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Abstract— Failure prognostics can help improving the avail-
ability and reliability of industrial systems while reducing their
maintenance cost. The main purpose of failure prognostics is the
anticipation of the time of a failure by estimating the Remaining
Useful Life (RUL). In this case, the fault is not undergone and
the estimated RUL can be used to take appropriate decisions
depending on the future exploitation of the industrial system.
This paper presents a data-driven prognostic method based on
the utilization of signal processing techniques and regression
models. The method is applied on accelerated degradations of
bearings performed under the experimental platform called
PRONOSTIA. The purpose of the proposed method is to
generate a health indicator, which will be used to calculate
the RUL. Two acceleration sensors are used on PRONOSTIA
platform to monitor the degradation evolution of the tested
bearings. The vibration signals related to the degraded bearings
are then compared to a nominal vibration signal of a non-
degraded bearing (nominal bearing). The comparison between
the signals is done by calculating a correlation coefficient
(which is considered as the health indicator). The values of the
calculated correlation coefficient are then fitted to a regression
model which is used to estimate the RUL.

I. INTRODUCTION

Prognostics and Health Management (PHM) [1]–[3] is

a process involving data acquisition and processing, fault

detection and diagnostic, fault prognostics and decision sup-

port. Its main purpose is to detect, diagnose and anticipate

the faults on the system and take appropriate decisions

to maintain it in time. PHM can thus help improving the

availability, the reliability and the security of systems. It

helps also reducing the maintenance costs.

Contrary to fault detection and isolation (or fault diagnostic)

which is well developed and spread within the research

and the industrial communities [4], [5], fault prognostics

is relatively a recent activity which is gaining more and

more recognition [3], [4], [6], [7]. Fault prognostics aims at

estimating the Remaining Useful Life (RUL) of a system.

The RUL estimation can be done by using three main

approaches: model-based prognostics (also called physics of

failure prognostics), data-driven prognostics and hybrid prog-

nostics. Model-based prognostics uses mathematical models

of the system including degradation models to estimate the

current health status of the system and predict its future one

leading to RUL estimation. Data-driven prognostics is based

on the utilization of data provided by monitoring sensors to

built a model in terms of states or trends, which are then used

to predict the RUL. Finally, the hybrid prognostics merges
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both previous approaches. Model-based prognostics has the

advantage of giving more precise RUL predictions than data-

driven prognostics. However, in terms of implementation,

data-driven approach is more easier than model-based ap-

proach. This is because for complex systems, with presence

of several components and nonlinearities, it is not trivial

to derive mathematical models of their behavior. In these

cases, data-driven prognostics can be the solution which

makes the trade-off between precision, complexity and cost

of implementation.

This paper presents a data-driven method for the estimation

of RUL of bearings. These latter components are present in

rotating machines and their failures can cause unavailability

of the machine and loss in productivity. They can thus

be considered as critical components for which the fault

progression needs to be monitored and assessed during time.

The main idea of the proposed method is to build a health

indicator which can be used to track the fault progression of

the bearing and predict its RUL. To build the health indicator,

two bearings from a same category are considered: the first

bearing is normal (without faults) and is taken as a reference

and the second bearing presents a degradation. The signal of

the degraded bearing is then continuously compared to the

signal of the nominal bearing and the difference between

them is a sort of residual evolving during time and which

is taken as a health indicator of the bearing. Finally, the

projection of the health indicator can be exploited to predict

the health status of the bearing and calculate its RUL. The

proposed method is applied on experimental acceleration

signals acquired from the platform PRONOSTIA [8] and the

results show the effectiveness of the method.

The paper is organized as follows. After the introduction,

section 2 deals with a brief recall of fault prognostics

paradigm. Section 3 presents the method proposed and

section 4 gives details on the application and the obtained

results. Finally, section 5 concludes the paper.

II. PROGNOSTICS AND HEALTH MANAGEMENT

Prognostics and Health Management (PHM) is a key pro-

cess for Condition-Based Maintenance (CBM) or Predictive

Maintenance (PM). The modules of a CBM are shown in

Fig. 1. A brief description of the activity of each module is

given hereafter.

• Sensors: the number and type of sensors are chosen

according to the system and its physical phenomena and

degradations to monitor.

• Data acquisition: the signals related to the measured

parameters are gathered and stored by using appropriate
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Fig. 1. Modules of a CBM.

acquisition equipments and sampling frequencies de-

pending on the dynamic of the monitored parameters

(the sampling frequency of vibration is not the same

than that one of temperature). Furthermore, some pre-

processings can be applied on the data at this stage (re-

sampling for example).

• Data manipulation: the acquired data are processed to

extract, reduce and select relevant features and indica-

tors that can be used to estimate and predict the fault

progression in the system.

• Health assessment: this module deals with the classifi-

cation and the detection of the states of the system. It

can be assimilated to fault detection.

• Diagnostics: this module concerns the isolation and the

identification of faults’ causes.

• Prognostics: the aim of the module is to predict the

remaining useful life of the system.

• Decision support: provides a set of decisions and actions

which can help conducting the system to reach the de-

fined objectives or maintaining the system by preparing

the necessary resources.

The following of the paper concerns the fault prognostics

module. Fault prognostics is defined by the international

standard organization as the estimation of the Time To

Failure (ETTF) and the risk of existence or later appearance

of one or more failure modes [9]. In the reported research

and application works, the terminology ETTF is commonly

called Remaining Useful Life (RUL). An illustration of

RUL progression is shown in Fig. 2. Fault prognostics can

be done by using three main approaches: model-based,

data-driven and hybrid prognostics (Fig. 3).

Model-based (also called physics of failure) methods deal

with the exploitation of a mathematical model representing

the behavior of the physical component including its

degradation. The derived model is then used to predict the
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Fig. 3. Fault prognostics approaches.

future evolution of the degradation and to estimate the RUL

[10], [11]. In this case, the prognostics consists in evolving

the degradation model until a determined future instant from

the actual deterioration state and by considering the future

use conditions of the corresponding component.

The main advantage of this approach is its precision,

since the predictions are achieved based on a mathematical

model of the degradation. However, the derived degradation

model is specific to a particular kind of component or

material, and thus, can not be generalized to all the system’s

components. In addition to that, getting a mathematical

model of degradation is not an easy task and needs well

instrumented test-benches which can be expensive.

Data driven methods concern the transformation of the

monitoring and/or the exploitation data into relevant models,

which can be used to assess the health state of the industrial

system and predict its future one leading to the estimation

of its RUL [1], [12], [13]. Generally, the raw data are

first processed to extract features which are then used to

build the prognostic models. The features can be temporal,

frequency or both. In some applications, individual features

are not sufficient and one needs to combine them in order

to build what can be called health indicators. Note that

data-driven prognostic methods can use data provided by

sensors or obtained through experience feedback (operation,

maintenance, number of breakdowns, etc.).

The advantage of data-driven prognostic approach is its

applicability, cost and implementation. Indeed, by using

these methods, it is possible to predict the future evolution

of degradation without any need of prior mathematical

model of the degradation. However, the results obtained
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by this approach are less precise than those obtained by

using model-based methods. Compared to model-based

methods, the data-driven methods offer a trade-off in

terms of complexity, cost, precision, and applicability.

They are suitable for systems where it is easy to obtain

monitoring data and transform them into behavior models

of the degradation phenomena. The following of the paper

presents a data-driven method to predict the RUL of bearings.

III. HEALTH INDICATOR FOR PROGNOSTICS

The proposed method is a component-oriented prognos-

tics. For this purpose, we suppose that the RUL of the whole

system corresponds to the RUL of its critical components

(more precisely to the types of the degradations of the critical

components). A general scheme of a component-oriented

PHM is shown in Fig. 4.

To apply the method, the user has first to identify the

critical components of the system and the main parameters

related to the fault progression to measure. For example,

for a lift the critical components can be the electrical motor

and the opening and closing mechanism of the door. Then,

the user selects accordingly the number and the types of

sensors to install on the identified components in order to

gather appropriate signals representative of the degradations.

The sensors can be temperature, vibration and acoustic

emission for bearings, current and voltage for electrical

motors, displacement, velocity and effort for mechanical

parts, etc. The signals are finally processed to build health

indicators which can be used to track the progression of

the faults on the system. Different processing techniques

are available and can be used. Some examples of signal

processing techniques are: temporal and frequency feature

extraction and Wavelet Packet Decomposition (WPD). The

process of health indicator construction is shown in Fig. 5.

The health indicator corresponds to the difference (or dis-
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Fig. 5. Process of construction of the health indicator.

tance) between the vibration signals of the degraded bearing

and the nominal bearing. It is obtained by calculating the

correlation coefficient between the two vibration signals (Eq.

1). In equation (1), xi and yi are two vectors of size N , and

x̄i and ȳi their corresponding means.

HI =

N∑
i=1

(xi − x̄) . (yi − ȳ)√
N∑
i=1

(xi − x̄)
2
.

√
N∑
i=1

(yi − ȳ)
2

(1)

To build the health indicator, several accelerated degradation

experiments should be conducted on a set of bearings of

the same type. The vibration signals obtained from each

experiment are then compared to the vibration signals cor-

responding to nominal bearings (without faults or degrada-

tions). The correlation coefficient between the two categories

of bearings (nominal and degraded) should decrease in time

as the degradation increases. This indicator is then used to

assess the progression of the degradation and to estimate

the RUL. In practice, due to high sampling frequency of

the vibration signals, the health indicator needs some pre-

processings before using it. The pre-processings are: re-

sampling, filtering (or smoothing) and non-linear regression

fitting (Fig. 6)

Correlation
coefficient Sampling Smoothing Non-linear

regression

Fig. 6. Pre-processing of the health indicator.

IV. APPLICATION AND RESULTS

A. Description of the platform PRONOSTIA

The accelerated bearing life test bed is called PRONOS-

TIA (7), which it is an experimentation platform dedicated

to test and to validate bearing health assessment, diagnostic

and prognostic. In the present experimental setup a natural

degradation process of bearings is performed. During the

experiments any failure types (inner race, outer race, ball,

or cage) or their combinations could occur. This is allowed

in the system to better represent a real industrial situation.

The experimental platform PRONOSTIA is composed of two

main parts: a first part related to the speed variation and a

second part dedicated to load profiles generation. The speed

variation part is composed of a synchronous motor, a shaft,

a set of bearings and a speed controller. The synchronous

motor develops a power equal to 1.2 kW and its operational

speed varies between 0 and 6000 rpm. The second part

is composed of a hydraulic jack connected to a lever arm

allowing to create different loads on the bearing mounted on

the platform for degradation.

Two high frequency accelerometers (DYTRAN 3035B) are

mounted horizontally and vertically on the housing of the

test roller bearing to pick up the horizontal and the vertical

accelerations. In addition, the monitoring system includes

one PT100 to measure the temperature of the tested bearing.

A speed sensor and a torque sensor are also available on

the PRONOSTIA platform. A data acquisition card is also
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Fig. 7. The experimental platform PRONOSTIA.

used, which allows the integration of three modules: the first

includes the two acceleration sensors, the second is for the

temperature probe and the third for the torque transducer.

The monitoring data are transmitted to a dedicated computer

where they are stored. The data acquisition software is

programmed by using a LabView interface. The readings can

be directly taken from the digital readout on the analyzer,

graphical representation of the data can be displayed on the

screen and finally, the data can be analyzed online or offline

during later processing. The sampling frequency of the data

acquisition card is set to 25600 Hz and the vibration data

provided by the two accelerometers are collected every 1

second. Each record is stored in a matrix format where the

following parameters are defined: the time, the horizontal

acceleration, the vertical acceleration, the temperature, the

speed and the torque.

The bearing operating conditions are determined by instan-

taneous measures of the radial force applied on the bearing,

the rotation speed of the shaft handling the bearing and of the

torque inflicted to the bearing. Thus, three sensors are used: a

load cell and its transducer amplifier, an incremental encoder

and its analogue signal converter, and a torque transducer

with its converter. With this experimental platform, several

profiles can be created by varying the load and the speed.

This is very important as it allows simulating constant as well

as variable operating conditions for bearing’s degradation.

For the measurement of the degradation’s characteristics

during the test, the bearing starts from its nominal operating

mode until its faulty operating mode or state. The bearing’s

behavior is captured during its whole degradation process by

using the different sensors.

B. Simulation results

The prognostic method described in section III is ap-

plied on two bearings with same physical characteristics:
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Fig. 8. Raw vibration signals: normal bearing (left) and degraded bearing (right).

a nominal bearing (without degradation) and a degraded

bearing. The duration of the experiments is identical for both

bearings, it is equal to 4 hours and 33 minutes. The figure

8 shows the raw vibration signals obtained from the tested

bearings. From Fig. 8 one can see that it is difficult to make

conclusions about the degradation. Thus, more processing is

needed on these raw signals.

The health indicator progression calculated by using the

correlation equation (Eq. 1) is shown in Fig. 9. To use the
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Fig. 9. Progression of the health indicator.

calculated health indicator for RUL estimation, it is necessary

to fit it to a mathematical model. This fitting is done in

this paper by using a non-linear regression (polynomial,

exponential, etc.). Before fitting, the health indicator is first

re-sampled and then smoothed to avoid over-fittings. The

re-sampling process consists of reducing the number of

recorded points (one point over ten is kept). The smoothing

process is done by implementing a simple moving average

over the re-sampled health indicators. The results of re-

sampling and smoothing are shown in Fig. 10 and Fig. 11.

The remaining useful life of the degraded bearing is the
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Fig. 10. Re-sampling of the health indicator.

distance between the current time and the time for which the

regression model given in Eq. 2 reaches the failure threshold

(Eq. 3). The threshold is defined as the acceptable limit of

the vibration magnitude of each degraded bearing, which

corresponds in this application to the end of each experiment.

The exponential fitting of the smoothed health indicator is

shown in Fig. 12. The exponential model obtained after

fitting is given by the following equation:

HI (t) = 0.2394.e−2.245×10−5.t
(2)

RUL (t) = tfinal −HI−1 (t) (3)

where tfinal is the time when the fault occurs and HI−1

the inverse of HI(t) used to get the current time (t). The

estimated RUL for the tested bearing is shown in Fig. 13.

From this latter figure it can be seen that the predicted RUL

is less than the real RUL. This is in fact a pessimistic RUL

which is the one accepted in practice by the industrials.

Indeed, in the case of fault prognostics, it is better to predict

the fault before its real occurrence than predicting it after
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Fig. 11. Smoothing of the health indicator.
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Fig. 12. Exponential fitting of the smoothed health indicator.

its occurrence. A pessimistic RUL prediction allows the

operator to better prepare his/her maintenance interventions

whereas an optimistic RUL prediction may lead to negative

consequences. Note that in real applications the online RUL

estimation is done by extrapolating the health indicator built

from the data acquired until the time (t).

V. CONCLUSION

A prognostic method for remaining useful life estimation

is proposed in this paper. The method is within the data-

driven framework and is based on the calculation of a health

indicator which permits to continuously assess the health

status of the physical component. The health indicator cor-

responds to the difference between the signals of a nominal

component (without faults) and the signals of a same type of

component with a degradation. It is calculated in this contri-

bution by using a correlation between the nominal and the

degraded signals. The method is applied on vibrations signals

acquired from the experimental platform PRONOSTIA. The

obtained results show the effectiveness of the method for

RUL estimation.

Further works may concern the calculation of the health indi-

cator by using other techniques (such as the distance between
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Fig. 13. The estimated RUL for the tested bearing.

the nominal and the degraded clusters) and the application

of the method to other types of physical components (gears,

belts, electronic components, etc.).
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