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Abstract: An endpoint detection algorithm based on principal component regression is 
developed for the multi-step plasma etching process with the whole optical emission 
spectra data. Because many endpoint detection techniques use a few manually selected 
wavelengths, noise render them ineffective and it is hard to select important wavelengths. 
Furthermore, the smaller the open area changes, the more difficult this single wavelength 
method detection the endpoint. In this paper, the principal component regression between 
two wafers was used for the real-time endpoint detection In case study, we applied our 
multiple models to the multi-step plasma etching process, which consisted of continuous 
polysilicon etching after the bottom anti-reflective coating etching. So we could obtain 
the simple and clear information for the more effect endpoint detection, which can be 
used for the improved process monitoring afterwards.   Copyright © 2007 IFAC 
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1. INTRODUCTION 

 
In semiconductor processing, plasma etching is 
typically employed to define the micro- and nano-
scale patterns on a silicon wafer. When the target 
layer is cleared, it is critical to stop the plasma 
etching to avoid excessive over-etching and this 
event called the endpoint detection (EPD). Typically 
the uniformity of film thickness should be 
maintained within 5% or so and it is inevitable to 
over-etch to ensure that all the lines, contacts and 
vias are completed. However, excessive over-etching 
may remove the film underneath the target layer, and 
too much over-etching can cause device failures and 
subsequent yield reduction. Therefore it is critical to 
determine the endpoint without damaging of the 
underlayer. 
The most widely used method for end point detection 
is to monitor the optical emission trace of reactive 
species in plasmas using optical emission 
spectrometer (OES).  
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By measuring optical emission signal intensities at 
specific wavelengths, one can identify the neutral 
particles and ions present in the plasma. Most 

endpoint detection methods using OES focus on 
identifying a single wavelength corresponding to a 
chemical species that shows a pronounced transition 
at the endpoint. 
Biolsi et al. [1999] demonstrated an advanced 
endpoint system for small open-area etching by 
applying threshold signal processing with single 
wavelength signal. This single wavelength method 
cannot avoid the noise problem or time delay 
associated with filtering. Furthermore selection of 
appropriate wavelengths requires significant 
experience of process engineers. So these methods 
usually reliably work only for the large open area 
wafers (typically larger than 10%). White et al. 
(2000) proposed T2 and Q statistics for the endpoint 
detection of low open-area wafers using PCA in 
conjunction with T2 detection and recursive mean 
update. They improved signal sensitivity but their 
model cannot include the drift of the process. To 
overcome this limitation, recursive mean and 
covariance update are needed for real-time 
adjustment. Yue and co-workers (2001) extracted a 
reliable endpoint signal using the principal 
component analysis (PCA). In this algorithm, loading 
vectors are used for the wavelengths selection, and 
principal component (PC) values are monitored for 
the EPD. They suggested sphere criterion method 
using the loading vectors for the wavelengths 

Preprints Vol.1, June 6-8, 2007, Cancún, Mexico

291



     

selection but this method also didn’t consider the 
abnormal process condition. 
The more OES information could be captured, the 
more processing power (time, memory, etc.) should 
be necessary. Furthermore multiple EPD procedure 
needs for the multi-stage wafer etching as common 
as real process. In this paper, we present the 
algorithm for the EPD prediction in the real time 
multi-step batch process with the whole optical 
emission spectra using the principal component 
regression (PCR) and concept of production ratio as 
shown followings. 
 
 

2. PRINCIPAL COMPONENT REGRESSION 
 
Principal Component Analysis (PCA) is a favorite 
tool of chemometricians for data compression and 
information extraction (Jackson, 1991; Wise and 
Kowalski, 1995a; Wise et. al 1996; Wold, et. al. 
1987a). PCA finds combinations of variables or 
factors that describe major trends in a data set. 
Mathematically, PCA relies on an eigenvector 
decomposition of the covariance or correlation 
matrix X corresponds to samples while columns 
correspond to variables. For given data matrix X 
with m rows and n columns the covariance matrix X 
is defined as  
 

                  cov( )
1

TX XX
m

=
−

                    (1) 

 
This assumes that the columns of X have been “mean 
centered”, i.e. adjusted to have a zero mean by 
subtracting off the mean of each column. Equation 1 
gives the correlation matrix of X. (Data should be 
adjusted to zero mean an unit variance by dividing 
each column by its standard deviation) PCA 
decomposes the data matrix X as the sum of outer 
product of vectors ti and pi plus a residual matrix E :  

 
X = t1pT

1 + t2pT
2 +  …+tkpT

k + E               (2) 
 
Here k must be less than or equal to the smaller 
dimension of X, i.e. k ≤ min{m, n}. The ti vectors 
are known as scores and contain information on how 
the samples relate to each other. The pi vectors are 
eigenvectors of the covariance matrix, i.e. for each pi 
 

cov(x)pi = λipi                               (3) 
 
where λi is the eigenvalue associated with the 
eigenvector pi. In PCA the pi are known as loadings 
and contain information on how variables relate to 
each other. The ti form an orthogonal set(ti

Ttj = 0 for 
i≠j), while the pi are orthonormal (pi

Tpj = 0 for i≠j, 
pi

Tpj = 1 for i=j). Note that for X and any ti, pi pair. 
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Fig. 1. Principal component model of three 

dimensional data set lying primarily in a single 
plane. (Barry M. Wise, et al., 1996). 

 
i = ti                                    (4) 

 
This is because the score vector ti is the linear 
combination of the original X data defined by pi. The 
ti, pi pairs are arranged in descending ordered 
according to the associated λi. The λi are a measure 
of the amount of variance described by the ti, pi pair. 
In this research, we can think of variance as 
information. Because the ti, pi pairs are in 
descending order of λi, the first pair capture the 
largest amount of information of any pair in the 
decomposition. In fact, it can be shown that the t1, p1 
pair captured the greatest amount of variation in the 
data that it is possible to capture the greatest possible 
variance remaining at that step. 
The concept of principal components is shown 
graphically in Figure 1. The figure shows a three 
dimensional data set where the data lie primarily in a 
plane, thus the data is well described by a two 
principal component (PC) model. The first 
eigenvector or PC aligns with the greatest variation 
in the data while the second PC aligns with the 
greatest amount of variation that is orthogonal to the 
first PC. Generally it is found that the data can be 
adequately described using far fewer principal 
components than original variables. 
Principal Component Regression (PCR) is one way 
to deal with the problem of ill-conditioned matrices. 
Instead of regressing the system properties (e.g. 
concentrations or level) on the original measured 
variables (e.g. spectra or temperature), the properties 
are regressed on the principal component scores of 
the measured variables, (which are orthogonal and, 
therefore, well conditioned).  
 
 

3. REAL TIME MULTI-STAGE EPD 
ALGORITHM WITH PCR 

 
In the process, we often decide when we should stop 
the plasma at a reactor with small information, and 
usually use the former wafer information for 
capturing signals to apply to the next wafer. For this 
real time detection we used the loading vectors of the 
former wafer and predicted by product with the data  
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Fig. 2. Multi-stage EPD algorithm using the PCR 

 
of next wafer. If there are many stages for the 
etching, we need many different PCA models for 
each stage. 
We used this principal component regression for the 
score vector (ti,new) prediction of new data matrix 
(Xnew)  by the production with loading vector (pi,old). 
 

Xnewpi,old = ti,new                       (5) 
 
For the real time process there is not enough time for 
the normalization for the coming data. So we used 
the original data (OES intensity) for this real time 
prediction. 
Initially, the entire range of OES signals from the 
first wafer was captured and normalized. The 
covariance of this normalized data was obtained and 
a singular value decomposition (SVD) performed. 
And the loading vectors were obtained from solving 
of eigenvalue problem of the result of its SVD.  
Finally, the entire range of OES signals of the second 
wafer was captured in real time for multiplying with 
the loading vector of the first wafer. Over 80% of 
information can be represented only with 3 products 
of first 3 PCs in most cases. The sensitivity can be 
enhanced further by using the ratios of these 3 
products. This modelling can be applied each stage 
of process simultaneously. 
 
 

4. CASE STUDY 
 
This experiment was performed using a Quantum 
Plasma Service’s HICP polysilicon etch chamberTM. 
As shown in figure 3, the high density plasma is 
generated by a main RF power (13.56MHz) to an 
inductive coil around a dielectric window, and a 
separate bias RF power (12.56MHz) is applied to the 
cathode equipped with a ceramic electrostatic chuck 
(ESC) and thermally controlled using helium 
backside cooling. The view port is located at the left 
side of the wafer’s flat zone. The chamber is 
evacuated by a 2300 L/s turbo-molecular pump 
backed by a dry mechanical pump. Process gases are 
introduced from a top gas inlet through the center of 
dielectric window with controlled flow rate, and  
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Fig. 3. Double coiled HICP 

 
chamber pressure is controlled with throttling gate 
valve (TGV). 
 The signals (2754 wavelengths of whole spectra 
from 200 to 1,100 nm) can be collected by the OES 
spectrometer (AvaSpec-3468 of AVANTES Co.). 
We did Bottom Anti-Reflective Coating (BARC) and 
polysilicon etching of with continuous six 200mm 
wafers, which have the film 4650  DUA PR / Å
620  BARC / 1600  Polysilicon / 20  Gate Å Å Å
Oxide / Si substrate, as shown in figure 4. 
We operated this process at 80  cathode, 65  wall ℃ ℃
temperature, 8torr wafer backside He cooling. And 
we made the process condition at 8mT/300W source 
power, 90W Bias power, 80HBr/10O2/40Ar for the 
BARC etching gas inlet and 20mT/300W source 
power, 60W Bias power, 120HBr/20Cl2/12O2 for the 
polysilicon etching gas inlet. 
At first we compared the product ratio of PC1 (which 
contains 65.13% information) and PC2 (which 
contains 6.97% information) of first wafer’s data 
itself and the two important wavelengths (307.7 and 
495.9 nm) as shown in figure 5. Because they  
changed during the same period, we could confirm 
that using this PCR method would show the exact 
EPD time. In figure 6 we compared two product 
values. Estimate product ratio of PC1 and PC2 was 
from the first wafer’s loading vector and the second 
wafer’s real time data. Actual product ratio of PC1 
and PC2 was from the loading and data of second 
data itself as same manner as figure 5 of first wafer.  
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Fig. 4. Wafer composition for the multi-stage etching 
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Fig. 5. Comparison of EPD with two single 
wavelengths (a) and PCR model (b) 

 
In this experiment we decided to use the ratio of PC1 
(which contains 65.14% information) product and 
PC2 (which contains 5.63% information) product for 
the explicit behaviours. In this diagram we made a 
decision of EPD at 15.758s with simple clear 
estimated curves which is not different from the 
actual curve. So we could select the time when the 
curve changed significantly. 
After this BARC etching, we did polysilicon etching 
and the PCR prediction was done by our multi-step 
modelling. We could capture at about 15s by the 
change of the product ratio curve as BARC etching 
as shown in figure 7 (end of the time scale). This 
figures were from the loading vector value of the 
second wafer and the data of third wafer of PC1 
(which contains 36.91% information) and PC2 
(which contains 14.29% information). 
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Fig. 6. Endpoint detection of the second wafer with 
estimated product ratio (BARC etching) 
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Fig. 7. Endpoint detection of the third wafer with 
estimated product ratio (polysilicon etching) 

 
We could makes effective EPD of multi-step etching 
by our PCR modelling with whole emission spectra 
data and this method gave us simple and easy 
information of the process state by the observation of 
the product ratio curve change. 
 

CONCLUSION 
 

In this paper we developed endpoint detection 
algorithm of the multi-step plasma etching process 
using the PCR methods. We used the loading vector 
of former wafer after doing PCA to the data of later 
wafer. We could determine from the observation that 
when the curve of this estimated value (ratio of 
product of  PC1 and PC2) changes significantly. In 
the case study we adjusted this algorithm to the 
BARC and polysilicon multi-stage etching process in 
real time and we could get the exact EPD time in 
each process. 
The result shows that this chemometric method is 
very useful for the simple EPD for the multi-stage 
etching process and this method is also very 
important because there are many chambers with one 
controller which should do EPD control 
simultaneously. 
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