
8th    International  IFAC    Symposium  on
Dynamics and Control of Process Systems

 

     

 
 
 
 
 
 
 
 
 
 
 

DETECTION OF ANOMALOUS BEHAVIOR AND PERFORMANCE ASSESSMENT OF 
PREDICTIVE CONTROLLERS 

 
 

Rachid. A. Ghraizi§, Cesar de Prada§, and Ernesto Martínez* 
 
 

§ University of Valladolid, C/ Real de Burgos S/N, 47011 Valladolid, Spain, 
*INGAR (CONICETt/UTN), Avellaneda 3657, S3002 GJC, Santa Fe, Argentina 

 
 
 

 
Abstract: This study focuses on performance assessment of model predictive control 
systems. A statistical methodology based on costs functions is proposed to determine a 
performance index which is amenable for monitoring an MPC using a benchmarking 
(historical) behavior and confidence control charts. An alternative methodology based on 
the predictability of the error is proposed for performance monitoring the MPC. The 
proposed methodologies are used to evaluate a DMC used to control a chemical reactor 
when significant changes in the process dynamics and controller tuning are introduced.  
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1. INTRODUCTION 

 
Predictive controllers are sensitive to performance 

degradation and anomalous behavior in their lifetime 
due to a number of reasons, typically modelling 
errors and poor tuning. The driving force of 
controller performance assessment, monitoring and 
diagnosis is to ensure that a MPC performs according 
to their model-based design specifications. This 
means that controlled variables meet their operating 
targets such as specifications on output variability, 
effectiveness in constraint enforcement and 
proximity to economic optimal operation. Typically 
the controller should work well over a wide range of 
operating conditions whilst dealing with unknown 
effects of unmeasured disturbances which may result 
in an actual controller behavior which is far from the 
expected performance based on the nominal 
controller design. In the literature, a number of 
approaches have been proposed for detecting 
significant deviations from the desired behavior of 
the predictive control system and guessing the 
possible causes of malfunctioning using performance 
indices based on cost functions.  (Harris et al., 1999; 
Kesavan and Lee, 1997; Patwardhan et al., 1997; 
Schäfer and Cinar, 2002, 2004; Zhang and Henson, 
1999).  
The availability of a process model makes possible to 

calculate in real-time a cost function from the 
measured and manipulated variables and compare it 
to the predicted cost used by the controller.  Schäfer 
and Cinar (2004) propose a performance measure 
based on the ratio of historical and achieved (actual) 
performance is used for loop monitoring and a ratio 
of design and achieved performance is used for 
diagnosis. An alternative suggested by Zhang and 
Henson (1999) is to compare the actual cost function 
with the one obtained using a linear model.  

For performance monitoring, one attractive 
alternative is to compare the observed process 
behavior with a benchmark target using a desirable 
cost function from the commissioning step (Ghraizi, 
et al., 2003; Schäfer and Cinar, 2002, 2004). The use 
of cost functions can also be applied to the detection 
of anomalous behavior by comparison with cost 
values which are descriptive of loop malfunctioning, 
e.g. poor tuning or local process-model mismatch. In 
this work, the usefulness of control charts for 
performance monitoring based on characterizing the 
expected variability is presented. To illustrate the 
applicability of the proposed technique performance 
monitoring of a DMC controller in a chemical reactor 
is analyzed. 

 
2. PERFORMANCE INDICES 
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The availability of an internal model in the controller 
design opens the possibility to tackle performance 
monitoring and diagnosis based on different ratios of 
cost functions. One alternative is to compare the cost 
function as predicted internally by the controller, 
JCont, to the actual cost function, Jreal, calculated 
using the implemented inputs and observed process 
outputs. The resulting index ICCont is indicative of the 
validity of the predictions made by the internal 
model. Fig. 1 provides a schema of the variables 
involved in estimating this index using the internal 
model in a DMC and measurable disturbances. A 
significative change in the operating conditions may 
render the internal model inappropriate which will be 
readily detected by a shift in ICCont 

     

]

   

 
Fig. 1: Performance index calculation schema 
 
Similarly, a benchmark index ICcont_hist characterizing 
the desired behavior may be defined using the ratio 
between a historical cost function Jreal_hist and the 
controller historical cost function JCont_hist. Tuning 
parameters in the cost function are: prediction 
horizon, N2, control horizon, Nu, equal concern 
errors γ  to weight differently control objectives and 
move suppression factors β  that affect the energy of 
control actions. 
 
At any given time t, the real cost function Jreal is 
based on input-output process data in the N2-1 
previous sampling times. The value of Jreal is 
descriptive of the actual capability a MPC to achieve 
the control objectives and the control energy 
employed. Cost function calculations are made using 
the receding horizon as  
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where, y are the controlled (measured) variables,  Δu 
are the step changes to manipulated variables, w are 
the desired output values, γ and β are weighting 
matrices. The values of w, γ  and β are constant over 
each calculating window. 
The historical cost function Jreal_hist is calculated in 
a similar way but using historical input-output data 
for an MPC working properly.  Based on the sample 
mean and variance of the cost function it is possible 
to define the upper and lower limits for the control 
band in the control chart and they are calculate as 
follows: 

2
_ 2σ±histrealJ                                                      (2) 

 

Which can help detecting any abnormal deviations 
from expected performance as shown in Fig. 2. 
 

 

Jreal
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Normal situation 

Fig. 2: Monitoring Jreal using a benchmark   
 
σ  is the variance of Jreal_hist calculated 
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The cost function JCont for the controller is related to 
the deviation between value prediction of controlled 
variables and their references along with control 
efforts involved in tracking the reference w. This cost 
function is used internally by the MPC to synthesize 
the sequence of control actions. To calculate JCont 
predictions over the prediction horizon along with 
the expected evolution of controlled variables are 
used: 
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Where T =t-N2, ŷ are predicted process outputs, Δu 
are the increments of the manipulated variables, w 
desired output references, γ y β  are the weighting 
matrices. N2 is the prediction horizon, Nu is the 
control horizon, Nin is the number of manipulated 
variables, and Nout is the number of controlled 
variables. 
 
The cost functions Jreal and JCont can be combined in 
a performance index ICCont descriptive of the 
difference between internal model predictions used 
by the controller with the ones computed directly 
from measurements: 
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The evolution of the above index provides about the 
degradation of model predictions used by the 
controller. Similarly, a performance index can be 
defined using a historical benchmark for the 
controller defined in a similar way as in (5) 
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The performance index ICCont can be monitored using 
benchmark control bands as shown in Fig. 3.  
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Fig. 3: Monitoring the controller performance index 

using a benchmark of desirable behavior 
 
The performance index ICCont typically exhibits 
statistical variations due to unmeasured disturbances 
and unmodelled noise. This fact may affect the 
inferences made about the control system state using 
this index. To overcome this problem it is better to 
resort to a moving average of ICCont which filters the 
effect of random variability. The moving average is 
calculated as:  
 

( ) )1t()t()t( ContContCont ICCI1IC −−−= θθ   (7) 
 
Where 10 ≤≤ θ a forgetting factor such as a small 
value of is θ emphasizes the most recent values of 
the index (no memory). As θ  increases towards 1 the 
importance of previous values also increases making 
the index average less sensitive for quick detection of 
sudden changes indicative of abnormality. 
For a properly working controller both cost functions 
in the quotient (index) will have similar values and 
ICCont tends to 1 within the control bands defined by 
the historical benchmark. As the controller behavior 
deteriorates, the value of ICCont will drift away from 
the normal variability of a well-performing MPC.    
 
An alternative methodology for performance 
monitoring is the idea of predictability of controller 
behavior. The main concept is that if a controller 
works properly and the prediction horizon b has been 
chosen appropriately, the behavior of a perfectly 
working controller cannot be predicted beyond the 
interval of time during which any disturbance 
entering the loop up to a present time is supposed to 
be compensated. On this ground, there may exist 
different alternatives to detect patterns of 
predictability in the time series associated to 
controller errors and manipulated variable changes. It 
is worth noting that as seen from time t, the 
controller error after time t+b of a properly working 
controller cannot be distinguished from a random 
walk stochastic process see Fig 4. Over the control 
horizon, the controller behavior is fully predictable 
since it corresponds to its own control policy built-in 
by design. 

 
Fig. 4. On the predictability of the controller error. 
 
It is worth discussing first the meaning of the control 

horizon b for a regulatory control task. Whatever the 
internal workings of a predictive controller, the value 
of b represents a sound engineering decision that 
takes into account, among other things, process 
dynamics, type of loop service and acceptable control 
energy. Let’s denote by a scalar ei(t) the controller 
error whereas êi(t) stands for the prediction of such 
error based on past error values, and possibly, control 
actions generated by the controller. The difference 
between the actual and predicted controller errors is 
the residue ri(t) whose means and variance provide 
relevant information regarding the predictability of a 
controller behavior.  

ICpcont_hist

ICCont_hist
Normal situation 

 
The calculation of a performance index from a given 
data set demands some way of estimating future 
controller errors. The easiest way to do this is to 
propose a regression model of the following form: 
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Where m is the model order and aj are the parameters 
to be fitted upon data using for example least-square 
regression. The Predictability Index (ICmv) is 
calculated such the follow  
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Where ICi is the performance index of each one of 
the controlled variables and fi it is a weight vector 
that is used to give different importance to each one 
of the index ICi in dependence of each one of the 
controlled variables, Nout it is the number of the 
controlled variables. 
The factor f is established like a relationship between 
the value of the weight γ that it is used to give 
different importance to the controlled variable and 
the total sum the weight factor of all the controlled 
variables of the control loop,  
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The Predictability Index (IC)i for each error is 
calculated to bear some similarity with the one 
proposed by Harris (1989) to measure the current 
performance regarding the best performance that can 
be achieved using a minimum variance controller,  
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Where, σr and σe are the variance of the residue and 
the error, respectively. Similar calculations can be 
used to define a measure of the predictability of 
controller outputs. For a given interval of time, if a 
controller does not exhibit a predictable behavior 
beyond the control horizon, σr ≈ σe gives rising to a 
near zero value of ICi. As the controller behavior is 
more predictable σe increases relative to σr, which in 

e(t) 

Time

t t+b 

Predictable

Unpredictable

êi(t+b/t) 

Situation with 
problem 

ICcont hist +Thist

ICcont_hist -Thist

305



turn increases ICi. For a controller exhibiting an 
easily predictable behavior (e.g., output saturation) 
σr << σe and ICi =1. It is possible to define 
confidence intervals for sample estimators of the 
predictability index, which allows using control 
charts to detect excursions associated to loop 
malfunctions. The estimate to the confidence interval 
is carried out according to the following equation:    

     

 
      

(12) 
 

 
Where α is the level of confidence, n is the size of 
the group of the data. 
 

3. SIMULATION RESULTS 
 

In this section, performance monitoring of model 
predictive controllers is discussed using simulated 
data for a continuous chemical reactor where the 
exothermic reaction A → B occurs. The controller is 
DMC and process a schema is given in Fig. 5.  
 

 
Fig. 5: CSRT controlled with a DMC   
 
The controlled variables are the reactor temperature 
Tl and outflow product B concentration, whereas as 
manipulated variables the DMC uses inflow rate Fl 
of the reagent A entering the reactor and cooling 
flow rate Fr. There also exists a measurable 
disturbance, Tr0, the temperature of Fr, and two 
disturbances which cannot be measured: 
concentration Ca0 and temperature Tl0 for the 
incoming reagent. 
 
For DMC performance monitoring and diagnosis 
three different scenarios have been simulated. Firstly, 
normal operating condition is considered. Later on, a 
change in process dynamics due to a significant 
variation of the heat transfer coefficient is 
considered. Finally, the influence of controller tuning 
on the DMC behavior is simulated to assess the 
effect on its performance. 
 
3.1 Results obtained for normal operating 
conditions  
 
In Fig. 6 and Fig. 7 the effect of set-point changes for 
the controlled variables Cb and Tl have been 
simulated. Process and controller parameters are 
maintained constant throughout. As can be seen the 
settling time for the process is in the order of 45 min 

and the controller seems to handle successfully the 
load disturbances 

 

 
Fig. 6.DMC response for a set-point change in Cb 
 

 
Fig. 7: DMC response for a set-point change in T1.   

 

 
In Fig. 8 the cost function Jreal along with its average 
and upper/lower confidence limits are depicted.  For 
the chosen degree of confidence (95%) the relatively 
low value of Jreal is indicative proper working of the 
controller when facing the load disturbances. 
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Fig. 8: Cost function Jreal. 
 
In Fig. 9, the performance index ICCont has the same 
result as Jreal and validate that the controller is 
working well. 

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
T IM E

IC p c o n t

 
Fig. 9: Performance Index ICCont.  
 
The Predictability Index ICmv in Fig. 9 fully confirm 
good DMC behavior to handle both measurable and 
unknown disturbances. 
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Fig. 10: Performance Index ICmv.  
 
3.2 Change in process dynamics 
 
To simulate a drastic change in the dynamic behavior 
of the procesa at t=41 h the value of the heat transfer 
coefficient is lowered from its nominal design value 
Of. 4300 kJ/(h*m2)*K to 2470 kJ/(h*m2)*K and 
maintaned in this latter value until the end of the 
simulation episode. The simulation experiment was 
carried out as follows. The first 38 hours (2000 
sample values) were simulated under normal 
operating conditions. At t=72h load-type 
disturbances (measurable and unknown) are 
introduced. Each disturbance has been simulated for 
34 hours with a sampling time of 1 min.  
 
In Fig. 11 and Fig. 12, the controlled variables are 
shown along with their desired reference values. It 
worth noting the increase of the process setting time 
from 42 min to almost 100 min. Even though, the 
performance is degraded due to a much poorer 
internal model, the DMC can handle quite well load 
disturbances. 
 

 
Fig. 11:  DMC of product composition with degraded 

internal model prediction under load 
disturbances. 

 

 
Fig. 12: Behavior of T1 when the process dynamics 

is changed. 
 
In Fig. 13 the cost function Jreal, performance index 
ICCont are showned, as expected, as soon as the 
process dynamics is changed, the time series for both 
indices drift away from the normal (expected) 
variability. As soon the DMC can recover control, 

the control charts reflect a return to “under-control”. 
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Fig. 13: Detecting a drift in process dynamics. 
 
Fig. 9 reveal how the controller's state worsenits as 
soon as the process dynamics is changed and olso showned 
how the value of the index ICmv change and the level 
of the uncertainty increases in this situation. 
 

 
Fig. 14: Performance Index ICmv.  
 
3.3 Change in tuning parameters 

 
The original values of the tuning parameters were 
γ=[2.0 1.0 0.8], β=[0.5 0.5], α=[0.03 0.099 0.09], and 
have been changed to the following ones: γ=[2 8 1 ], 
β=[0.999 0.999], α=[2 2 1]. The new values for 
weighting errors and controller agresiveness 
drastically effect the performance of the DMC. 
However, performance degradation reflected in very 
different ways in the process and controller cost 
functions, respectively.  
 

Simulation studies were done following a similar 
procedure to that of Section 3.2. At t=41 h, tuning 
parameters of the DMC has been changed and 
maintained throughout the rest of the simulation.  
Results obtained are given in Fig 14 through Fig. 15 
In Fig. 16, the actual T1 is compared to the 
predictions made using the linear model which 
reflects the drastic change in the close-loop reactor 
dynamics in the new scenario.  Also, there is an 
increase in the process settling time compared to a 
well-tuned DMC. 

 

 
Fig. 15: Inadequate DMC tuning effects for controlling Cb 
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Fig. 16: Inadequate DMC tuning effects for controlling T1 

 
In Fig. 16 and Fig. 17 the actual cost function Jreal 
and the performance index ICCont are shown.  The ill-
tuning of DMC is clearly reflected in both cases.  
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Fig. 17: Cost Index Jreal. 
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Fig. 18: Performance index ICpCont.  

In Fig. 18 the predictability index ICmv is shown the 
ill-tuning of DMC, and we can also perceive it bad 
behavior seeing the increase in the confidence 
interval. 

 
Fig. 19: Performance degradation detected using the 

performance index based on predictability 
 

4. CONCLUDING REMARKS 
 

Simple tools for performance monitoring of MPC 
have been presented using in a case the predictability 
of error and in the other case internal cost functions 
which can be integrated in a controller performance 
index. A case study, a chemical reactor controlled by 
a DMC has been used to illustrate the proposed 
concepts and methodology. Abnormal operating 

conditions resulting from a significant change in 
process dynamics and inadequate tuning help 
illustrate the discriminatory capability of 
performance indices and their corresponding 
confidence charts. 

After the change in 
the tuning 
parameter.

 
REFERENCES 

 After the change in 
the tuning 
parameter.

Ghraizi Rachid A., Martinez Ernesto, Prada Cesar de, 
(2005) Performance monitoring of industrial 
controllers based on the predictability of 
controller behavior, Escape-15, Barcelona Spain, 

Sample

Ghraizi Rachid. A., Martínez E., de Prada C, Análisis 
del comportamiento de los controladores 
industriales, XI Congreso Latinoamericano de 
Control Automático, La Habana, 2004. 

Harris T.J., Seppala C., Desborough L.D. (1999), A 
review of performance monitoring and 
assessment techniques for univariate and 
multivariate control systems, Journal of Process 
Control 9, pp 1–17,. 

Jreal
Change in the tuning parameter. 

Normal 
operation Kesavan P., Lee J., (1997) Diagnostic tools for 

multivariate model-based control systems, Ind. 
Eng. Chem. Res. 36 2725–2738. 

Patwardhan R., Huang B., Shah S., (1997).How good 
is your DMC controller? CSChE Annual 
Meeting. 

Schäfer J., Cinar A., (2002), multivariable MPC 
performance assessment, monitoring and 
diagnosis, 15th Triennial World Congress, IFAC, 
Barcelona, Spain. 

N

Schäfer J., Cinar A., (2004) Multivariable MPC 
system performance assessment, monitoring, and 
diagnosis, Journal of Process Control 14, pp 
113–129.  

Zhang Y., Henson M.A., (1999). A performance 
measure for constrained model predictive 
controllers, in: European Control Conference, 
Karlsruhe, Germany,  

 

ICCont

Change in the tuning parameter. 

ormal operation 

After the change in the  
tuning parameter.

308


