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Abstract: The performance of data based monitoring algorithms is crucially
dependent on the ability to discriminate between patterns of normal and fault
data. In this paper, we analyze discriminatory properties of PCA, FDA and
nonlinear scaled version of PCA algorithm proposed by (Ding et al., 2002). We
demonstrate improved discriminatory performance of the nonlinearly scaled PCA
over traditional algorithms like PCA and FDA. The scaling and discrimination
issues have been analyzed for each of the above algorithms using normal and fault
data generated from the bench-marked Tennessee Eastman (TE) problem. The TE
problem is used to highlight the superiority of the nonlinear scaled PCA (SPCA)
over PCA and FDA. Copyright c©2007 IFAC
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1. INTRODUCTION

The operation of a process unit in safe zone is
essential to avert any kind of loss in terms of pro-
ductivity or economics. The broad scope of fault
detection and diagnosis (FDD), which includes
various malfunctions such as process degradation,
parameter changes, failures of process units or
sub-units, pose challenges for optimal operation
of the plant. The ever increasing complexity of
process units has made it difficult to simulta-
neously analyze online data and ensure that all
the variables are being maintained at their safe
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limits (Venkatsubramanian et al., 2003). It is,
therefore, necessary to develop mathematical or
statistical algorithms that can facilitate early de-
tection and isolation of faults.

Of the various quantitative methods available for
fault diagnosis, those based on historical plant
data are preferred (Kresta et al., 1991), as they re-
quire minimal prior knowledge of the plant. Mul-
tivariate statistical techniques, that fall under the
class of data-based methods, are capable of reduc-
ing the dimensionality of the data and capturing
the features in the reduced dimensions (Kresta et

al., 1991). Principal component analysis (PCA)
is a standard unsupervised technique used for
pattern classification. The coordinate transforma-
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tion is linear and spans the space of maximum
variance, thus capturing maximum possible in-
formation in reduced dimensions. However, the
linear nature of coordinate transformation limits
the ability of PCA to classify patterns generated
by nonlinear processes. Fisher discriminant anal-
ysis (FDA) tries to address this shortcoming of
PCA by incorporating a priori knowledge of all the
faults that are present in the data. Although the
coordinate transformation is still linear, the use
of knowledge about number of faults enhances the
discrimination between various clusters. However,
as is the case with all supervised methods, the
implementation of FDA requires prior classifica-
tion or labeling of samples to clusters, a scenario
which is relatively difficult to achieve. Moreover,
classification of novel faults is also an important
issue in practice.

There are several attributes that an algorithm
needs to have, for efficient FDD. Firstly, the large
number of process variables may pose a problem
of information overload and hamper the real time
diagnosis of plant operations. Thus, one of the
primary requirements of any FDD algorithm is
to be able to extract maximum possible informa-
tion into a significantly lower dimensional space.
Secondly, the various online measurements bring
in useful signatures related to the plant oper-
ation. Typically, normal operations and various
types of faults generate different signatures of the
process variables (Detroja et al., 2006). These
signatures can be classified into clusters that rep-
resent their modes of operations, e.g. normal or
fault (Detroja et al., 2006). Thus, another desir-
able feature in an FDD algorithm is the ability
to discriminate between various patterns present
in the data and classify them accordingly. Con-
ventionally, FDD algorithms such as PCA use
statistical methods that are based on normal data
alone. However, data collected during faults can
also help in the discrimination/classification task.
Towards this end, supervisory training algorithms
such as FDA (He et al., 2005), have been used
to include information that the fault situations
bring. As mentioned earlier, these supervisory
methods however, require additional effort related
to labeling the samples during the training/model
building step. Thus, another desirable feature in
the FDD algorithm is to have an inherent dis-
criminative ability that can classify the data for
different modes of operation. Another important
aspect related to the data sets of normal and
fault modes is the relative size of the data sets.
Fault data are relatively smaller in size when
compared with normal operating data and there-
fore the latter significantly influence the model
characteristics in algorithms such as PCA and
FDA. Thus towards enhanced discrimination, the
FDD algorithm should also accommodate unbal-

anced data sets of different sizes. To summarize,
an FDD algorithm should be able to– a) achieve
dimensionality reduction, i.e. extract maximum
information into a lower dimensional space, b)
have inherent discriminative ability to distinguish
between various signatures, like normal data, ac-
tuator failure, sensor failure, etc. c) accommodate
unbalanced data sets, that is, smaller data sets for
faults relative to normal data set.

This paper addresses the above requirements in
data-based monitoring algorithms. We specifically
analyze an alternate nonlinear scaling of the PCA
algorithm as proposed by (Ding et al., 2002) to-
wards addressing the above problems. (Ding et

al., 2002) introduce a nonlinear scaling to PCA
that leads to self-aggregation of the data points
into distinct clusters. We show that this aspect
enhances the inherent discrimination ability of
PCA and aids the FDD task. Another feature of
the nonlinear scaled PCA (SPCA) is its ability to
classify unbalanced clusters. Unbalanced clusters
occur when there is a substantial difference in
the number of data points of various clusters.
As mentioned earlier, it is common to have a
large data set for normal operating conditions,
but the length of the data set for a fault con-
dition is much less. This causes the large sized
cluster to overshadow the small sized clusters,
thus making it difficult to distinguish between
various patterns. We show that for the FDD task,
use of SPCA provides enhanced discrimination
even in the presence of unbalanced clusters. The
Tennessee Eastman (TE) problem (Downs and
Vogel, 1993), that has become a benchmark prob-
lem for various FDD related studies, has been
chosen to analyze the above mentioned algorithms
and to highlight the various features of the same.
Two measures that quantify the performance of
the algorithms are introduced, viz, – a) Extent
of Separation (EoS)–the ability of an algorithm
to discriminate between various classes, i.e. the
ability to minimize overlaps and b) Extent of
Aggregation (EoA)– the ability of the algorithm
to aggregate various data points of a particular
cluster and make the cluster as compact as pos-
sible. We analyze the performance of PCA, FDA
and SPCA using the above metrics and show the
superiority of SPCA over other algorithms using
data for the TE problem.

The paper is organized as follows– Section 2 gives
a brief introduction of existing monitoring algo-
rithms. Section 3 presents the results of the case-
study on the TE problem and discusses the perfor-
mance of the monitoring techniques. Finally, the
paper is concluded by a critical evaluation of the
obtained results.
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2. OVERVIEW OF PCA, FDA AND SPCA

Let Xn×m denote the matrix of training data of
n samples and m process variables. This data
matrix contains lot of useful information about
plant and can be used for further analyses. This
matrix can be decomposed or factored such that
it spans lower dimensional space, thus facilitating
easier analysis.

2.1 PCA

PCA is a dimensionality reduction technique in
which the data are projected into lower dimen-
sional space that characterizes state of the pro-
cess. Under the assumption of statistical inde-
pendence of observed samples, PCA decomposes
X to reveal the relationships among the pro-
cess variables. The objective function for PCA
involves maximization of variance explained in X
by each direction. For instance, the first direction
is obtained as a solution of following optimization
problem in the linear space t1 = Xp1,

max
p1

(tT1 t1) = pT
1 XT Xp1 (1)

such that pT
1 p1 = 1. It is shown that solution

of above problem can be posed as an eigenvalue
eigenvector problem as

XT Xp1 = λp1. (2)

Thus, PCA decomposes the variance of X into
scores matrix T and loading matrix P as

X = TPT . (3)

Orthogonality of the loading vectors pi ensures
that the above decomposition is unique. In order
to capture the variation in data and to minimize
noise, the loading vectors corresponding to first
k largest eigenvalues are retained. Thus, process
monitoring is done in a lower dimensional space.
Note that,

X = t1p
T
1 + t2p

T
2 + · · · + tkpT

k + E, (4)

where, E contains noise information which can not
be captured in the first k components. Generally,
choice of k is done using scree plot of eigenvalue
numbers versus eigenvalues.

One of the major shortcomings of PCA is that
it has limited discriminative ability. For example,
clusters of similarly behaving samples are plotted
together on scores plot which may cause overlap
between the clusters. The objective function for
PCA does not bring out possibility of discrim-
ination. FDA is more suited for discrimination
purpose, as its objective function explicitly incor-
porates discrimination.

2.2 FDA

FDA takes into account information between the
classes as well as information within the classes.
Given h distinct classes in the data points, FDA
determines maximum of h − 1 discriminating di-
rections such that scatter between different classes
is maximized and scatter within each class is min-
imized. It is to be noted that, in FDA, number of
classes in data needs to be known a priori.

Let n denote number of samples, m number of
measurement variables, h number of classes, nj

number of samples in class j and xi, ith row of
X . Now various quantities are defined to under-
stand objective function of FDA. The total scatter
matrix St is defined as

St =

n∑

i=1

(xi − x̄)(xi − x̄)T (5)

where x̄ is total mean vector

x̄ =
1

n

n∑

i=1

xi. (6)

Let Xj be the data in class j. Within scatter
matrix for class j, Sj , is defined as,

Sj =
∑

xi∈Xj

(xi − x̄j)(xi − x̄j)
T (7)

where, x̄j is mean vector for class Xj defined as,

x̄j =
1

nj

∑

xi∈Xj

xi. (8)

The within class scatter matrix, Sw, is

Sw =

m∑

j=1

Sj (9)

and between class cluster, Sb, is

Sb =

h∑

j=1

nj(xi − x̄)(xi − x̄)T . (10)

It can be shown that St = Sw + Sb. The objective
function of FDA is posed as follows.

J(v) = max
v 6=0

vT Sbv

vT Swv
. (11)

One can show that a vector v that maximizes (11)
satisfies eigenvalue eigenvector problem,

S−1
w Sbv = λv. (12)

In equation (11), if Sw = I, then objective
function of FDA reduces to that of PCA (Chiang
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et al., 2001). As seen in the above discussion,
FDA objective function explicitly incorporates
discrimination in samples. An issue that arises
at this point is: Would it be possible to obtain
the same extent of discrimination as that of FDA,
but without requiring supervisory training. SPCA
attempts to answer this question.

2.3 SPCA

In SPCA (Ding et al., 2002), a new nonlinear
scaling that promotes self-aggregation, is intro-
duced. Nonlinear scaling of principal components
is done to project the data on lower dimensional
space where samples self-aggregate into distinct
clusters. A similarity metric quantifies association
among data objects. A nonlinear scaling of the
similarity matrix is introduced in SPCA. The sim-
ilarity matrix W = [wij ] chosen here, measures
correlation between process variables.

wij = exp(r(i, j))/c (13)

where, r(i, j) is Pearson’s correlation coefficient
between variables Xi and Xj . Division by c is to
ensure that wij are not too small. In case when
the correlations are small then wij will be further
smaller if not properly scaled by c. The scaling
factor D = (di) is a diagonal matrix defined as,

di =

m∑

j=1

wij . (14)

We next define,

W = D1/2(D−1/2WD−1/2)D1/2. (15)

The standard PCA is then applied on scaled
component Ŵ = D−1/2WD−1/2, which yields,

W = D(
∑

k

qkλkqT
k )D (16)

where, qk = D−1/2pk are called the scaled prin-
cipal components. These are obtained by solving
following eigenvalue decomposition problem as

(D−1/2WD−1/2)p = λp. (17)

Equation (17) achieves an important feature of
discrimination as shown in (Ding et al., 2002)
which can be stated as follows: When there are
no overlaps among k clusters in regular Eu-
clidean space, the scaled k principal components
(q1, q2, · · · , qk) = Qk get the same maximum
eigenvalue equal to 1. In the SPCA space spanned
by Qk, all the objects within same cluster self-
aggregate into a single point. However, when over-
laps between different clusters are present, sam-
ples within same cluster tend closer to each other
in SPCA space than in Euclidean space.

To sharpen the clusters, self-aggregation process
can be repeated. This is done as follows. Only the
first k terms are chosen from equation (15) and
λ’s are set to obey λ1 = λ2 = · · ·λk = 1. Then

S = D(

k∑

j=1

qjλjq
T
j )D = DQQT D (18)

where, Q = [q1, q2, · · · , qk]. This lower dimensional
projection contains the essential cluster structure.
Combining this cluster structure with original
similarity matrix as S(2) = 0.5DQQT D + 0.5W
and applying SPCA on S(2) leads to further ag-
gregation. For further details on SPCA reader is
directed to the work by (Ding et al., 2002). The
nonlinear scaling in SPCA enables aggregation of
points belonging to the same cluster. The scaling
also helps in reducing the intra-cluster distances,
which further enhances segregation. In contrast,
the discriminative ability of FDA is because of
its supervisory nature. Therefore, based on some
statistic, if the discriminative ability of SPCA is
comparable to FDA, the former method would be
preferred because it is an unsupervised algorithm.

3. RESULTS

The earlier sections briefly reviewed the data
based methods used for discrimination of data.
This section discusses the performance of the
above methods for a benchmark case-study. Two
scalar measures– a) extent of separation (EoS)
which quantifies the extent of overlaps between
clusters and b) extent of aggregation (EoA) which
quantifies the closeness of data points in the same
cluster are computed for comparing the perfor-
mance of different methods. The scores matri-
ces obtained for different clusters after project-
ing data in lower dimensional space are used to
calculate EoS and EoA. The EoS and EoA are
computed using following equations–

EoS =
trace(Sb)

max(eig(Sb))
and (19)

EoA =
trace(Sw)

max(eig(Sw))
, (20)

where, Sb and Sw are between class and within
class scatter matrices respectively. They are com-
puted using the scores for different operating con-
ditions. The trace of the matrix is representa-
tive of total scatter in dimensions (PCs) that
are retained and it is normalized by the largest
eigenvalue of respective matrix. Because of nor-
malization, the values of EoS and EoA are always
greater than or equal to one. EoS being extent of
separation, higher the value of EoS better is the
separation. It is clear from Eq. 19 that if EoS is
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close to one, then all the information is captured
by the first direction, and we get very poor sep-
aration. If EoS is large then there is significant
separation in all the principal directions. On the
other hand, EoA being a measure of aggregation,
we want it to be closer to one. From Eq. 20 it is
clear that if first PC explains almost all the ag-
gregation of the data, then data are very compact
and further helps in the separation of one cluster
from another.

Data from the Tennessee Eastman (TE) process
(Downs and Vogel, 1993) simulation were used as
a case-study. The process has a total of 52 vari-
ables (41 measured + 11 manipulated) available
for monitoring. 21 different types of faults (IDV-
1 to IDV-21) are pre-programmed and can be
introduced during the plant operation. In the case
study, three classes of operation are considered–
a) normal operation, b) fault IDV-1 and c) fault
IDV-2. The data for all these were downloaded
from http://brahms.scs.uiuc.edu.

Table 1 shows the performance of the above clus-
tering algorithms when used to classify training
data. From table 1 it is clear that as we move
from PCA to SPCA and iterative SPCA, the EoS
increases while the EoA decreases. It is therefore
clear that the nonlinear scaling of principal com-
ponents promotes self-aggregation. The aggrega-
tion can be improved by increasing the number
of iterations in iterative SPCA. Table 2 summa-
rizes the discriminative ability of these algorithms
when the training data sets are unbalanced. It is
evident from the table that SPCA and iterative
SPCA perform better in case of unbalanced clus-
ters. To generate these unbalanced clusters, only
25% of samples in fault clusters were considered
in model building stage. This is an advantage of
SPCA and iterative SPCA. The scores plots, using
unbalanced data sets, for the above mentioned
FDD techniques (Fig. 1 to Fig. 6) also verify
the results in the tables. From the figures it is
clear that iterative SPCA gives results that are
comparable to FDA, but without requiring the
labeling and a priori classification necessary for
FDA.

Table 1. Table of EoS and EoA for test
data in case of balanced clusters

FDA PCA SPCA ISPCA(1
itr)

ISPCA(2
itrs)

ISPCA(5
itrs)

EoA 1.463 1.719 1.578 1.461 1.391 1.255
EoS 1.291 1.044 1.015 1.020 1.025 1.041

Table 2. Table of EoS and EoA for test
data in case of unbalanced clusters

FDA PCA SPCA ISPCA(1
itr)

ISPCA(2
itrs)

ISPCA(5
itrs)

EoA 1.765 1.662 1.554 1.516 1.446 1.254
EoS 1.001 1.020 1.024 1.040 1.048 1.051
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Fig. 1. Scores plot of PCA on TE data for unbal-
anced clusters

4. CONCLUSION

A nonlinear scaled version of PCA is shown in this
paper to have enhanced discriminative ability rel-
ative to the traditional PCA algorithm. The dis-
criminative ability of SPCA is comparable to that
of FDA, despite the former being an unsupervised
algorithm, while the latter is a supervised one. It
has also been shown that SPCA has a better per-
formance when the data sets are unbalanced. The
superiority of SPCA has been demonstrated in our
paper using the benchmark TE problem. Further
issues related to the nonlinear scaling in terms
of its ability to classify nonlinear relationships as
well as its applicability for the dynamic case is an
issue for the further exploration.
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Fig. 4. Classification using iterative SPCA (2
updates)
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