N = 0, and (GÃGÃ

R)−1 exists. The equality constraints

in (13c) define a rank(GÃ)-dimensional subspace in the nz-

dimensional space of the generalized inputs z. The optimal

solution can uniquely be decomposed into

z = GÃ
RzR +GÃ

N zN , (15)

Algorithm 1 Offline construction of the regions of activity

Gi from the explicit solution (7).

1: init: Ī ← Q, Ji ← ∅ for all i = 1, ..., q
2: for all i = 1, ..., q do

3: for all j = 1, ..., nP do

4: if constraints i is in active set of Pj then

5: Ji ← Ji ∪ {j}
6: Ī ← Ī\ {i}
7: end if

8: end for

9: Gi =
⋃

j∈Ji

Pj

10: end for

11: return: Gi, i = 1, ..., q

where uniqueness of the coefficients zR and zN follows

from the full rank of [GÃ
N GÃ

R]. Using (15) the equality

constraints can be rewritten as

GÃ(GÃ
RzR +GÃ

N zN ) = wÃ + SÃx.

Since GÃ
N is in the null space of GÃ by definition, this yields

zR = (GÃGÃ
R)−1(wÃ + SÃx).

Replacing z by (15) and using the resulting solution zR, the

QP in (13) can be stated as

min
zN

1

2
z′N ĤzN + F̂ zN

s. t. ĜQ̃zN ≤ ŵQ̃ + ŜQ̃x,

(16)

where Ĥ = (GÃ
N )′HGÃ

N , ĜQ̃ = GQ̃GÃ
N , F̂ =

z′R(GÃ
R)′HGÃ

N , ŵQ̃ = wQ̃ − GQ̃GÃ
R(GÃGÃ

R)−1wÃ and

ŜQ̃ = SQ̃ − GQ̃GÃ
R(GÃGÃ

R)−1SÃ. The reduced QP is

solved over the q − rank(GÃ) dimensional space of the

zN . If rank(GÃ) = nz , the solution of (16) is determined

by the equality constraints alone. In this case, the null

space is empty, the solution is given by z = zR and the

online optimization step can be omitted. The computational

effort for the construction of the matrices GÃ
R and GÃ

N is

taken into account in the numerical experiments reported in

Algorithm 2 Online construction of Ĩ(x) and Ã(x) for

current state x.

1: init: Ĩ(x)← ∅, Ã(x)← ∅
2: for all i = 1, . . . , q̄, i 6∈ Ī do

3: if x 6∈ Gi then

4: Ĩ(x)← Ĩ(x) ∪ {i}
5: end if

6: end for

7: for all i = q̄ + 1, . . . , q, i 6∈ Ī do

8: if x 6∈ Gi then

9: Ĩ(x)← Ĩ(x) ∪ {i}
10: else

11: Ã(x)← Ã(x) ∪ {i}
12: end if

13: end for

14: return: Ĩ(x), Ã(x)
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Sect. V. Both matrices can be found by calculating the QR

decomposition of (GÃ)′. Furthermore note that the matrices

GÃ
R and GÃ

N need not be calculated if Ã(x) = ∅ in time step

t.

V. EXAMPLE

Consider the discrete-time double integrator that results

from zero-order hold discretization and sample time Ts =
0.01s

x(t+ 1) =

(

1 Ts

0 1

)

x(t) +

(

1

2
T 2
s

Ts

)

u(t),

subject to the linear input and state constraints

−10 ≤u(t) ≤ 10,

[−25 − 25]
′ ≤x(t) ≤ [25 25]

′
,

with horizons Ny = 40, Nc = Ny and Nu = Ny − 1.

The matrices P and K are set to the solution of the Riccati

equation (4). The weighting matrices are chosen as Q =
diag ([1 1]) and R = 10. A parametric quadratic program

of the form (3) with q = 244 constraints results for this

system, which can be solved with the MPT toolbox [11].

The MPT toolbox yields a piecewise affine control law on a

state space partition with nP = 3012 polytopes.

We conduct numerical experiments to compare a standard

online MPC implementation to two variants of the acceler-

ated online MPC proposed here. The following abbreviations

are introduced for ease of reference:

full-QP: Solve the QP (5) in each time step t. This cor-

responds to an MPC without any of the reductions proposed

here.

red.-QP-1: Use the weak relation (14) to detect and

omit inactive constraints in each time step t, and solve the

reduced QP (13c). Note that Ã(x) = ∅ in this variant for all

t, since (12) is not used.

red.-QP-2: Proceed as in red.-QP-1. In addition, use

the strong relation (12) to convert inequality constraints to

equality constraints for convex Gi in each time step.

Each of these three MPC variants, i.e. full-QP, red.-QP-

1, and red.-QP-2, is combined with an active set QP solver,

and an interior point QP solver, to result in a total of six

MPC implementations. We use the QP solver quadprog of the

Matlab optimization toolbox with the active-set and interior-

point-convex options2. We choose these generic solvers for

simplicity, for ease of reproducibility in future comparisons,

and in order not to mix effects due to tailored QP solvers

with the reductions to be assessed here. We apply each of the

six MPC variants to 105 random feasible initial conditions

and record the computation time needed to solve one time

step of (3) for every variant and initial condition. The com-

putation times reported for the variant red.-QP-1 include the

times needed to determine Ĩ(x) and to create the respective

reduced QP. The computation times reported for the variant

red.-QP-2 include the times needed to determine Ĩ(x), Ã(x),

2Intel Core2Quad Q9550 processor, Suse Linux, Matlab R2011a. No time
was spent to optimize the code.

and to create the respective reduced QP, including the QR

decomposition discussed in Sect. IV-B.

The results of the numerical experiments are summarized

in Tab. I and Fig. 3. Consider the results for the red.-QP-1

variant first (first and third part of Tab. I and Fig. 3a, c). The

average computation times for both solvers are smaller for

red.-QP-1 than for full-QP (roughly 30% (53%) reduction

for the active-set (interior-point) solver, respectively). Now

consider the results for the red.-QP-2 variant (second and

forth part of Tab. I and Fig. 3b, d). Combining the active-

set solver with red.-QP-2 results in a reduction of the same

order as with variant red.-QP-1 (roughly 31% on average).

The interior-point solver leads to an reduction of the average

computation time of roughly 47%, which is slightly smaller

than the red.-QP-1 variant. The significant reduction of

minimal time, in both variants, corresponds to the case when

all constraints are known to be either active or inactive, and

consequently no optimization problem has to be solved.

We note that it took 1.72s and 0.44s to construct the

regions of activity Gi with a simple Matlab implementation of

Alg. 2 and to check which of the Gi are convex, respectively.

We found 80 regions of activity to be convex, 80 to be

not convex and 84 constraints which are not active in any

polytope. Since these calculations are carried out before

runtime of the MPC controllers, the time required for them

does not affect the times reported in Tab. I and Fig. 3.

Finally, we note that the maximal time, tmax, spent for

solving a single MPC (3) is also reduced significantly in all

cases. We report the times tmax in Tab. I, because maximal

computation times of MPC algorithms are of interest from a

practical point of view.

VI. CONCLUSIONS AND OUTLOOK

We introduced a new online MPC variant that combines

aspects of online and explicit MPC. Essentially, information

on the explicit structure of the control law is used to

accelerate the online solution of QPs. The proposed method

is fundamentally different from existing ones with the same

goal [3]–[5].

The number of polytopes, nP , needed to be stored to

implement an explicit MPC controller grows rapidly in the

number q of constraints of the MPC problem (presumably

nP grows exponentially in q). The method proposed here

requires to store only q polytopes, the regions of activity Gi,
instead of the nP ≫ q polytopes of the explicit MPC law.

The proposed method requires to carry out offline compu-

tations. Since the paper intends to assess the online speedup

that can be achieved, the offline calculations are implemented

in a very simple fashion. We obviously need to investigate

how to calculate the q regions of activity without calculating

the nP ≫ q polytopes of the explicit MPC law first. Future

research is devoted to investigating an approach based on the

vertices of the control law [12]. By using the vertices and

their surrounding active sets we can avoid to calculate all

hyperplanes that define the state space partition. Moreover,

the vertices can be used to speed up the computation of

convex hulls conv(Gi) from Gi.
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Fig. 3. Histograms of computation times tsteps required to solve the MPC problem (3) once. A pair (tsteps, nsteps) gives the number nsteps of runs
among the total of 105 randomized runs that required the computation time tsteps. The four diagrams correspond to the four reduced variants, cf. the label
underneath the figures. Results for the respective full QP variant are shown in blue in every diagram for ease of comparison. Data for the reduced variants
is shown in red. Note the intervals shown on for tsteps differ from diagram to diagram.

active-set solver interior point solver

full QP red.-QP-1 Diff. red.-QP-2 Diff. full QP red.-QP-1 Diff. red.-QP-2 Diff.

tmax 308.432 256.127 -16.96% 252.512 -18.13% 252.534 96.856 -61.65% 147.589 -41.56%
tmin 2.685 1.126 -58.06% 0.706 -73.71% 6.073 1.143 -81.18% 1.714 -71.78%
tavg 37.079 25.862 -30.25% 25.600 -30.96% 10.601 4.981 -53.02% 5.659 -46.62%

TABLE I

SUMMARY OF THE NUMERICAL EXPERIMENTS. SYMBOLS tmax AND tmin DENOTE THE MAXIMUM AND MINIMUM TIME REQUIRED AMONG THE 105

RUNS; tavg DENOTES THE AVERAGE OVER THE 105 RUNS. TIMES ARE GIVEN IN MILLISECONDS.

We note that it is straightforward to construct new variants

of the proposed algorithm, and we claim that online MPC

without any of the proposed accelerations on the one hand,

and explicit MPC on the other hand can be conceived as

limiting cases of all variants. This can be seen as follows.

Our numerical experiments show that it is beneficial to

remove some constraints that are inactive even if not all

inactive constraints can be found. Consequently, the regions

of activity Gi can be replaced by more or less coarse outer

approximations Ḡi of Gi (cf. Sect. IV-A). In fact the convex

hulls Ḡi = conv(Gi) are merely one convenient choice for

Ḡ. Other outer approximations, e.g. based on hyperrectangles

or -ellipsoids, will provide other tradeoffs between runtime

storage requirement and reduction of the number of regions

to a number q̂ < q. Conversely, it is reasonable to explore

variants that cover X with q̂ regions where q ≤ q̂ ≤ nP .

To this end note that there always exist a partition for every

Gi into several convex polytopes. This claim holds, since

Gi is the union of convex polytopes by construction. Other

partitions of Gi may exist, however. This simple insight

suggests to attempt partitioning every Gi into as few as

possible convex polytopes such that q̂ regions cover the state

space, where q ≤ q̂ ≤ nP . The explicit control law is the

limiting case q̂ = nP . In this case no online QP has to

be solved at all, since the exact active set A(x) can be

determined for the current x, and since A(x) defines the

control action.

Finally, we note that the proposed method can be applied

to other parametric optimization problems.
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(MPT),” 2004, http://control.ee.ethz.ch/.
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