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Abstract: Several multivariate statistical techniques have been extensively proposed for 

monitoring industrial processes. In this paper, multiway extensions of two such 

techniques: multiway principal component analysis (MPCA) and multiway partial least 

squares regression (MPLS) were applied to a large data set from an industrial pilot-scale 

fermentation process to improve process knowledge. The MPCA model is able to 

diagnose faults occurring in the process whether they affect or not process productivity 

while the MPLS model enables the prediction of final product concentration and the 

detection of faults that will influence the fermentation productivity. Copyright © 2007 

IFAC 
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1. INTRODUCTION 

 

Batch and semi-batch processes play an important 

role in the chemical industry, mainly because of their 

flexibility to produce low-volume, high-value pro-

ducts. Examples of batch processes include the pro-

duction of polymers, pharmaceuticals and biochemi-

cals and the separation and transformation of materi-

als by batch distillation and crystallization. Success-

ful batch operation means being able to maintain 

process variable trajectories with a high degree of 

reproducibility from batch to batch (Kosanovich et 

al, 1996; Nomikos and MacGregor, 1995b). Batch 

processes generally exhibit some batch-to-batch 

variation arising from variation in raw materials 

quality, seeding, variability in charging of the reactor 

and unnoticed deviation in instrumentation perfor-

mance. Since these variations lead to low reproduci-

bility, adequate monitoring and control techniques 

are essential to ensure safe operation and to assure 

the production of consistently high quality products.  

 

The main characteristics of batch processes are re-

lated to both their success and their incompatibility 

with the conventional mathematical or empirical 

modelling for monitoring and controlling continuous 

processes. An alternative approach for monitoring 

and control of batch processes based on the use of 

multivariate statistical techniques and in the philoso-

phy of statistical process control (SPC) (Doty, 1996) 

was proposed by Nomikos and MacGregor (1994). 

Following this approach, the behaviour of the process 

is modelled using data from an historical data set of 

past successful batches (which are assumed to be in a 

state of control) and, subsequently, future unusual 

events are detected by referencing the progress of a 

new batch against the “in-control” model and its 

statistical properties. 

 

To construct the process model a multivariate statis-

tical projection method, multiway principal compo-

nent analysis (MPCA), is used to compress the data 

matrix (X) and to extract the information by projec-

ting the original set of highly correlated variables 
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into a low-dimensional space that summarizes both 

the variables and their time histories during success-

ful batches. MPCA only makes use of the process 

variable trajectory measurements (X) but this multi-

variate SPC (MSPC) approach was latter extended 

by Nomikos and MacGregor (1995b) to include 

measurements on product quality variables (Y) taken 

at the end of each batch by using multiway partial 

least squares regression (MPLS). Rather than focu-

sing only on the variance of X, MPLS focuses on the 

variance of X that is more predictive for the product 

quality, Y. Thus, MPCA is applied to understand and 

monitor the variability in process variables while 

MPLS enables the study and monitoring of variations 

in the process variables that are most influential on 

the quality and productivity variables. Several 

applications of the MSPC approach to different fields 

of chemical industry have been described in the 

literature. Examples of applications include moni-

toring polymerization reactions (Nomikos and 

MacGregor, 1995a; Kosanovich et al, 1996), an 

industrial ceramic melter (Wise and Gallagher, 

1996), industrial fed-batch fermentation processes 

(Gregersen and Jørgesen, 1999; Albert and Kinley, 

2001; Lennox et al, 2001), industrial batch drying 

processes (García-Muñoz et al, 2003) and 

pharmaceutical industry processes (Westerhuis and 

Coenegracht, 1997). 

 

The primary goal of this study was to demonstrate 

how MPCA and MPLS can be used to model 

industrial fermentation processes. These statistical 

techniques were applied to a data set of industrial 

pilot-scale fermentation batches for the production of 

an active pharmaceutical ingredient: clavulanic acid. 

In this work, only on-line measured variables related 

to biomass and product quality were considered in 

the development of process models. It is intended to 

illustrate how MPCA can be used to discriminate 

between similar and dissimilar batches and to 

understand some of the major sources of batch-to-

batch variations. This work is also aimed at studying 

the ability to predict fermentation yield from the 

same variables through the use of MPLS regression. 

The availability of an accurate process model will 

enable 1) the development of an inferential sensor for 

product concentration and 2) to study the 

contribution of each variable to process productivity. 

Both actions can enable significant improvements in 

the process. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Data 

 

2.1.1 Microorganism and Culture Conditions 

The bioprocess studied is an industrial process for 

the production of clavulanic acid using a high-

producing strain of Streptomyces clavuligerus 

supplied by CIPAN, S.A. (Vala do Carregado, 

Portugal). Cultivation was carried out using a 

medium containing complex carbon and nitrogen 

sources and appropriate precursors. The operating 

conditions used were typical of those employed 

routinely in the fermentation industry for aerobic 

submerged cultivations for the production of 

secondary metabolites (Neves et al, 2001).  

 

2.1.2 Data acquisition 

A set of 16 fermentation batches was monitored by 

performing on-line measurements on five variables: 

capacitance and conductance of the culture broth, 

concentration of carbon dioxide and oxygen in the 

exhausted gases and dissolved oxygen in the culture 

broth. Capacitance and conductance readings were 

performed by a Biomass Monitor 214M (Aber 

Instruments, Aberystwyth, UK), equipped with an 

annular probe (Ferreira et al, 2005). The capacitance 

of the fermentation broth is directly proportional to 

the viable biomass concentration while the 

conductance is a measure of the concentration of ions 

present in the broth (Spierings, 1998). The 

composition of the outlet gas stream was analysed by 

an infrared carbon dioxide analyser SIFOR 200 

(Maihak, Hamburg, Germany) and a paramagnetic 

oxygen analyser PMA-25 (M&C, Ratingen, 

Germany). The derived variables carbon dioxide 

production rate (CER) and oxygen uptake rate 

(OUR) were calculated as indicated by Heinzle and 

Dunn (1991). These derived variables were used for 

model development in replacement of the raw gas 

composition measurements. The dissolved oxygen 

concentration was measured with a standard O2 

electrode inserted directly in the fermentor. The 

acquisition of data is controlled by an application 

developed in the graphical programming 

environment LabView® (National Instruments, 

Austin, TX, USA).  

 

2.1.3 Reference method for clavulanic acid 

determination 

Clavulanic acid on the fermentation broth was 

assayed by a colorimetric method based in the 

absorption at 312 nm of the product of the reaction 

between clavulanic acid and imidazole (Bird et al, 

1982). 

 

2.2 Data processing 

 

All variables were pre-processed by detection and 

removal of outliers followed by smoothing with 

Savitzky-Golay filter for noise reduction. Times 

series were synchronized by interpolation. The 

batches had slightly different durations and so, only 

those observations taken from 3 h of growth until 

termination time of the shortest batch, 91 h, were 

used for model development. The three-dimensional 

array X containing the process data (16 × 5 × 181) 

was unfolded into a two-dimensional array X (16 × 

905) by preserving the batch direction (Westerhuis et 

al, 1999). MPCA and MPLS models were developed 

based on algorithms available from the PLS toolbox 

v3.0 for Matlab. The number of principal 

components to include in the MPCA model was 

selected based on the average criterion (Jobson, 

1992), according to which those PC which capture an 

amount of variance greater than the average should 

be retained. The eigenvalues (λj) are used as a 

measure of the amount of variance captured by each 
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PC, so the average criterion consists in retaining the j 

PCs for which λλ >j
. The number of latent 

variables to include in a MBPLS model was 

determined by leave-one-out cross-validation. 

 

 

3. RESULTS 

 

3.1 Multiway principal component analysis 

 

To determine the number of components to include 

in the MPCA model, the eigenvalues of the first 15 

PC were computed. The eigenvalues of the first five 

PC are greater than the average for all PC. According 

to the average criterion, 5 PC should be considered 

for model development.  

 

A MPCA model with 5 PC captures 74.6% of the 

variance contained in the data. The scores plot of the 

two first PCs, which account for 45% of the variance 

in the data, is displayed in Fig. 1. All the batches fall 

inside the 99% confidence ellipse and all but one 

batch (batch 3) fall inside the 95% confidence 

ellipse. From this figure is clear that certain batches 

exhibit similar variable trajectories while others form 

separate clusters (e.g., batches 5, 6 and 7), thus the 

MPCA algorithm proves to have the power to 

discriminate among batches based on the trajectories 

of variables measured on-line. Batches 3 and 5 to 7 

showed to be significantly dissimilar from the 

remaining. Comparing the variables trajectories 

along all the batches (data not shown), it was 

possible to detect the events causing the 

dissimilarities. 

 

Batch 3 presents significantly higher conductance 

profile when compared with the remaining batches, 

although it was not possible to devise a reason for 

this fact. In addition, for a long time period (around 

40 h) the temperature in the bioreactor was kept at a 

lower level. In respect to batches 5, 6 and 7, different 

conditions were used for substrate addition and this 

produced the alterations in the quality variables, 

particularly for biomass, dissolved oxygen profile 

(since it caused alterations in the microorganism 

growth) and conductance.  

 

 
Fig. 1 – Scores plot of the two first PC of the MPCA 

model (the dotted lines represent the confidence 

ellipsoids at a significance level of 95 and 99%). 

A 

B 

Fig. 2 - Percent of explained variance by each PC 

plotted on a cumulative basis: A) over time; B) by 

variable (CAP: capacitance, COND: conductance, 

CER: CO2 evolution rate, OUR – O2 uptake rate, 

DO – percent dissolved O2). From lightest to 

darkest: PC1 to PC5. 

 

Explained variance plots were used to study 

variability contained in the data as a function of time 

and original variable. The amount of variance 

explained by the model is calculated by comparing 

the true process data with the estimates computed 

from the MPCA model (Kosanovich et al, 1996). It 

can be computed from Eq. 1, where 
2

σ̂  and 
2

σ  are 

the estimated and true sum of squares, respectively. 

 

Explained variance (%) = 100
2

2
ˆ

×

σ

σ
 Eq. 1 

 

A large percentage of explained variance indicates 

that the variability in the data and the correlations 

among variables are captured by the model. Variance 

plots over time can be used as an indicator of the 

phenomenological / operational changes that occur 

during process evolution, identified by changes in the 

variance captured by each PC which signal 

alterations on the correlation structure among the 

variables. Fig. 2A displays the variance explained 

over time by the five PCs. From this figure, the major 

phenomenological alterations on the process take 

place around 35 and 50 h of growth. This is 

consistent with previous process knowledge 

according to which the period of transition from 

exponential growth to stationary phase occurs 
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between 30 and 40 h and ends after 50 to 55 h of 

growth. It is more difficult to attribute a defined 

meaning to the remaining alterations identified in the 

covariance structure of the data along time (from Fig. 

2A). They are most probably due to intrinsic 

variations in the culture which are not easily inferred 

from the variables used to develop the model (e.g., 

morphology changes). It is possible that the changes 

identified at 20 and 72 h of growth are due to 

morphological alterations in the microorganism (cf. 

Ferreira et al (2006)) but there is no clear evidence to 

support this hypothesis.  

 

The variance explained for each variable included in 

the model over the five PCs is displayed in Fig.  2B. 

The MPCA model explains over 80% of the variance 

in capacitance, conductance and dissolved oxygen 

concentration and close to 60% of the variance in the 

variables derived from exhaust gas analysis (CER 

and OUR). PC1 accounts for most of the variance in 

the conductance (this is why the amount of variance 

in batch 3 is captured mainly by this PC) and 

explains also a significant amount of the variance 

contained in the capacitance and dissolved oxygen. 

PC2 explains the largest amount of variation in the 

biomass concentration and also a relevant amount of 

the variance contained in OUR and dissolved oxygen 

concentration. The variables for which PC3 accounts 

for a greater amount of explained variance are the 

exhaust gas derived variables (CER and OUR) and 

the dissolved oxygen concentration. PC4 and PC5 

contribute, in general, with lower amounts of 

explained variance. 

 

3.2 Multiway partial least squares regression 

 

Following the analysis of the MPCA model, a MPLS 

model was developed to investigate the performance 

of the method in the prediction of the final clavulanic 

acid concentration for each batch and also to assess 

which quality variables are the most influential on 

this productivity variable.  

 

Table 1 - Variance captured by the MPLS model in 

the X- and Y- blocks 

 % Variance captured 

 X block Y block 

LV This LV Total This LV Total 

1 19.4 19.4 91.9 91.9 

2 15.8 35.1 3.7 95.6 

3 17.6 52.8 1.6 97.2 

4 6.3 59.1 2.1 99.3 

 

The optimal number of latent variables (LV) to 

include in the model was determined through leave-

one-block-out cross-validation, after dividing batches 

in the data set in 4 contiguous blocks. The minimum 

RMSECV is attained when the model is built 

considering 4 LV. Table 1 presents the amount of 

variance captured by each LV and the total amount 

of variance captured for both the X and Y blocks of 

data. Most of the variance in Y-block is captured by 

the first LV, which models over 90% of the variance 

in the concentration data.  

A 

B 

C 

Fig. 3 - MPLS model results. A) Correlation between 

the measured and predicted (cross-validation) 

final product concentration; B and C) Scores plots 

of the model (the dotted lines represent the 

confidence ellipsoids at a significance level of 95 

and 99%): B) LV2 vs. LV1, C) LV3 vs. LV1 

 

This 4 LV model has RMSECV of 8.2 a.u. 

(normalized concentration values are presented for 

confidentiality reasons) and predicts 76.2% of the 

variance in Y, on cross-validation. The correlation 

between measured concentration values and cross-

validation predictions is depicted in Fig. 3A. The 

relative mean prediction error is 5.1%, on cross-

validation. The scores plot of the two first LV of the 

MPLS model is displayed in Fig. 3B. Clearly, the 

relationship among batch scores is very different than 

the one observed for the MPCA model (Fig. 1). 

 

Batch 3 does not appear to be an outlier in the MPLS 

scores plot, the samples are more uniformly 
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distributed in the latent variable space and even 

though batches 5, 6 and 7 still lie close, they do not 

appear to be clearly separated from the remaining 

batches. The explanation for these differences lies on 

the theoretical bases of each method. MPCA focuses 

solely on the covariance among variables while 

MPLS focuses on the covariance in the X-block that 

is most correlated with the Y-block. It is possible to 

conclude that the causes for the differences between 

batches observed in the MPCA scores plot have little 

influence in product yield prediction, since they are 

only revealed in the third LV of the MPLS model 

(see Figure 3C), which accounts for less than 2% of 

the variance in Y (cf. Table 1). 

 

From the analysis of variable contributions to the 

MPLS model it is possible to assess which variables 

are the most influent in product concentration 

prediction. For the sake of clarity, variable 

contributions must be analysed for each latent 

variable or over process time (Louwerse et al, 1999). 

The weight contributions of each original variable, j, 

to each latent variable, r, are computed from Eq. 2, 

where K is the number of time points and J the 

number of variables. Matrix Cvar has dimensions J × 

R and describes the weight contributions of each 

variable for each latent variable, summed over all 

time points. The contribution of each time point, k, 

for each latent variable, r, is computed in a similar 

way following Eq. 3, where the matrix Ctime has 

dimensions K × R and describes the weight 

contributions of each time point for each latent 

variable, summed over all variables. 
 

∑
=

+−
=

K

k

rjJkjr wC
1

2

,)1(var,

 Eq. 2 
 

∑
=

+−
=

J

j

rjJkkrtime wC
1

2

,)1(,

 Eq. 3 
 

The weight contribution plot of the variables for each 

LV is displayed in Figure VIII.6A. Biomass 

concentration (measured as capacitance) is the 

dominant variable for predicting final product 

concentration, since it is the variable with highest 

contribution to LV1, which captures most of the 

variance in the Y block. Conductance, on the other 

hand and on the opposite of what was observed for 

the MPCA model, is the variable with the lowest 

influence in the model predictions. Both CER and 

OUR, the exhaust gas analysis derived variables, 

exhibit a moderate influence in the model while 

dissolved oxygen concentration shows to have a 

significant contribution to LV1 and thus to the 

prediction of the final product concentration.  

 

For the sake of clarity, the contribution over time is 

presented as the contribution of several defined time 

intervals for the prediction of process yield with the 

purpose of identifying the fermentation stages with 

greater influence in the PLS model. The weight 

contribution of defined time windows is presented in 

Figure VIII.6B, for the first LV. The mean product 

concentration profile is also depicted on this figure.  

A 

B 

Fig. 4–Contributions to the MPLS model: A) Weight 

contributions of each variable to each latent 

variable (CAP: capacitance, COND: conductance, 

CER: CO2 evolution rate, OUR – O2 uptake rate, 

DO – percent dissolved O2), from lightest to 

darkest: LV1 to LV4; B) Weight contributions of 

each time point to LV1. Lines in B represent the 

product concentration profile: solid line – mean 

profile; dotted lines – mean profile ± one standard 

deviation. 

 

The first 20 h of growth have a small influence on 

the fermentation productivity. The most influential 

period of the fermentation ranges from 30 to 80 h of 

growth, while the influence of the final part of the 

process is more moderate. The low influence of the 

early fermentation period is easily understood 

considering that during this period the dominant 

event is biomass growth and there is little correlation 

with production of clavulanic acid. For this particular 

process and strain, the onset of production occurs 

after around 20 h of growth (see Figure VIII.6B), 

which explains the increase in weight contributions 

after that time since the information contained in the 

process quality variables becomes more correlated 

with the final product concentration. 

 

 

4. CONCLUSIONS 

 

Multiway principal component analysis and 

multiway partial least squares regression were 

applied to a data set of industrial pilot-scale 

fermentation batches with the purpose of improving 

the knowledge on the process and to assess the 

discriminant capacity of the methods. A MPCA 
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model was developed considering five principal 

components which captured nearly 75% of the 

variance contained in the data. Analysis with MPCA 

enables the detection of dissimilarities among 

batches as well as the identification of abnormal 

variation in the quality variables. Additionally, the 

analysis of the amount of variance explained as a 

function of time allows the detection of state 

transitions along the course of fermentation thus 

increasing process knowledge. 

 

The MPLS model was computed with four latent 

variables and explains 59 and 99% of the variance in 

the X- and Y-blocks, respectively. The model is 

reasonably accurate, given the large batch-to-batch 

variations commonly encountered in biological 

processes. Analysis of the contributions to the MPLS 

method gives a clear indication of which variables 

and time windows are more relevant in process 

productivity, i.e. what and when to monitor the 

process. For this bioprocess, biomass concentration 

and dissolved oxygen concentration were determined 

to be the most influent variables for productivity 

prediction and the process stage with higher 

contribution for the MPLS model is the period 

between 30 and 80 h of growth, when product 

formation rate is higher. On the contrary to what 

happened when using MPCA, the occurrence of 

faults without direct influence in the process 

productivity are not detected by MPLS method. 
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