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Abstract: In this work, the problem of jointly designing the estimator structure and the 
algorithm for ternary distillation columns is addressed. In particular, the choice of the 
estimation structure (measurements location and innovated states set) and the design of a 
complete or reduced algorithm with the possibility of changing the estimation structure 
during the column operation are considered. The proposed estimators are tested using 
experimental data from a 32-stage pilot column, finding that: (i) the structural decisions 
play a key role in the estimator performance, regardless of the kind of estimation 
algorithm employed, (ii) the best estimator behavior is obtained by injecting the 
temperature information over a few column states, and (ii) the same functioning is 
obtained with geometric estimation and EKF. Copyright © 2007 IFAC
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1. INTRODUCTION 
The lack or high costs of composition analyzers for 
industrial distillation columns motivates the 
development of estimators to on-line infer 
compositions on the basis of a process model and 
(typically two to three) temperature measurements. 
The estimator design involves stuctural (sensor 
locations and number) and algorithmic (EKF, 
Luenberger observers, and so on) decisions. The 
related state of the art can be seen elsewhere (c.f. 
Alvarez et al., 1999), and here it suffices to mention 
that: (i) by far, the EKF has been the most widely 
used and accepted estimation technique (Baratti et 
al., 1998; Oisiovici et al., 2000; Venkateswarlu et al., 
2001), (ii) the structural decision has a profound 
effect on the estimator functioning (Alvarez et al., 
2000; Lopez et al., 2004), and (iii) the choices of 
number and sensor locations is still an open problem, 
with results that are not cleary connected with the 
estimator algorithm design and functioning. While 
some studies state that only a few (two or three) 
temperatures should be used in order to prevent ill-
conditioning by problem overparameterization, 
others have questioned this claim and have pointed 
out the importance of looking at the relationship 
between measurements and states of interest (c.f., 
Mejdell et al. 1993).  
The rapid growth of the EKF dimensionality with the 
number of components and stages motivates the 
development of a unified framework to jointly 
address the structure and algorithm estimation 
designs for multicomponent distillation columns, 

with emphasis on the attainment of schemes with 
measurement structure selection criterion, suitable 
data assimilation schemes, and simplified algorithms. 
For instance, the EKF has a data assimilation 
mechanism with innovation injection over the entire 
set of model states, and the questions are whether 
such complete innovation mechanism is actually at 
play, how many temperature sensors should be used 
and where they should be located, and if the 
measurement structure should be adaptive and how 
this should be done. In our previous studies, the 
innovated/non-innovated state partition concept 
(Alvarez et al., 2000; Lopez et al., 2004) has been 
applied to ternary distillation columns (Pulis et al., 
2006a), and thermodynamically interpreted (Pulis et 
al., 2006b), establishing the feasibility of drawing 
simplified estimation algorithms. Here, a further step 
is taken along this structure-oriented geometric 
framework, with emphasis on: (i) regarding the 
estimation structure (i.e., the innovated/non-
innovated partition, number of sensors and their 
location) as a design degree of freedom, (ii) finding 
out to which extent the estimator functioning 
depends or not on the choice of (geometric or EKF) 
estimation algorithm, and (iii) exploring the 
feasibility of performing the data assimilation task in 
the light of an adaptive sensor location scheme.  
In this work, the structure-algorithm estimation 
design problem for ternary distillation columns is 
addressed, with (a possible adaptive) structure that 
includes the measurement number and locations, the 
innovated/non-innovated state partition, the choices 
of innovated state sets per measurement. The 
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proposed approach is illustrated and tested with 
experimental data drawn from a 32-stage pilot 
(etahnol/tert-butanol/water) column. 

2. ESTIMATION PROBLEM 
Consider a continuous N-stage ternary distillation 
column with, feed rate F at composition cF, distillate 
(D) and bottoms (B) at composition cD or cB, heat 
load Q (proportional to vapor flow rate V), and reflux 
flow rate (R). Under standard assumptions (constant 
heat of vaporization, holdup in quasi-steady state 
regime, linear pressure drop, and vapor-liquid 
equilibrium at each stage), the column dynamics are 
described by the following equations (Skogestad et 
al., 1997, Baratti et al., 1998):  
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composition in the i-th stage, ys (or ye) is the 
measured value of the temperature Ts (or Te) in the 
s(or e)-th stage (to be determined) of the stripping 
(enriching) section, 1 (or 2) is the nonlinear (liquid-
vapor equilibrium) function that determines the i-th
component composition in the vapor phase, is the 
(bubble point) nonlinear function that sets the 
temperature, and is the (tray hydraulics) function 
that sets the exit molar flow rate from the i-th stage. 

Our estimation problem consists in combining 
distillation column engineering, non-linear 
estimation and error propagation analysis to jointly 
choose the estimation structure and algorithm. By 
structure we mean: (i) the number and location of the 
temperature sensors, (ii) the innovated/non-innovated 
states partition, and (iii) the innovated states per 
measurement. By algorithm we mean the dynamic 
data processor that performs the estimation task, with 
the Geometric and EKF estimators as test algorithms. 

The proposed approach is tested with experimental 
data and the results must be put in perspective with 
previous ones drawn with EKF studies. 

3. ADJUSTABLE-STRUCTURE ESTIMATION 
From previous studies, we know that: (i) on the basis 
of a local observabilty analysis (about a steady-state) 
of a Nc-component column needs Nc-1, adequately 
located, temperature measurements (Yu and Luyben, 
1987), meaning that at least two measurements are 
needed in a ternary column, and (ii) according to the 
adjustable-structure geometric estimation approach 
(Alvarez et al., 1999, Alvarez et al., 2000), if a 
nonlinear system is nominally completely observable 
with poor observabilty (Lopez et al., 2004), a better 
estimator behavior can be attained by performing the 
measurement innovation only in a subset of states. 
The underlying notion of robust detectability 
corresponds to a coordinate-dependent form of an 
instantaneous observability-based definition of 
detectability (Fernandez, 2006). In other words, the 
states that are nominally but not robustly observable 
should be transferred to a vector of non-innovated 
states, and this enables a design degree of freedom to 
look for a suitable compromise between data 
assimilation and (measurement and model) error 
propagation. In our distillation column problem this 
means the possibility of choosing and adapting the 
data assimilation structure, and these ideas are 
developed next.  

3. 1 Detectability structure and measures 
Following the adjustable-structure geometric 
estimation approach (Lopez, 2004, Fernandez, 2006), 
let us introduce the estimation structure set  

k = k ( ij, xI, xII),       i = 1,...,m     j = 1,…,n (3) 

where ij is the vector with the temperature 
measurement number (i) and locations (j) represents 
the number of temperature sensors (subscript i) and 
the sensor location (subscript j), and xI (or xII) is the 
innovated (or not-innovated) state. For structural 
analysis purposes, let us recall the detectability 
measures introduced in Lopez (2004) and employed 
in previous binary (Fernadez et al., 2006) and ternary 
(Pulis et al., 2006a,b) distillation column studies.  
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with the i-th stage, let us consider the set of 
admissible candidate structures ( k):
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and their singularity measures, or equivalently, the 
measurement-to-state dynamics error propagation 
measure
S1
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where msv denotes the “minimum singular value”, 
and O is the estimation matrix:
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In a way that resembles the choice of a well-
conditioned matrix via SVD (Lau et al., 1985), the 
sensitivity measure enables the assessment of the 
maximum and the least gain for each column-stage. 
Following previous results (Pulis et al., 2006a), a 
large singularity measure of the interactive 
estimation matrix, equation (6a), suggests the 
employment of the following single-innovated state 
estimation structure ( 2) for the first component in 
order to draw a better compromise between 
information injection versus measurement-modelling 
error propagation. 
Additional information on the choice of the 
estimation structure can be found analyzing the 
behavior of the innovated (or non- innovated) states 
and the dynamic parameter ( II

i ) in the equations 
(7a,b) [or equations (7c,d)] 
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which stand for exponential stability margin of the 
non-innovated states and provides the response speed 
to reconstruct the states dynamic via estimator. 
The same analysis can be performed for the second 
component. As in the previous case the single-
innovated state estimation structure 2 and the 
behavior of the non-innovated states is showed in the 
following equations: 
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As can be seen from the equations (7) the influence 
of the innovated dynamic on the non-innovated 
depends on the ratio of the bubble point temperature 
derivatives. The influence of this ratio on the non-
innovated dynamic suggests: (i) the composition 
state should not be innovated when there is a strong 
interaction between the innovated and non-innovated 
dynamics; and (ii) a robustness-oriented passive 
estimation structure should be used when the 
innovated dynamics has a weak influence on the non-
innovated dynamics. 
In a way that is analogous to the case of distillation 
column control design (Skogestad et al., 1990), to 
handle the strong coupling, a passive decentralized 
structure is considered ( 3) and the resulting 
estimator is able to satisfactory predict the output 
compositions (Pulis et al., 2006a) with a geometric 
estimator algorithm. The question is whether the 
same behavior can be obtained with a reduced order 
EKF designed according to the structural results of 
the geometric estimation approach. This question is 
addressed in the next subsections. 

3.2. Geometric Estimator 
The combination of the estimation structure with the 
GE algorithm leads to the design of an estimator with 
decoupled data assimilation mechanism 
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, ĉE

i-1
, ĉT

i-1
, ĉE
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where E , T , E , T are the tuning parameters. The 
application of the GE tuning guidelines (Lopez, 
2000; Fernandez, 2006) yielded; 

E = T = 0.03 min-1, E = T = 1.5  

3.3 Extented Kalman Filter 

The application of the EKF technique to the 
innovated column subsystem yields the geometric 
EKF (GEKF): 
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, ĉE

i+1
, ĉT
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i ) 11)/r] [y

i
 - (ĉE
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, ĉE

i+1
, ĉT
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characterized by three Riccati equations: 
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From a structural point of view, both the GEKF and 
the GE are characterized by a structure with a 
reduced number of equations, a diagonal model error 
covariance matrix, and 3 tuning parameters. The 
implementation and tuning of the GEKF (67 eqs.) 
and GE (64 eqs.) is considerably simpler than the one 
of the CEKF (2144 eqs.), in the understanding that 
the tuning of the CEKF is basically performed by 
trial-and-error (Venkateswarlu et al., 2001) or 
optimization (Baratti et al., 1995; Baratti et al. 1998) 
procedures.  

3.4 Adjustable-structure
In the last section the possibility of designing a 
geometric or reduced-order EKF algorithm, on the 
basis of the geometric structural characterization was 
established, with single-sensor measurement 
injections in a reduced set of innovated states, with 
the other states being reconstructed via open-loop 
estimation. The estimation structure obtained can be 
implemented for each sensor with good data 
assimilation capability, or equivalently, with the 
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lower singularity measures. This implies an 
algorithm with a modular construction obtained 
combining more single-sensor single-innovated 
scheme and injecting information in few column 
stages per temperature measurements. In particular, 
the application of a modular structure may be useful 
when the column operates with transients over large 
regions of its state-space. In fact, the estimation 
structure obtained allows us to interrupt the error 
propagation mechanism in those column regions 
where the error propagation dominates the 
information assimilation. 

3.5 Concluding remarks 
Summarizing: (i) the estimation structure was 
designed by combining two low order single-sensor 
schemes for the innovated states and an open-loop 
estimator for the noninnovated state, (ii) in principle, 
the estimation scheme should be independent of the 
particular estimation algorithm choice, and (iii) the 
possibility of adjusting the structure to efficiently 
perform the data assimilation task has been enabled. 

4. ESTIMATOR TESTING 
The experimental data used to test the performance 
of the estimation algorithms were obtained with an 
experimental 32-stage column, located at the 
University of Padova (Italy). 

4.1 Experimental apparatus and test motion 
The ternary mixture ethanol/tert-butanol/water was 
fractionated in the 30-tray continuous column. The 
column is high 10 m and is constituted by a vertical 
thermosiphone reboiler, a total water-cooled 
condenser where the overhead vapor is totally 
condensed and the reflux drum is open to the 
atmosphere. The feed (F) is introduced in the 8-th 
stage from the bottom. Temperature are measured 
on-line by resistance thermometers on trays 0, 4, 8, 
12, 18, 22, 26, 30, and the distillate and bottom 
compositions were sampled every (3-5 minutes) and 
measured off-line by means a gas-chromatograph 
equipped by a resistance detector. A linear pressure 
drop was assumed along the column considering that 
bottom and top pressure equal to 814 and 760 mmHg 
respectively.
Several experiments were carried out, but in this 
work were considered those characterized by rather 
drastic changes for which the column moves from 
low to high separation with a nearly constant 
separation regime in the final period. From an 
industrial continuous column perspective these 
experimental runs are rather unrealistic, and 
resemble more transients of batch columns as well as 
startups or shutdowns of continuous columns. On the 
other hand, for the purpose at hand, the experimental 
runs, as we shall see, have a rather poor detectability 
property (due to the insensitivity of compositions of 
interest with respect to temperature, over an 
important set of stages), and this in turn signifies the 
testing of the proposed approach under rather severe 
conditions.  
The experiments, whose operating conditions are 
presented in Table 1, are characterized by: (i) 

constant feed composition, (ii) a sub-cooled 
temperature feed (TF ~ 25 °C), and (iii) a sub-cooling 
of the reflux stream. In the first test (Run I) the 
column transient was induced decreasing the vapor 
flow-rate while in the second test (Run II) increasing 
the reflux flow-rate. 

TABLE 1 Operating conditions 

Run Run I Run II 
R0 (mol/s) 0.77 0.58 
F (mol/s) 1.323 1.434 
(cE

nF
, cT

nF
) (0.0979, 0.0630) (0.0835, 0.0535) 

V0 (mol/s) 1.57 1.25 
R  ~ + 40% 
V ~ -35% 

4.2 Thermodynamic considerations 
In order to appreciate the advantages derived from 
the application of an estimation algorithm, in Figure 
1 is shown the column response of Run I. The 
comparison between the model predictions and the 
experimental values is considerable for the distillate 
compositions while the deviation is marked for the 
bottom products. In order to improve the product 
estimation is important to know the relationship 
between temperature and compositions. 
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Fig. 1. Ethanol and tert-butanol 
model prediction (Run I). 

In the previous Section was mentioned that eight 
temperature measurements are available, and in 
Figure 2 are shown the transients of the temperature 
and alcohol compositions stage profiles of Run I. The 
analysis of Figure 2 shows that temperature 
dynamics are faster than composition dynamics. In 
fact, the composition profiles are still evolving in the 
enriching section, while the temperatures have 
almost reached a steady-state condition. This says 
that, in a multicomponent mixture, the relationship 
between temperature and composition becomes 
rather insensitive as the compositions approach their 
azeotropic values, and this in turn signifies the loss of 
observability. Indeed, as illustrated in a previous 
work, when the column moves close to the azeotrope 
condition the temperature derivative with respect the 
alcohol compositions are close to zero and the 
singularity measure, equations (5), are higher than in 
the stripping section. This manifest itself as ill-
conditioning of the observability matrix during the 
column transient, and the estimate quality. For this 
reason, the temperature sensor is located in the 
column bottom (stage 0) that represents the column 
region with the best data assimilation versus error 
propagation compromise.  
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Fig. 2. Experimental temperature and 
simulated compositions profiles.

4.3 Comparison between GE, GEKF and CEKF 
Here, the GE and GEKF estimators are compared 
with a conventional CEKF with two sensors (in the 
column bottom and stage 27), as it is generally done 
in distillation column studies. The resulting behavior 
is presented in Figure 3 and Figure 4, showing that 
basically the GE (8) and the GEKF (9) yield the 
same behavior. In other words, the CEKF is 
characterized by the combination of a complex 
algorithm and a full order (complete) data 
assimilation scheme, that is not effectively working 
during the process separation time. These structural 
issues has been tackled by means the structure-
algorithm approach proposed in this work.  
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Figure 3. Comparison among GE, CEKF,
CEKF estimation algorithms (Run I). 

Definitely, when the structure has been adequately 
resolved, the data assimilation mechanism of the 

innovated subsystem can be designed either with GE 
or GEKF, simpler algorithms that efficiently perform 
the data assimilation task.  

0 10 20 30 40 50 60 70
0.00

0.01

0.02

0.3

0.4

0.5

 GE
 GEKF
 CEKF
 Off line exp. dataEf

flu
en

t m
ol

ar
 fr

ac
tio

ns

time (min)

Distillate

Bottoms

Figure 4. Comparison among GE, CEKF, 
CEKF estimation algorithms (Run II). 

4.4 Fixed versus adjustable structure 
Observe that good bottom composition estimates are 
obtained with one fixed temperature sensor located in 
the column bottom (stage 0). To assess the 
convenience of adapting the measurement location, 
let us analyze the possibility of extracting 
information content from all the available 
temperature measurements. As it can be seen in 
Figure 2, the temperature front changes with time, 
and this suggest us to move sensor according to the 
temperature wave position. The resulting adaptive 
adjustable-structure is obtained connecting and 
disconnecting two single-sensor structures, equations 
(8 or 9), one in the stripping section and one in the 
enriching section, on the basis of the evolution of the 
temperature wave along the column. This means 
changing, on-line, the selected temperature sensor, 
and consequently the subset of the innovated states. 
Specifically, the selected sensor is changed in the 
enriching section among the stages 12, 18, 22, 26, 
30} and in the stages 0, 4} in the stripping section. 
The resulting estimator with an adaptive adjustable-
structure is compared with a GE with one fixed 
temperature sensor (located in the stage 0) and the 
behavior is showed in Figure 5 and Figure 6. In 
particular, in the column considered the information 
content, injected in the enriching section, does not 
improve the composition estimation in the distillate. 
This is due to the thermodynamic consideration 
previously done, however the adaptive structure 
proposed could be useful in a column with better 
conditioned observability property, in the sense that 
the temperature gradients move appreciably, and 
where the compositions can be better inferred from 
the temperature measurements. 
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with an adjustable structure (Run I). 
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Figure 6. Comprison between a GE 
(with one fixed sensor) and a GE 

with an ajustable structure (Run II). 

5. CONCLUSIONS 
The structure-algorithm estimation problem for 
ternary distillation columns has been addressed. The 
choice of the (possibly adaptive) estimation structure 
(measurements location and innovated states set) and 
the design of a complete or reduced algorithm with 
the possibility of changing the estimation structure 
during the column operation were considered. The 
proposed approach was illustrated and tested with a 
32-stage pilot column with experimental data 
generated by the transient response induced by rather 
atypical runs for a column working in continuos 
regime, in the understanding that these runs signify a 
rather difficult column estimation problem, or 
equivalently a severe test for any estimation 
algorithm. It was found that the structural-algorithm 
approach proposed played a key role leading to the 
data assimilation scheme better suited for the column 
considered and to a simpler algorithms that 
efficiently performs the data assimilation task. in the 
estimator performance, and the best estimator 
behavior is obtained by injecting the temperature 
information over a few column states. Provided an 
adequate structural decision is made, the same 
functioning is obtained with geometric estimation 
and reduced-order EKF data assimilation mechanism 
for the innovated subsystem, and these algorithms 
have considerably less equations than the ones of a 
conventional EKF. 
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