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Abstract: There is a trend in the process industries towards the use of multiple
small reconfigurable production units rather than a single large unit to increase
production, product range and operation flexibility. Monitoring, supervision and
control of these processes is difficult because traditional methods typically do
not handle well the increased heterogeneity, nonlinearity and complexity. In
this work, statistical multiblock process monitoring techniques and an agent-
based diagnosis and control methodology are integrated. The performance of this
combined monitoring-diagnosis-control system is illustrated with a case study
using a network of spatially distributed reactors. Copyright ©2007 IFAC
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1. INTRODUCTION

As networked applications in process industries
have increased in the recent years, existing meth-
ods for monitoring, supervision and control of the
processes need to be improved or supplemented
with new techniques in order to handle the com-
plexity, heterogeneity and nonlinearity of these
networked systems. In this study, a monitoring-
diagnosis-control sequence that uses existing tools
from literature and supplements those with agent-
based decision-making is proposed. The agent-
based approach is recommended for use especially
in networked systems since it is a powerful tool for
the management of distributed systems. Although
agent-based modeling has found wide applications
in social sciences and it has been proposed for a
few control applications in chemical engineering,
its application to fault detection and diagnosis has
not been reported.
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Having a single model for all different phases
or stages of a system with different covariance
structures may not give a sufficient explanation
of the system behavior and fault detection and
diagnosis can be more challenging with increasing
model size. Multiblock methods have been re-
cently proposed to improve the capabilities of the
existing statistical process monitoring techniques.
A comparison of the popular multiblock methods
is provided (Smilde et al., 2003). These algorithms
have been applied to monitoring, fault detection
and diagnosis of continuous processes and defini-
tions for control limits for multiblock algorithms
have been developed (Qin et al., 2001; MacGregor
et al., 1994).

In a previous work, the multiway multiblock prin-
cipal components analysis (PCA) has been ap-
plied to a penicillin fermentation process, where
different phases of growth were modeled as sep-
arate blocks, to reflect the different covariance
structures between phases in the model and to



localize the fault in the batch process (Perk and
Cmar, 2006). Since a network of interconnected
continuous stirred tank reactors (CSTRs) is being
considered, multiblock monitoring is employed in
this study.

The control problem considered is the restoration
of normal process operation after a disturbance
hits the reactor network. Several disturbances
such as a step change in feed flow rate, a sensor
fault on a concentration reading, or the introduc-
tion and propagation of a different species that
competes for resource utilization, in one of the
reactors or a part of the network are introduced
to test the effectiveness of the multiblock mon-
itoring methods in detection and diagnosis and
the control structure in restoring the system to
its expected behavior. In this paper, the effect of a
change in the feed properties to one of the reactors
is reported.

Although the mathematical tools used in this
study have been in use for over a decade, they have
not been integrated under the roof of agent-based
system before. Agent-based decision-making capa-
bility reduces the need for human intervention to
the system and automates the monitoring, fault
detection, diagnosis and control sequence.

In the following sections, multiblock PCA, agent-
based fault detection and diagnosis, optimization
and control, the autocatalytic CSTR network and
the software framework are discussed. And at the
end, a case study is presented.

2. MULTIBLOCK PRINCIPAL
COMPONENTS ANALYSIS

Traditionally, PCA is used to form the statistical
model based on the covariance structure of the
normal operating data and the new observations
are tested against this model. Monitoring large-
scale distributed systems is difficult since many
different structures constitute the data and treat-
ing the data as if it is coming from a single struc-
ture and trying to come up with a single statistical
model that perfectly explains the system behavior
is usually not possible. Even if the single model is
powerful enough to detect any variation from in-
control observations, the detection of fault may be
delayed.

The benefit of multiblock algorithms in localizing
and isolating the fault is better experienced in
processes involving many processing units with
many process variables. With multiblock meth-
ods, the overall process and also each different
unit or subsections of a unit can be monitored.
This enables the isolation of the processing unit
in which the deviation occurred and detection of
the major contributors to the event.
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The consensus PCA algorithm for multiple blocks,
based on a series of NIPALS steps is given in
(Westerhuis et al., 1998). The method was in-
troduced to compare several blocks of variables
measured on the same objects. The data are di-
vided into B blocks. A column of one of the
blocks is selected as a starting super score and
this vector is regressed on all block data to find
the block loadings, from which the block scores
for all blocks are calculated. All block scores are
augmented in a super block. The super score is
then regressed on the super block to give the super
weight. The super weight is normalized and used
to calculate a new super score vector. If this new
super score converges to a predefined criteria, the
iteration stops. Then, each block is deflated using
the super score and the procedure repeats for the
next principal component dimension. Otherwise,
the iteration continues until the super score vector
converges. For monitoring purposes, the statistics
can be calculated for both the super level and for
lower block level.

For the real-time simulation of a highly nonlinear
heterogeneous system, where a small disturbance
may have instant drastic effects over the system
behavior, timely detection of faults is crucial.
Moreover, detecting the parts of the system that
were most affected and the variables that con-
tribute to the fault the most is equally impor-
tant. Multiblock monitoring based on consensus
PCA algorithm is used in the statistical model
formation where each CSTR in the network is
represented as a separate block in the model.

The multiblock PCA method was especially suit-
able for use since the system is a network of
spatially distributed reactors where each reactor
is dominated by different species and monitoring
of each reactor is of special interest. The block
data consists of concentrations of species in the re-
actor and the resource concentration. Each block
has the same dimensions of I observations and J
variables. Multiblock monitoring enables the mon-
itoring of each reactor as well as the monitoring
of the system at the super level.

Considering CSTRs in the network as different
entities with different structures helps to build
a more reliable, realistic model, prevents loss
of necessary information during the dimension
reduction stage of single PCA model and more
importantly, reduces the challenge of identifying
the parts of the system that were affected the most
by localizing the fault.

3. FAULT DETECTION AND AGENT-BASED
DIAGNOSIS

The statistics used for monitoring multivariate
continuous processes are the statistical distance



T? and the squared prediction error (SPE). T2
shows the variation between the new observation
and the previous observations and SPE reveals if
the new observation can still be explained by the
statistical model. If a new observation goes out
of the confidence limits, it is flagged as an out-
of-control observation. Persistent out-of-control
signals show a fault has occurred in the system
(Nomikos and MacGregor, 1995).

These two statistics are complementary to each
other and must be used together. Sometimes only
the T? chart signals out-of-control showing an
observation is different than the others, however,
SPE may not signal if the variation can still be
explained by the model. Most of the time, a fault
is signalled in both charts.

The above statistics detect a fault, but give no
information about the cause of the fault. Con-
tribution plots are used to show the contribu-
tion of each variable to the statistic calculated.
After fault is detected, the variables that were
significantly affected from the fault or significantly
contributed to the fault can be identified in the
contribution plots. In (Westerhuis et al., 2005),
the control limits for the contribution plots were
introduced. A variable may have higher contri-
bution than others at every step but this does
not always mean it is the cause of the fault. The
limits are calculated using in-control data, so if
a variable’s contribution is exceeding the limits,
then it is accepted as contributing to the fault.

The false alarms and missed alarms associated
with the above statistical techniques is typically
a major problem in fault detection and diagnosis.
Having too many false alarms and missed alarms
decrease the credibility of the statistical technique
used. Decision becomes difficult when different
methods start alarming at different times for
different units.

In the proposed structure, there are four agent
types. Whenever a statistic goes outside of the
confidence limits, each corresponding agent sends
an out-of-control signal. For this continuous pro-
cess, whenever a shift occurs in SPE or T2 to
move outside the limits, this shift is detected by
the corresponding two types of agents using a cu-
mulative sum (CUSUM) based change detection
algorithm (Gustafsson, 2002). Multiblock PCA
enables the monitoring of each individual block
and block contributions to fault as well. Contribu-
tion limits are calculated for each block. The third
type of agent watches the block contributions and
signals whenever a block contribution is outside
the block confidence limits. The fourth type of
agent monitors the SPE and alarms when the
SPE statistic exceeds the confidence limits. These
agents compete for the same task of fault detec-
tion, are rewarded for correct and early detection
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and are penalized for false and missed alarms and
are employed in the simulation based on their
reliability. The messages sent by the agents reveal
the faulty unit, and the time of fault.

Simulations are run for multiple times with known
faults offline to test the detection and diagnosis
algorithms. The location of fault and time of intro-
duction is known, and agent-based fault detection
is tested on these known faults. An agent earns
a full positive reward if it correctly identifies the
fault at the exact time of occurrence. If there is a
lag between the time of diagnosis and the actual
fault time, the agent receives a reduced reward,
proportional to the duration of the lag. If the
agent completely misses a known fault or gives a
false alarm, a negative reward is deducted from its
total rewards. In this way, the methods are ranked
based on their performance in catching a fault.
The method with a higher reward is trusted more.
During the real-time simulation whenever an out-
of-control signal is issued, the issuing agent’s to-
tal reward is compared to the opposing agents’
rewards and a fault is declared at the time of
agreement.

4. CONTROL AND OPTIMIZATION

After having a consensus on the occurrence of a
fault, its time of occurrence, and its location in
the network by the diagnostic agents, that part of
the network should be isolated in order to prevent
the spread of the fault to the unaffected parts of
the network, and the normal operation should be
restored.

The problem becomes an agent-based optimum
control problem, where the difference between the
current states and the normal operation states
is minimized by agents via adjusting the flow
between reactors, giving minimum disturbance to
the other parts of the network. As a whole, the
diagnostic agents report if there is a fault in the
system and its approximate time of occurrance
and the control agents take action to reestablish
the normal operation throughout the network.

When a fault is flagged, an offline simulator, which
is a clone of the main simulator, is generated
and it is given the current states of the system
as a starting point. This clone is used by the
optimization routine to simulate the process be-
havior with changing interaction flowrates and/or
the feed flowrate. After the flowrates that satisfy
the objective are found, they are set in the main
simulator to continue the simulation with these
updated values.

All improving search methods in optimization,
starting with a feasible initial solution, consider
neighbors of current solution and try to advance



to one that is feasible and superior in objective
value. If no feasible neigbor is improving, the
process stops with local optimum. In order to
produce more robust algorithms, the improving
solution search idea can be extended to allow
nonimproving feasible moves to escape a local op-
timum. One method of introducing nonimproving
moves into improving search is termed simulated
annealing, referring to the analogy to the anneal-
ing process of slowly cooling metals to improve
strength. Simulated annealing algorithms control
infinite cycling to a solution recently visited by
accepting nonimproving moves according to prob-
abilities tested with computer-generated random
numbers. Improving and accepted nonimproving
moves are pursued; rejected ones are not. The
‘temperature’ parameter in simulated annealing
is used to control the randomness of the search.
The searches usually begin with a relatively high
temperature parameter and decrease it after every
few iterations. As the temperature gets lower, the
probability of accepting bad moves decreases dra-
matically (Rardin, 1998). In this work, simulated
annealing is used as the optimization routine. The
execution time associated with the search is neg-
ligibly small.

Rather than searching for the flowrates that would
restore the system defaults, a historical database,
where the states of the system were stored, could
have been formed. After the detection of the fault
the states could have been set back to those in
the database. Since the system is highly nonlinear
with multiple steady states, a very small distur-
bance can force the system to a totally different
regime, making the historical database useless.
Because of the system characteristics, it may be
impossible to go back to the reference state. This
brings in the need for a search algorithm to iden-
tify the search surface, attainable regions and to
determine how close we can get to our reference
state.

5. AUTOCATALYTIC CSTR NETWORK

In this study, the system of interest is a CSTR
network. The static and dynamic behavior of an
autocatalytic reaction with decay was studied in
networks of coupled CSTRs (Tatara et al., 2004).
It was shown that the number of steady states of
the network increases with heterogeneity, thereby
allowing those autocatalytic species to exist in
the network that would normally not exist in the
homogeneous environment of a single CSTR. The
heterogeneity of the networks is influenced by the
number of reactors as well as the network topol-
ogy. The existence of multiple steady states and
the nonlinearity of the system provides a challeng-
ing supervision and control problem. Tatara et al.
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(2005) proposed an agent-based control algorithm
to this challenging problem, whose work is ex-
tended in this paper by applying additional agent
layers for process monitoring and fault detection.

The network consists of interconnected CSTRs,
each having feed and exit streams, as well as
multiple connections to their neighbors. Each re-
actor has as many inlet as outlet interconnection
streams that are always equal. The feed flowrates
and the interconnection flowrates can be treated
as manipulated variables. In the case study pre-
sented later, the feed flowrate is used as the ma-
nipulated variable.

6. THE SOFTWARE FRAMEWORK

The framework is built in Java using RePast
toolkit and COLT distribution. The reactor net-
work model and agent-based control system is
implemented with the open source agent model-
ing and simulation environment RePast (Collier
et al., 2003). The RePast toolkit is a java-based
framework for agent simulation and provides fea-
tures such as an event scheduler and visualization
tools. The control agents created with RePast in-
teract with virtual representations of the physical
reactor network. The virtual network objects map
the states of the physical system to objects that
can be manipulated by the control objects. The
ordinary differential equations that describe the
autocatalytic reactions in each CSTR are solved
numerically using the CVODE solver. The solver
code is written in C and linked with RePast via
the JavaNative Interface (JNT).

COLT distribution is used to implement the
statistical model building and statistical testing
methods and is connected to the agent simulation
for online monitoring using RePast event sched-
uler. The COLT distribution consists of several
free Java libraries, for user convenience bundled
up under a single name and provides an infrastruc-
ture for scalable scientific and technical comput-
ing in Java. Its powerful matrix operations enables
technical computing with Java.

7. CASE STUDY: CHANGE IN THE FEED

In the case study, the effect of a change in the feed
to one of the reactors is demonstrated. Multiblock
PCA model is formed with two principal com-
ponents and new data projection starts at time
(t = 2200) (Figure 1). At time (¢ = 2500), the feed
to the fifth reactor, which was pure resource be-
fore, is contaminated with a trace amount (0.06)
of the dominant species in the reactor. The fifth
reactor is the center reactor in a 9-CSTR net-
work as shown in Figure 2, with three autocat-
alytic species. The dimensionless interconnection
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Fig. 1. SPE statistics showing the fault in reactor
5 after t = 2500.

Fig. 2. The 323 reactor network grid with three
species, black represents species 3 , dark gray
represents species 2, and light gray represents
species 1.

Block contributions to SPE

Fig. 3. Block contributions to the SPE statistic at
the time of detection.

flowrate for each reactor is the same and is equal
to 0.001. The default dimensionless feed flowrate
of each reactor is 0.008. The three species have
similar death and growth rates.

Figure 1 shows that there is a shift in the SPE
statistic after the fault is introduced and the fault
stays in the system until the end of the projection

if no action is taken by the control agents. This
shift is detected by the SPE agent at time (t =
2530), only three time steps after the fault was
introduced.

The same fault is simulated again, this time with
the control action activated. With random initial
conditions, everything else staying the same, the
multiblock model is formed, the diagnostic agents
start watching the system at the same time the
projections starts, and during projection the same
fault is introduced to the system. After the diag-
nostic agents agree on the existence of a fault in
the system and its location, they activate the con-
trol structure and call the optimization routine,
single variable optimization to minimize the dif-
ference between reference concentration and the
current dominant species concentration is done on
the feed flowrate to that reactor and the system
is restored to the reference state. The maximum
number of iterations for the simulated annealing
algorithm is set to 30, however, the optimum is
usually found no later than the 7th iteration. The
temperature parameter is set to 15 and is reduced
20% at every five iterations. Figure 4 shows the
SPE statistics and the block contributions (Figure
3) that were used by the diagnostic agents. It is
seen that after the control agents set the new feed
flowrate, the system goes back to normal.

8. CONCLUSION

An agent-based automated process monitoring,
fault detection, diagnosis and control structure is
proposed in this study. It brings together powerful
tools, like multiblock process monitoring, fault de-
tection, diagnosis and simulated annealing search.
And, it combines them with a relatively new yet
again powerful approach, an agent-based system.
Agent-based decision-making has been used in a
few chemical engineering applications recently but
its application to process monitoring and supervi-
sion is new.

When many different methods are used on the
same data to gather information, in this case
different fault detection methods, agents can be
effectively used to clear the ambiguity in the
information gathered from alternative methods,
and help build a consensus.

A case study is performed in the network of reac-
tors by introducing a disturbance to the network.
The effectiveness of the proposed structure to
detect the fault and take action to control the
problem is demonstrated.
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Fig. 4. SPE statistics showing the fault in reactor 5 after t = 2500, and corrective action is taken at t =

2600.
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