
 

 

 

 

Abstract—The current work is motivated by the need of 

achieving global solution and better computational efficiency for 

control of any arbitrary nonlinear hybrid dynamical systems 

(NHDS).  In this work, we present a novel modeling and 

corresponding model predictive control (MPC) formulation for 

NHDS. The proposed modeling approach relies on disaggregation 

of polynomials of binary variables that appear in the multiple 

partially linearized (MPL) model. In particular, we use auxiliary 

continuous variables and linear constraints to model these 

polynomials and represent the MPL model in a linear fashion.  

Subsequently, disaggregation of the variables based multiple 

models are used to formulate the MPC law for NHDS. The MPC 

formulation takes similar form as multiple mixed logical dynamical 

(MMLD) model based MPC and yields a convex MIQP 

optimization problem. Moreover, the proposed modeling approach 

results in a compact model than the corresponding MMLD model 

as it refrains from adding any extra binary variables. Therefore, 

offers certain computational advantage when used for the 

predictive control of NHDS. The efficacy of the proposed solution 

is demonstrated on a three-tank benchmark hybrid system.   

I. INTRODUCTION 

any practical applications exhibit hybrid character, 

where continuous dynamics interact with discrete 

events. Such systems are known as hybrid systems [1]-[3].     

Examples of hybrid systems are encountered in 

manufacturing industries, robotics, biological systems and in 

chemical process industries among others [3]. In particular, 

hybrid characters arise in chemical process industries due to 

various safety interlocks, grade transitions, on-off valves, 

etc.  Although the use of hybrid systems framework for 

modeling and control of chemical processes is not very well-

known among various process industries, increasing demand 

for high quality products and cut-throat competition calls for 

a flexible and more accurate control and scheduling solution 

that also incorporate various logical conditions. Moreover, 

nonlinearity makes model based application, such as model 

predictive control (MPC), far complex and practically 

intractable. 

Significant efforts have been made by various researchers 
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to simplify modeling of hybrid systems for various 

applications such as verification [4], control [1],[3], stability 

[5] and optimization [6]. These efforts led to various 

modeling formalisms, which include mixed logical 

dynamical (MLD) framework [1], linear complementarity 

(LC) modeling [7], piecewise affine (PWA) modeling 

formalism [8]. These formalisms consider linear continuous 

dynamics with discrete-decisions and logical conditions. In 

addition, it has been proven that all of these formalisms are 

equivalent and can be represented using the MLD 

framework [9]. The key advantage of MLD framework is 

that it can be used to formulate MPC problem. The MLD 

model based predictive control leads to a mixed integer 

quadratic/linear program (MIQP/MILP).     

Thus, numerous literatures are available for linear hybrid 

dynamical systems. However, efforts towards nonlinear 

hybrid dynamical systems (NHDS) are limited. Wang et al. 

[10] have presented a robust state estimation and fault 

diagnosis approach for nonlinear hybrid systems with 

unknown mode transition functions, model uncertainty and 

unmeasured disturbances. A fuzzy modeling approach and 

corresponding MPC formulation have also been developed 

[11]. Nandola and Bhartiya [3] have proposed a multiple 

partially linearized (MPL) modeling and corresponding 

predictive control approach for nonlinear hybrid dynamical 

systems. The MPL based MPC results in a nonconvex mixed 

integer nonlinear program (MINLP) as compared to MIQP 

in case of multiple-MLD based approach [1]. However, it 

has been shown that the MPL approach is computationally 

superior than multiple MLD model based approach [3]. This 

is primarily because of the MLD model masks multiplicative 

terms by adding auxiliary binary variables, continuous 

variables as well as mixed integer linear constraints. Thus, 

significantly increases the size of the MPC problem. On the 

other hand, the MPL modeling retains nonlinear polynomial 

terms of binary variables and refrains from adding extra 

variables. In addition, the MPC using MPL model results in 

a canonical form, which has certain advantage.  The authors 

have further discovered this canonical form [12]. In 

particular, they tailored a generalized outer approximation 

(GOA) algorithm, which is computationally superior. They 

have also validated its computational efficiency via 
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experimentations on a lab-scale three-tank hybrid system 

setup [13]. However, GOA is for convex MINLP, hence it 

may results in a sub-optimal solution, in this case.  

Thus, there is a tradeoff between computational efficiency 

and quality of the solution. The MLD approach, due to its 

convex nature, provides better solution at the expense of 

computational efficiency, while the MPL provides faster 

solution at the risk of sub-optimality. The current work is an 

attempt to obtain the optimal solution for the MPL based 

MPC problem.  In order to achieve this, one may use global 

optimization algorithms of nonconvex MINLP [14].  

Alternatively, one may consider various convexification 

approaches for MINLP [15]. In this work, we tailored 

variables disaggregation technique [16] to convert the MPL 

based MPC problem into a convex MIQP. In order to 

achieve this, we introduce additional linear constraints and 

continuous variables to the MPL model. This approach is 

expected to outperform multiple-MLD (MMLD) models 

based approach with respect to computational efficiency, 

while providing solution of the similar quality. This is 

primarily because MLD approach adds extra binary 

variables and associated linear constraints, to mask the 

polynomials of binary variables, in addition to the extra 

continuous variables and their associated constraints. On the 

other hand, the proposed approach only adds continuous 

variables. The advantage of the proposed modeling and 

control is demonstrated on a benchmark three-spherical tank 

system via a simulation case study. 

The paper is organized as follows: Section II presents an 

overview of the MPL modeling and consequently develops 

the variables disaggregation based modeling approach for 

the NHDS.  Model predictive control formulation using the 

proposed modeling is documented in Section III. Section IV 

demonstrate efficacy of the proposed modeling and control 

approach on a three-tank benchmark hybrid systems. A 

summary and conclusion is presented in Section V. 

II. MODELING OF NONLINEAR HYBRID SYSTEMS  

Since the proposed modeling approach is a significant 

improvement over earlier presented MPL modeling [3] of 

the nonlinear hybrid dynamical systems, in this section, we 

present an overview of the MPL modeling approach 

followed by the proposed variable disaggregation based 

modeling.  

A. MPL modeling of hybrid systems-A brief overview 

The MPL model is a simplified version of  the hybrid state 

model (HSM) [17] of NHDS. The mathematical form of the 

HSM can be represented as follows [3]: 

  ̇    ( 
      ) (1)  

   ( )    ( ( )) (2)  

    
 ( )     ( )     ( )     (3)  

   (  )    (  ) (4)  
where    represent continuous states,    stands for discrete 

states,    is continuous inputs,   represent binary indicator 

variables, which capture discrete decisions due to the 

discontinuities in states (i.e. discrete states) and inputs (i.e. 

discrete inputs). The evolution of binary variables,  , is 

governed by inequality constraints in (3). Moreover, a 

change in the status of the elements of  , indicates a change 

in the location (mode) of the hybrid systems. Thus, (1)-(4) 

represents mathematical model for general nonlinear hybrid 

dynamical systems that can be used to formulate MPC. 

However, it requires numerous integrations of (1) as well as 

online solution of a complex and nonconvex MINLP 

optimization. Therefore, to simplify the problem, Nandola 

and Bhartiya [3] have adopted a multiple partial linearized 

(MPL) models based approach. In the reminder of this 

section, the MPL approach is briefly reviewed.  

The MPL model begins with a Taylor series expansion of 

(1) around an operating point of continuous variables 

(     ), while keeping binary variables,  , constant as 

parameters. Thus, obtain a continuous-time linearized model 

as follows, 

  ̇   ( )    ( )    ( ) (5)  
   ( )   ( )                  (6)  
    

 ( )     ( )     ( )     (7)  
Here it should be noted that the system matrices of (5) are 

function of binary variables   and a fixed value of vector    

represents an unique location of the NHDS.  Next, the 

continuous-time model (5) is discretized by substituting 

values of binary variables for all possible instantiations. As 

   binary variables result in     instantiations, one can 

obtain     discrete-time models as follows, 

               
                  

   (8)  

where    [
  
 

  
 ] is a state vector of the NHDS,        and 

    are discrete-time equivalent system matrices representing 

    location of the NHDS. The above models are then 

combined using logical multipliers,   , to obtain an unified 

discrete time representation of (5) - (7) as follows, 

      (∑       
   
   )   (∑       

   
   )  

  

               (∑        
   
   )  

(9)  

     
               (10)  

Note that the above model is linear in continuous variables, 

while nonlinear in binary variables due to the fact that the 

logical multipliers are polynomials of binary variables.  The 

logical multiplier,   , is defined such that it takes value 1 if 

and only if     combination of binary variables is 

encountered (i.e.     location of NHDS becomes active) and 

0, otherwise. For example, the NHDS with two binary 
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variables, i.e.,   [    ]
 , result in four logical 

multipliers [3]:    (    )(    ),    (    )  , 
      (    ) and          corresponding to   
[  ] ,   [  ] ,   [  ]  and   [  ] , 

respectively. Here it should be noted that (9) retain the 

polynomials of binary variables,  , and      are used only for 

the ease of representation; they should not be considered as 

extra variables. 

 The discrete-time linearized model, (9)-(10), can be 

represented in a compact form as follows, 

      (   ̅)   (   ̅)  
     ̅ (11)  

     
               (12)  

where   ,  ̅,  ̅ and   ̅ are constituted from     ,   ,    and 

   , respectively. The output of the linearized model may be 

written as: 

        (13)  
Equations (11) - (13) represent final form of the linearized 

NHDS around an operating point. This model represents all 

locations of the NHDS in the neighborhood of a particular 

operating point. Similar linearized models can be obtained 

around     different operating points. These models are then 

combined using multiple model approach, such as Bayesian 

weighting [18], to reconstitute original nonlinear model. The 

resulting weighted model is referred to as the MPL model 

and can be represented as follows [3], 

      (   ̅ )   (   ̅ )  
      ̅  (14)  

     
               (15)  

        (16)  
where  ̅ ,  ̅  and   ̅ are blended system matrices 

constituted by taking weighted average of     linearized 

models as follows, 

     ∑     
  
     (17)  

where    represents weight of     linearized model,    is 

number of local multiple models, such as (11)-(13), and   

represent system matrices  ̅,  ̅ and  .̅ These models 

describe overall operating range of the NHDS. The weights 

   are updated using Bayesian approach [18], at each 

sampling instances, based on the distance of the local model 

prediction from the current measurements.  

 As the MPL model (14)-(16)  retain polynomial terms of 

binary variables, the MPC using MPL model turns out to be 

a nonconvex MINLP, hence, vulnerable to sub-optimality. 

Alternatively, following the approach presented by 

Colmenares et al. [19] , one may expand polynomials of 

binary variables in (9), followed by masking of the 

multiplicative terms between binary variables and the 

multiplicative terms between binary and continuous 

variables, using additional binary and continuous variables 

as well as their corresponding constraints, respectively. 

Thus, obtain a well-known discrete-time MLD model for the 

local operating regime. Similarly, all    linearized model can 

be converted into MLD models to obtain multiple-MLD 

(MMLD) model. An advantage of the multiple-MLD model 

is that, because of its linear structure, MLD based MPC 

leads to a MIQP optimization problem, which is a convex 

optimization problem. However, in the process of converting 

(9) into the MLD framework, it adds large number of binary 

variables, continuous variables and constraints; hence 

increase in the computational burden. On the other hand, it 

has been shown that the MPL model is computationally 

more efficient than the multiple-MLD based MPC, typically 

due to the smaller size of optimization problem. Thus, it is 

clear that one may want to have such an approach, which 

enables global optima as well as better computational 

efficiency.  In order to achieve this objective, we present a 

modeling approach for NHDS based on disaggregation of 

variables, which is discussed next.  

B. Modeling of NHDS using disaggregation of variables 

This section presents modification in the MPL model that 

eliminates polynomials of binary variables. In particular, 

polynomials of binary variables in (9) are modeled using 

additional linear constraints and continuous variables as 

follows, 
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 ∑      

   

   

 ∑       

   

   

 (18)  

                    (19)  
                    (20)  
               ∑     

   
       (21)  

               ∑     
   
        (22)  

               ∑     
   
        (23)  

where       and       are lower and upper bounds on 

states and inputs of the system, respectively and      (  

         ) are non-negative auxiliary continuous variables. 

Each of these variables is determined using    linear 

constraints, where    is the number of original binary 

indicator variables. Thus, it adds   ( 
  ) linear constraints 

as given below, 

                                  

                                        

                                        

  
                              

(24)  

Above constraints are defined such that      takes value 1 if 

and only if     combination of binary variables is 

encountered and 0, otherwise.  Equations (18)-(24) are linear 

representation of (9), while (10) can be adopted without any 

change. Thus, at particular time instance, location of the 

2683



 

 

 

hybrid system is determined by (10), (19)-(21) and (24).  

The discrete-time linear model (18)-(24) and (10) can be 

represented in a compact form as follows, 

                   (25)  

                             (26)  
    

  
      (27)  

    
  
      (28)  

where   ,    and    are constituted from     ,      and     , 

respectively, (26) is a compact representation of the 

constraints defined in (10),(19)-(21) and (24) while, (27) and 

(28) are compact representation of the equalities defined in 

(22) and (23). Matrices    ,    ,    ,    ,    ,    
  

 and    
  

 

are appropriately defined coefficient matrices, which are 

constituted by augmenting coefficients of respective 

constraints together and matrices  ,    and   are constituted 

from   ,    and     (         
  ) . These matrices are not 

shown here due to brevity.  The output can be written as in 

(13), which is reiterated below:  

        (29)  
Thus, (25)-(29) is the proposed modification in the 

partially linearized discrete-time model (11)-(13), which 

represents dynamic of the NHDS in the vicinity of an 

operating point. Similar models are obtained for multiple 

operating points. These models are then blended using 

Bayesian weighting, as explained in the previous section, to 

reconstitute the dynamics of the NHDS over entire operating 

rang. The weighted form of (25) can be represented as, 

                      (30)  

where   ,     and    are blended system matrices, which 

are constituted from  ,    and   . Here it should be noted 

that the constraints and output of the weighted model 

remains unchanged from (26)-(28).  Thus, (26)-(30) 

represent the proposed variable disaggregation based 

modeling for the nonlinear hybrid dynamical systems. The 

structure of the proposed model remains fixed for any 

arbitrary NHDS. Moreover, it yields a MIQP when used for 

the MPC formulation, which is discussed in Section III.  

III. MODEL PREDICTIVE CONTROL FOR NONLINEAR HYBRID 

DYNAMICAL SYSTEMS 

In this work, we use a quadratic objective function as 

given below, 

   
 ( )  ( )  ( )  ( )

 ∑ (‖        ‖  

 
 

 
   

                 ‖          ‖  

 
 ‖          ‖  

 
 

                 ‖          ‖  

 
)  

                 ∑ (‖     ‖  
  ‖        ‖   

 
)   

     

(31)  

subject to constraints (26) and bound constraints on outputs, 

          (32)  
Here   and   are the prediction horizon and control horizon, 

respectively,     represent weight matrices on corresponding 

error terms in (31),      (            ) represent setpoints 

for corresponding variables,    and    are lower and upper 

bounds on the outputs. 

The MPC problem (31) requires future predictions of the 

outputs as well as constraints in (26) and (32). These 

prediction can be obtained by propagating (30), (29) and 

(26) for   steps in future. Thus, obtain prediction equations 

as follows, 

       ̅     ̅     ̅  (33)  
     ̅  ̅   ̅  ̅   ̅  ̅  (34)  
  ̅   ̅   ̅    ̅   ̅   ̅   ̅   ̅    ̅   (35)  
          (36)  

The various prediction vectors in (33)-(35) are defined as, 
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;  ̅  [  

      
         

 ]  

  ,  ̅  and  ̅   (       ;            ) are the 

appropriately defined coefficient matrices, which are 

constituted from   ,     ,   ,    and    , respectively.  

Substituting (33),(34) and various prediction vectors into 

(31), followed by expansion and rearrangement, we obtain 

the standard quadratic objective function as follows: 

    
 
               (37)  

Similarly, augmentation and rearrangement of constraints 

(35) and (36) yields following compact form: 

      (38)  
where   [ ̅ 

  ̅ 
  ̅ 

   ̅
 ] ,     and     are 

appropriately defined matrices, which are constituted from 

  ,  ̅ ,      and  ̅   (           ),    ,     and   , 

respectively.  Thus, (37)-(38) represent MPC formulation for 

the NHDS, which is a MIQP optimization problem. 

IV. APPLICATION 

We demonstrate efficacy of the proposed variables 

disaggregation based modeling and control strategy using a 

three- spherical tanks benchmark system.  The schematic of 

the three-tank system is shown in the Fig. 1. The three-tank 

system consist of three spherical tanks of      diameter, 

two continuous manipulated inputs correspond to two 

control valves, six discrete (binary) manipulated inputs, 

characterized by on/off valves. Tank-1 and Tank-2 are 

connected to Tank-3 (middle tank) from the bottom as well 

as from the center of the tanks (i.e.      from the bottom).  

 The first principles model of the three-tank system can be 
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represented as, 

 (  ) ̇  (                           ) (39)  

 (  )  ̇  (                    ) (40)  

 (  ) ̇  (                           
               ) 

(41)  

where  (  )     (       ),      is diameter of tanks 

(    ),   ,        , are liquid levels of three tanks,       

are continuous manipulated variables representing liquid 

inflows to the Tank-1 and Tank-2, respectively,  and   , 
                 , are binary variables that represent 

on/off valves. Variables    represent flows through    .  

 
Fig. 1. Schematic of three-tank system (adopted from [3]) 

 In order to develop MPC control law for the 

aforementioned three tank system, we linearized (39)-(41) 

around three different operating points. Consequently, three 

linearized models, of the form (25)-(29), are obtained. The 

linearization points are considered as in [3], and are listed 

below: (i)    =    = 0.15,    = 0.14 and    =    = 0 (ii)    

=    = 0.25,    = 0.24 and    =    = 0 (iii)    =    = 0.35, 

   = 0.34 and    =    = 0. These models are then used to 

develop MPC law of the form (37)-(38). The proposed 

multiple-model based MPC law is used for the level control 

of the three-tank system shown in Fig. 1. The control of the 

three-tank system involves tracking of various setpoints of 

levels in three tanks.  

To demonstrate the computational efficiency of the 

proposed modeling and control approach, the results are 

compared with the multiple MLD (MMLD) model based 

control approach. The MMLD models are developed at the 

same operating points.  The sampling time   , for  both the 

methods, is considered as     , prediction and control 

horizons are considered as 5(     ) and 2(6   ), 

respectively. In this study, the nonlinear dynamic (39)-(41) 

is considered as the “plant” model while the proposed 

variables disaggregation based weighted model or MMLD 

model are considered as the predication models, 

respectively. The model predictions are corrected by adding 

plant-model mismatch, which is assumed to be constant over 

the prediction horizon.  Note that the proposed model as well 

as the MMLD model based MPC yield MIQP optimization 

problem, which has to be solved online. Many commercial 

solvers for MIQP are available. In this work, we rely on the 

IBM ILOG CPLEX solver using the MATLAB interface. 

All simulations have been performed on a 2.27 GHz Intel 

core i3 machine with 4 GB RAM.  

Fig. 2 documents response of the controlled variables of 

the three-tank hybrid system. Solid blue line denotes output 

response using the variables disaggregation based modeling 

and control approach, dashed red line represents the 

corresponding results using the MMLD based control and 

dashed-dotted black line stands for setpoints in the three-

tanks.  Corresponding manipulated inputs are represented in 

Fig. 3. 

 
Fig. 2 Response of controlled variables:      ,    using variables 

disaggregation (solid blue line) & MMLD (red dashed line) model. 

Fig. 3 Control moves using variables disaggregation (solid blue 

line) & MMLD (red dashed line) model. 

From the figures, it can be seen that the response of the 

controlled variables are almost coincide with each other. 

Thus, the quality of the solution using the proposed method 

is identical to with that of the MMLD based solution. This is 

also evident from the average objective function values, 

which is 0.081 for the proposed approach whereas 0.105 for 

the MMLD based control.  The minor difference may be 

attributed to the numerical methods. However, the advantage 

of the proposed approach lies in its computational efficiency.  

The computation time for each sampling instants are 

calculated using “tic-toc” function in the MATLAB. The 

mean and standard deviation of the computation time per 

optimization problem using the proposed modeling and 

control are           and          , respectively while for 

the MMLD based control, they are           and 

2685



 

 

 

         , respectively.  This can be explained by the fact 

that the proposed modeling approach yields a smaller MPC 

problem as compared to MMLD modeling based approach. 

The size of the MPC problem for both the cases are 

summarized in TABLE I. 
TABLE I 

SIZE OF THE MIQP (MPC) PROBLEM FOR 3-TANK SYSTEM (      ,    ) 

 Proposed model 

based MPC 

MMLD model 

based MPC 

Binary variables 12 112 

Continuous variables 1344 1189 

Linear constraints 5175 5919 

V. CONCLUSION 

Most of the practical applications are inherently hybrid in 

nature. Recently, a multiple partially linearized (MPL) 

modeling for NHDS has been proposed [3]. The MPL based 

MPC yields a fixed structured MINLP optimization problem 

for any arbitrary NHDS. However, disadvantage with this 

approach is that the resulting optimization problem is 

nonconvex, hence global solution cannot be guaranteed. On 

the other hand, equivalent convex formulation based on 

multiple mixed logical dynamical (MMLD) model requires 

large number of additional binary variables, continuous 

variables and linear constraints that leads to computationally 

expensive optimization problem [3],[19].  In this work, we 

present a significant modification to the MPL model, where 

we use disaggregation of variables approach to model 

polynomials of binary variables using few additional 

continuous variables and linear constraints. The proposed 

approach produces linear representation of the MPL model 

of NHDS. Consequently, the MPC formulation results in a 

convex MIQP problem. 

  The proposed approach adds auxiliary continuous variables 

and constraints but refrains from adding additional binary 

variables and associate constraints therefore, yields 

relatively smaller optimization problem than the 

corresponding convex formulation based on MMLD model. 

Hence, significantly improves computational efficiency. The 

effectiveness of the proposed modeling and control of 

NHDS is demonstrated on the three-spherical tanks 

benchmark hybrid systems via simulation. From the results, 

it can be concluded that the proposed approach outperforms 

the MMLD based control of NHDS in terms of the 

computational efficiency, while producing identical results 

in terms of the solution quality.  In addition, with increase in 

the binary variables,  , in the NHDS (1)-(4), tree-size of the 

MMLD based MIQP increases exponentially due to the 

addition of large number of extra binary variables, which is 

not the case with the proposed approach. Therefore, the 

proposed approach may scale better than the corresponding 

MMLD approach. Moreover, the structure of the additional 

constraints, due to disaggregation of the polynomials of 

binary variables, remains sparse and can be exploited 

through sparse decomposition to further enhance the 

computational efficiency. For instance, barrier QP solvers 

(see [20]) allow a direct elimination of these inequalities. 
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