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Abstract— Single-track vehicles electronic control systems
have been experiencing an important growth in the last years.
Despite some similarities with four-wheeled vehicles the dy-
namics of two-wheeled vehicles have some unique features
that require ad hoc solutions. One of those is the lift of
the front wheel from the ground during severe accelerations,
usually known as wheelie. This phenomenon is particularly
important since, if not controlled, can lead to vehicle insta-
bilities. Moreover, it has a significant impact on the vehicle
longitudinal speed estimation, essential for the development of
wheel slip-based traction control systems, so widely spreading.
In this paper the problem of detecting a wheelie occurrence is
discussed. Two algorithms, that employ only standard vehicle
equipment sensors, are presented. Their parameter tuning
procedure is described and experimental data are used to show
their effectiveness, as well as for a performances comparison.

I. INTRODUCTION

The front wheel lift - usually referred as wheelie - is a

common phenomenon that can occur in single-track vehicles:

as depicted in Figure 1, during a wheelie the front wheel

is completely detached from the ground and the vehicle

proceeds only thanks to the rear wheel.

Fig. 1. A sport motorbike performing a wheelie.

The wheelie phenomenon is related to the vertical load

transfer that occurs during the vehicle longitudinal motion,

that is particularly emphasized in single-track vehicles. Ac-

cording to a simplified vertical forces balance, see for exam-

ple [14], the vertical load Fzf that the front wheel exchanges
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with the road surface has the following expression:

Fzf = Fzf0 −m
h

l
ẍ.

Thus, proportionally to the vehicle acceleration ẍ, the front

vertical force diminishes with respect to the zero acceleration

value Fzf0 (function of mass and vehicle geometry). It is

interesting to notice how the decrease is proportional through

the gain factor mh
l
, where m is the mass of the vehicle

(chassis and driver) and h
l

is the ratio between the height

of the center of mass h and the vehicle wheel base l. In

motorcycles this ratio is higher (approximatively double)

with respect to the four-wheeled vehicle one, and that is why

this phenomenon is particularly relevant in these vehicles.

In the development and design of two-wheeled vehicles

control systems, information on wheelie occurrence have

to be included. Despite the catching and spectacular nature

of such maneuver, due to its potentially unstable behaviour

(that can cause vehicle overturning) ad hoc engine torque

control systems have been recently proposed (see e.g. [13],

[6]): a wheelie detection algorithm to trigger the activa-

tion/deactivation of such controllers is however required.

Generally speaking, also other vehicle dynamic control

systems exploit information about the occurrence of this

event. For example, the so well-reputed slip based Traction

Control systems (e.g. [9]) that require an estimate of the

vehicle body speed during traction maneuver. As discussed

in [11] the vehicle speed estimate, based on front wheel

speed and longitudinal acceleration data-fusion, is no more

reliable when a wheelie occurs: hence in case of wheelie,

its detection becomes a consistency flag for vehicle speed

estimate. It is not difficult to extend these considerations for

other electronic systems, such as semi-active suspension (see

e.g. [15]) or advanced stability control systems (see e.g. [5]).

To the best of the authors knowledge, this topic has

never been treated in the open scientific literature. Some

patents can be found (see [6], [7]) where basically wheelie

is detected by comparing vehicle acceleration with a specific

threshold opportunely tuned. From equation (1) it can be

easily noticed how such an approach is quite sensitive, for

example, to the vehicle and rider mass that can experience

important variations.

Thus, pushed by the aforementioned technological rea-

sons, in this paper two wheelie detection algorithms are pre-

sented, validated and compared using real experimental data.

From the analysis of the measured signals during a wheelie,

the key idea of comparing front wheel speed and longitudinal

acceleration signals is introduced. The first algorithm detects

wheelie by simply applying such experimental evidence,
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whereas for the second one the problem is solved with a

fault detection approach. Particular attention is devoted to

obtaining reliable, easily implementable and cost-effective

techniques that make use of electronics and sensors already

available on standard production vehicles. A comparison

between both algorithms, based on experimental data, is

traced considering their wheelie detection performances and

their robustness with respect to different vehicle operating

modes.

The paper is organized as follows: in Section II the

experimental setup is presented. In Section III the princi-

ples of wheelie detection and the mentioned algorithms are

discussed. In Section IV guidelines for algorithms tuning are

shown and a performances comparison among the proposed

algorithms is presented.

II. EXPERIMENTAL SETUP

The wheelie detection is meant for high-end sport motor-

cycles, due to the high acceleration they can reach: this is the

kind of vehicle referred in this work to validate the detection

strategies. It is equipped with the following sensors:

• Front and rear wheel encoders. The motorcycle is

equipped with two hall-effect encoders with 48 teeth.

The discrete position encoder information is used to

estimate the angular wheel velocity using the 1/∆T
method ([3]). This algorithm provides an accurate esti-

mation of the wheel velocity at low frequency, but it is

affected by considerable disturbances at high frequency.

It is not also uncommon to measure a periodic high

frequency noise related to the wheel rolling frequency

and its harmonics (see [12]).

• A 1-axis MEMS longitudinal accelerometer. Typically,

acceleration measures are affected by low frequency

noise and drift. The most important noise source is the

effect of gravity on the acceleration measurement, due

to a non perfect horizontal alignment of the measure-

ment axis.

• Suspension stroke sensors. They provide a measurement

of the suspension elongation. They can be used to

estimate the load on the wheels and be used to detect

a wheelie. Stroke sensors are currently not installed on

production vehicles and are here employed as reference

to validate the proposed methods.

III. WHEELIE DETECTION ALGORITHMS

According to the description of the phenomenon provided

in the introduction, it is clear that the detection of a wheelie

could be easily done at least in two ways:

1) Measuring the front suspension elongation. During ac-

celeration the front suspension extends until it reaches

its maximum length: at this instant the wheelie occurs.

Despite being the most direct way to detect a wheelie,

the linear potentiometers (or LVDT) used to measure

suspension elongation are expensive and fragile sen-

sors, not suited for industrialization.

2) Measuring the vehicle pitch angle. The geometry of

the suspension is such that its maximum elongation

corresponds to a known pitch angle (with respect to the

road). A threshold on the pitch angle would therefore

be an effective detection method. Unfortunately, a

direct measure of the pitch angle is not available and

estimation techniques through inertial measurements

(see e.g. [1]) are at their infancy.

To overcome the limitations of the mentioned solutions,

in this paper two wheelie detection algorithms are presented

and compared. They employ only the measurements avail-

able on a standard production motorcycle. Moreover, unlike

vehicle attitude estimation algorithms - usually based on

(Extended/Unscented) Kalman filters estimators, see e.g [1],

[2] - the proposed solutions require a low computational

effort, thus making them suitable for industrialization. Being

based on indirect information on wheelie occurrence (as will

be clear in the following), a delay with respect to direct

method (i.e. front suspension elongation) is expected. How-

ever, the proposed algorithms are able to detect a wheelie

in approximately less than 0.1 seconds: as discussed in [11],

this is the maximum time span allowed to prevent undesired

interventions of high-level vehicle dynamic control systems.

The common idea behind both algorithms can be intu-

itively introduced by inspecting Figure 2. During a wheelie,
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Fig. 2. Wheels speed and measured longitudinal acceleration during a
wheelie.

a discrepancy between the front wheel speed (vf ) and the

vehicle longitudinal acceleration (ax) can be noticed: the

front wheel angular speed decreases whereas the vehicle

continues to accelerate. The front speed slowing is caused

by the rolling resistance forces (e.g. due to the roll bearings)

that, as the front tire detaches from the ground, are the

only one acting on the wheel. Conversely, during the normal

vehicle motion, the longitudinal force due to the contact

between the tire and the road guarantees the front wheel

acceleration.

This discrepancy is at the basis of the two wheelie detec-

tion algorithms, introduced in the following subsections.
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Basic algorithm

The first algorithm introduced is based on the direct

comparison between the vehicle longitudinal acceleration

signal and front wheel acceleration (af ) derived by the

measure vf .

During a normal acceleration, as discussed in [11], the

torques applied to the front wheel are negligible and only

a little longitudinal force is required to balance them. Thus,

the front wheel slip λf (see [10] for its definition) can be

neglected, meaning that the front wheel speed ωfRf (wheel

angular speed times wheel rolling radius) is equal to the

vehicle one v.

λf =
ωfRf − v

v
≈ 0 ⇒ vf = ωfRf = v (1)

The same conclusion can be hence transferred on the accel-

eration measurements:

af = ω̇fRf = ax

This equality is at the basis of the first algorithm: during the

normal vehicle motion, longitudinal vehicle and front wheel

acceleration should be similar; since during wheelie these

measurements are significantly different, a discrepancy (∆)

between them is used to trigger the wheelie event detection.

Despite the simplicity of the proposed approach, some

wariness is needed. In fact beside wheelie, there are some

other factors that cause differences between vehicle and front

wheel acceleration. Among the most significant the vertical

vehicle dynamic that, due to the non zero vehicle caster

angle (see [4]) can influence the longitudinal acceleration

signal (remember that usually the IMU is located on the

vehicle main frame). Signals noise cannot be disregarded:

in particular, the periodic, frequency varying noise typically

present on wheel speed measurement - whose origin is

discussed in [12] - significantly worsen the front speed

acceleration signal (computed with a linear high-pass filter).

Finally, there are several situations in which the hypotheses

in (1) are not valid: during a braking maneuver for example,

in which the front wheel slip is no longer negligible, the

equality between vehicle and front wheel acceleration is no

longer valid.

For all these reasons, the Basic algorithm is modified

accommodating the following features:

• a low pass filter for the longitudinal acceleration used to

suppress high frequency noise (whose output is called

âx);

• a first order high-pass filter used to compute the front

wheel acceleration âf ;

• a finite state machine, depicted in Figure 3, that enables

the comparison between the mentioned signals only

when opportune.

When the Idle state is active, the wheelie detection al-

gorithm is deactivated; while in Running, the wheelie

detection algorithm is executed:

x̂wh =

{

0 (normal mode) if âx − âf < ∆
1 (wheelie mode) if âx − âf > ∆

(2)

Fig. 3. Finite state machine pictorial representation.

As previously discussed, the algorithm (2) provides correct

information only when a wheelie is actually possible. Thus

the transition between Idle and Running state is triggered

by a series of conditions that indicate that the vehicle motion

is such that a wheelie could occur. Intuitively, the most

important check is when th vehicle longitudinal accelera-

tion ax overcomes a certain threshold (indicated with the

bar symbol). However, to improve the finite state machine

robustness and avoid state chattering, also other conditions,

related to vehicle acceleration/wheelie, can be added (i.e on

rear slip/rear traction force λr , on rear wheel acceleration ar,

on throttle angle θ). The inverse transition is opposite with

respect to the described one.

Fault detection based algorithm

The second algorithm proposed in this paper is based

on the same mismatch observed between vehicle and front

wheel acceleration, but tackles the problem with a genuine

Fault Detection approach (see [8]). To solve the wheelie

detection problem, two dynamic models for the two operating

modes (normal and wheelie) are derived and two distinct

state estimators are designed, one for each operating mode.

Since the dynamics are different, it is expected that each

estimator provide a small estimation error (residual) when

the corresponding operating mode is ongoing, whereas the

estimate provided by the non-active mode state observer will

significantly differ from the measured signal. As a conse-

quence, the wheelie event is detected by simply monitoring

which one is the lower residual state observer.

The dynamic models that characterize each operating

mode are here derived. For the normal mode, the assump-

tion of zero front wheel speed previously introduced leads

to the following dynamic model:

v̇f∼v̇ = ax + η1
vf = v + ǫ1.

(3)

The first equation states that, due to the negligible slip,

the front wheel acceleration can be approximated with the

vehicle acceleration v̇, measured by the accelerometer ax. An

additive white noise η1 is added to include noise and model

uncertainties. The second equation describes the wheel speed

signal, equal to the vehicle speed plus a term ǫ1 that accounts

for measurement noise.

The dynamic model for the wheelie operating mode is

reported in equation (4):

v̇f = −δ + η2
vf = v + ǫ2.

(4)
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In this model the uncorrelation between vehicle acceleration

and front wheel speed is evident, since ax is not even

included in the equations. The evolution of the angular speed

is described in the first equation with a constant deceleration

δ > 0 as the experimental evidence (see Figure 2) suggests;

again an additive noise η2 has been included. The second

equation describes the noisy (ǫ2) front wheel speed signal.

All noises are assumed to be uncorrelated gaussian white

noise with variance q1|2 for the model disturbances, and r1|2
for the measurement noises.

Each state observer for models (3) and (4) is designed as

steady state Kalman filter estimators:

˙̂v = Av̂ +B u+K (y − C v̂) (5)

where K is the Kalman gain, v̂ the estimated front wheel

speed, u and y the respective input and output, according

to the discussed dynamic models. Each filter provides its

own front wheel velocity estimate: v̂nw(t), corresponding

to the normal condition, and v̂w(t), corresponding to the

wheelie condition. Dealing with first order dynamic sys-

tems, it is simple to derive the analytic expression for the

mentioned estimators. In particular it can be shown that:

˙̂vnw = −
α1

r1
v̂nw + ax +

α1

r1
vf

˙̂vw = −α2

r2
v̂w − δ +

α2

r2
vf

(6)

where α1 =
√
q1r1, α2 =

√
q2r2. Notice that, for each

model, the Kalman filter is compound by two first order

filters (one for the acceleration/deceleration contribution and

the other for the front wheel speed signal), thus making the

implementation of such estimators easy.

The wheelie detection algorithm is based on the analysis

of the residual, defined as:

enw(t) = (vf (t)− v̂nw(t))
2

ew(t) = (vf (t)− v̂w(t))
2 .

(7)

The estimator with the lowest residual, indicates the current

operating mode. Thus the wheelie detection algorithm can

be easily implemented:

x̂wh =







0 (normal mode) if enw < ew
1 (wheelie mode) if enw > ew
N.D. (enw, ew) > ē

(8)

Being based on two dynamic models - that describe signals

relationships during the two operating modes - any other

working condition (e.g. braking) results in a very high

residual for both models. Thus, an additional value has been

added to the possible x̂wh: the N.D., that indicates the Not

Defined wheelie status, since residuals are too high.

It is worth noting that during a braking maneuver, if the

vehicle decelerates of δ [m/s2] the wheelie dynamic model

in equation (4) perfectly describes signals relationships even

when wheelie is not ongoing. Thus, even for the second

algorithm a finite state machine that triggers the wheelie al-

gorithm evaluation is suggested: the same finite state machine

used for the first algorithm presented, can be employed.

Remark A mismatch similar to the one among vehicle

acceleration and front wheel speed can be appreciated also

among the rear and the front wheel speed (see Figure 2).

In principle, one can think to avoid using the longitudinal

vehicle acceleration, thus saving the employment of such

sensor. However it should be stressed that, due to the non

negligible rear wheel slip during the acceleration maneuver,

the rear wheel acceleration is not equal to the front wheel

one (even when wheelie does not occur).

ω̇rRr = λ̇rv + λr v̇

As a consequence, a difference between these signals cannot

be directly used to detect the wheelie event: some additional

informations on the amount of rear wheel slip, or finite

state machine additional complexity (required to discriminate

signal mismatch not due to wheelie) would be required.

IV. EXPERIMENTAL VALIDATION

In this section both algorithms proposed are applied and

compared on real experimental data. Moreover, guidelines

for parameter tuning are provided. The following figures

show the main algorithms’ signals presented in the previous

Section, applied to the wheelie example shown in Figure

2. In Figure 4 the filtered longitudinal acceleration âx and

the front wheel one âf are shown. The ongoing wheelie is

detected when the difference Θ = âx − âf overcomes the

threshold value ∆.
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Fig. 4. Basic wheelie detection algorithm example.

The upper panel in Figure 5 shows the estimated speed

signals, v̂nw and v̂w along with the front wheel speed. It can

be appreciated how each speed estimate fits the front wheel

speed during the corresponding operative mode. Comparing

the residuals, shown in the lower panel, the ongoing wheelie

is detected.

The presented algorithms depend on some parameters that

should be properly tuned in order to achieve the best detec-

tion performances. As discussed in Section III, in particular:

• the Basic algorithm parameters are the two cut-off

frequencies for the 1st order filters used to estimate the

two accelerations, and the threshold ∆;

• the Fault Detection Based algorithm parame-

ters are the two cut-off frequencies for the 1st order

filters used to estimate the two velocities.
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Fig. 5. Fault Detection Based wheelie detection algorithm exam-
ple.

The tuning of such parameters aims at maximizing the

estimation performances of each algorithm. To do so, the

following cost function is introduced:

J =

∫

|xmeas − x̂wh|dt
∫

xmeasdt
(9)

where xmeas and x̂wh are, respectively, the real/measured

operating mode (coming from the front suspension stroke

sensor as explained in Section III) and the estimated one.

Thus, J cumulates the differences between the real and the

estimated vehicle status: the smaller the cost function, the

better are the algorithms detection performances. According

to this principle, all algorithms’ parameters are found mini-

mizing the cost function:

ϑ̄ = min Jϑ

where, ϑ is the set of parameters to be tuned for each

algorithm and ϑ̄ are the values that minimize the cost

function J .

Figure 6 helps to point out how algorithm detection errors

can be twofold:

1) false detection: the algorithm detects a wheelie (x̂wh =
1) when it is not ongoing (xmeas = 0);







Jfalse =

∫

|e|dt
∫

xmeasdt
e = xmeas − x̂wh, when e < 0

(10)

2) delayed detection: the algorithm does not detect the

wheelie event when it occurs (x̂wh = 0, xmeas = 1).

As suggested by the Figure, a certain amount of time

is needed by the algorithm to detect a wheelie. This

is the drawback to be accepted when using indirect

detection methods.






Jdelay =

∫

|e|dt
∫

xmeasdt
e = xmeas − x̂wh, when e > 0

(11)

Notice that J = Jfalse + Jdelay .
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Fig. 6. False and delayed detection examples.

Not surprisingly, there is a natural trade-off between this

two quantities: a very fast algorithm (i.e with a very small de-

tection delay) provides an higher number of false detections;

conversely, making the algorithm robust with respect to false

detection leads to an higher average detection delay. Since

the cost function (9) includes indistinctly both elements, the

parameters tuning procedure - that minimize the mentioned

cost function - provides the parameters values that solve this

natural trade-off.

Considering the Fault Detection based algorithm,

the algorithm tuning procedure is done optimizing the cost

function J with respect to the two mentioned parameters.

As an example, in Figure 7 the cost function J for different

values of estimators cut-off frequencies (here called ωnw and

ωw) is shown. In the Figure, beside the cost function J , the

false and the delayed detections are also reported, in order

to better appreciate the discussed performance trade-off. A
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Fig. 7. Tuning cost function for different algorithm parameters values.
Fault detection based algorithm.

similar optimization procedure is carried for the Basic

wheelie detection algorithm. However, it takes additional

time/effort since this algorithm depends on three parameters.

To compare the detection performances of the proposed

algorithms, two different data set have been considered. The

first one, called A, is an ad hoc test in which subsequent

wheelies are performed. This kind of test has been selected
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Dataset A JA τA Jf%A JB τB Jf%B

BS 0.0395 0.023 0.7 0.0713 0.044 1.1

FD 0.0606 0.038 0.9 0.0649 0.041 0.8

TABLE I

ALGORITHM DETECTION PERFORMANCES ON DATASET A

Data set B JA τA Jf%A JB τB Jf%B

BS 0.3794 0.039 17.6 0.3340 0.045 9.6

FD 0.3790 0.041 16.4 0.3656 0.045 12.7

TABLE II

ALGORITHM DETECTION PERFORMANCES ON DATASET B

as representative of a standard (very easy to perform and

not time consuming) test that can be used for end-of-line

parameters calibration. The second set B is made by data

collected during a real track session, as representative of an

usual vehicle usage.

In Table I and II the performances are compared, respec-

tively, for the A and B datasets. In each table, two columns

are reported: one that summarizes the detection performances

with algorithm parameters tuned on the same dataset; the

other shows the algorithm performances when parameters

are obtained using the other dataset for the optimization

procedure. Three performances indicators are provided:

1) the overall cost function value J , as defined in (9)

2) the average detection delay τ , in seconds, computed

as:






τ =

∫

|e|dt
# wheelies

e = xmeas − x̂wh, when e > 0
(12)

3) the percentage of false detections, Jf% = Jfalse · 100.

The presented results allow the following considerations

• In general, both algorithms provide satisfactory perfor-

mances: in each of the considered situation, it can be

seen how the average detection delay is less than the

required 100[ms].

• The BS algorithm achieves the better detection per-

formances: for both datasets the best cost function

value is obtained by employing this algorithm (on the

same dataset used for tuning). Its additional parameter,

despite binding to a longer tuning procedure, explains

the higher performances of such algorithm.

• The FD algorithm provides more robust/constant per-

formances: despite the significantly different dataset

nature, the parameter optimization procedure for al-

gorithm A leads to the same final parameter values.

It is particularly interesting to notice how the average

detection delay keeps similar in all the situations; the

same thing does not happen for the algorithm BS that

shows an higher sensitivity to the dataset used for its

parameters tuning (i.e. a 90% change in the average

detection delay for dataset A and 14% for dataset B).

V. CONCLUSIONS

In this paper the problem of detecting the wheelie of

a single track vehicles has been tackled. Two detection

strategies have been presented and compared using real

experimental data: both employ standard vehicle sensors

and result in low computational power algorithms. Both are

based on the experimental mismatch that occurs between

vehicle acceleration and front wheel speed signals during

a wheelie: the first algorithm directly implement this intu-

itive idea, the second one solves the problem with a fault

detection approach. These algorithm proves to be somehow

complementary: the first one can achieve higher detection

performances, thanks to its higher number of parameters,

making that algorithm interesting for highly demanding

applications (such as race/competitions). The second one is

more suited for an industrial application, due to the small

number of parameters to be tuned and due to its more robust

performances, with respect to different vehicle operating

conditions.
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